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Abstract: The prevalence of renal cell carcinoma (RCC) is increasing due to advanced imaging
techniques. Surgical resection is the standard treatment, involving complex radical and partial
nephrectomy procedures that demand extensive training and planning. Furthermore, artificial
intelligence (AI) can potentially aid the training process in the field of kidney cancer. This review
explores how artificial intelligence (AI) can create a framework for kidney cancer surgery to
address training difficulties. Following PRISMA 2020 criteria, an exhaustive search of PubMed
and SCOPUS databases was conducted without any filters or restrictions. Inclusion criteria
encompassed original English articles focusing on Al’s role in kidney cancer surgical training.
On the other hand, all non-original articles and articles published in any language other than
English were excluded. Two independent reviewers assessed the articles, with a third party
settling any disagreement. Study specifics, Al tools, methodologies, endpoints, and outcomes
were extracted by the same authors. The Oxford Center for Evidence-Based Medicine’s evidence
levels were employed to assess the studies. Out of 468 identified records, 14 eligible studies were
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selected. Potential Al applications in kidney cancer surgical training include analyzing surgical
workflow, annotating instruments, identifying tissues, and 3D reconstruction. Al is capable
of appraising surgical skills, including the identification of procedural steps and instrument
tracking. While Al and augmented reality (AR) enhance training, challenges persist in real-time
tracking and registration. The utilization of Al-driven 3D reconstruction proves beneficial for
intraoperative guidance and preoperative preparation. Artificial intelligence (AI) shows potential
for advancing surgical training by providing unbiased evaluations, personalized feedback, and
enhanced learning processes. Yet challenges such as consistent metric measurement, ethical
concerns, and data privacy must be addressed. The integration of Al into kidney cancer surgical
training offers solutions to training difficulties and a boost to surgical education. However, to
fully harness its potential, additional studies are imperative.

Keywords: RAPN; partial nephrectomy; radical nephrectomy; kidney cancer; renal cancer; annotation;
deep learning; computer vision; artificial neural network; artificial intelligence; training; augmented
reality; simulation

1. Introduction

Renal cell carcinoma (RCC) represents a common malignancy with approximately
431,288 newly diagnosed cases and 179,368 deaths worldwide in 2020 [1]. Further-
more, the advancements in imaging techniques allow for the detection of tumors at
earlier stages [2,3]. However, still, a substantial portion (approximately 10% to 17%)
of kidney tumors are classified as benign through histopathological evaluation [4].
Moreover, certain populations with co-existing health conditions, such as obesity and
the elderly, face increased risks during interventions. Generally, for non-metastatic
disease, surgical resection remains the standard of care. According to the current guide-
lines, surgery can be performed by either an open, laparoscopic, or robotic-assisted
approach dependent on local conditions to maximize oncological, functional, and
perioperative outcomes [5].

Partial and complex radical nephrectomy are challenging procedures that require
thorough training and planning for the key steps such as dissection of the renal hilum,
tumor enucleation, and renorraphy. However, due to the triple burden of patient
care, research, and teaching, especially for doctors in academic centers, exposure to
hands-on experience in the operating room (OR) and surgical training have become
less prominent in current curricula [6]. Thus, training outside the OR in various
simulation scenarios has become more important. Surgical training outside the OR
can be provided, for example, by dry lab laparoscopy training [7,8], virtual reality
training [9], or serious gaming [10]. All these modalities have been shown to be
beneficial for the trainees.

In addition to spare resources even during training, the recent advances in tech-
nology might help to replace trainers with training systems that can assess trainees’
performance based on metric parameters [11]. Furthermore, it has been shown that
artificial intelligence (AI) may greatly contribute to the improvement and automation of
surgical training [12,13].

In 1955, Professor John McCarthy of Stanford University coined the term artificial
intelligence for the first time, referring to the capability of building intelligent machines
that can efficiently perform complex intellectual human tasks such as learning, thinking,
reasoning, and problem-solving [14]. Generally, Al depends on the quantity, quality, and
variability of the available data for the training of these models and systems, which is
considered one of the major challenges to the development and robustness of different
Al applications [15,16]. The potential advantages of this technology fascinated the
health care industry, allowing its permeation in nearly all fields of medicine. This
increasing interest in Al applications in the medical field was further aided by the
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advancements in medical technology, such as the shift to electronic medical records,
digital radiology, digital pathology, and minimally invasive surgeries such as robotics,
laparoscopic surgery, and endoscopy, which allowed the generation of large amounts
of data [15].

Al in the healthcare industry consists of four subfields. Firstly, machine learning (ML)
defines the use of dynamic algorithms to identify and learn from complex patterns in a data
set, thus allowing the machine to make accurate predictions. Secondly, Natural Language
Processing (NLP) is another subfield of Al that encompasses the ability of the computer to
understand and process written and spoken languages [17]. Thirdly, deep learning (DL)
includes the use of massive datasets to train individualized functioning units, which are
arranged in multiple connected layers resembling artificial neurons. These functioning
units are known as artificial neural networks (ANN) [18]. Finally, computer vision (CV)
is the ability of the computer to identify and analyze different objects in an image or
a video [17].

In these settings, the current systematic review aims to assess how Al might help
to overcome the current limitations of surgical education and to establish a dedicated
framework for kidney cancer surgery, which proves particularly intricate, especially in the
tumor enucleation and renorraphy steps (two surgical aspects where intelligence can be
immensely beneficial).

2. Materials and Methods
2.1. Search Strategy

A systematic review of the literature was carried out in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement [19]. Fur-
thermore, the PRISMA 2020 checklist (Supplementary File S1), PRISMA Abstract checklist
(Supplementary File S2) [19], and PRISMA-S checklist (Supplementary File S3) [20] are
added as Supplementary Materials. A systematic search of the PubMed and SCOPUS
databases was conducted on the 7 August 2023, to identify all articles concerned with
the use of Al in kidney cancer surgical training. A combination of the following terms
was used for the search: “robotic assisted partial nephrectomy”, “RAPN”, “partial

”oou v ”oou

nephrectomy”, “radical nephrectomy”, “nephroureterectomy”, “kidney cancer”, “Renal

v i v

cancer”, “Annotation”, “machine learning”, “Deep learning”, “natural language pro-
cessing”, “computer vision”, “artificial neural network”, “artificial intelligence”, “CV”,
“NLP”, “DL”, “ANN”, “ML”, “Al”, “training”, “performance assessment”, “performance
evaluation”, “virtual reality”, “VR”, “augmented reality”, “AR”, “simulation”, and
“workflow”. Supplementary File 54 shows the combination of the keywords used for

each database searched.

2.2. Search Criteria

The inclusion criteria consisted of all original articles focusing on the utility of Al for
surgical training of kidney cancer without any restrictions on the type of study (retrospec-
tive or prospective case series, clinical trials, cohort studies, or randomized controlled trials)
or the date of publication. The articles were excluded if they were not published in the
English language, had no original data (reviews, letters to the editor, commentaries, and
editorials), or the full text was not available.

2.3. Screening and Article Selection

Two independent authors (AE and NR) screened all the search results by title and
abstract to identify all the articles with clinical relevance to the topic of the current review
according to the predefined inclusion and exclusion criteria. Duplicates were examined
using Mendeley reference manager (Elsevier Ltd., Amsterdam, The Netherlands) and
were revised manually for exclusion. Subsequently, a full-text review was performed for
all the remaining manuscripts after the initial screening to finally determine the articles
that will be discussed in the current review. A manual review of the references in the
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included studies was performed to identify any relevant articles. Finally, a third author
(SP) reviewed the search process and helped in resolving any discrepancies among the
two reviewers.

2.4. Data Extraction

Data from the determined articles was collected independently by the same two
authors in a standard Excel sheet. The following key aspects of the included studies
were extracted: (1) first author and year of publication; (2) type of the study; (3) number
of patients or cases included; (4) Al tools used for building the algorithms of the study;
(5) a brief description of the methods used; (6) the main endpoints; and (7) the main findings
of the study.

2.5. Level of Evidence

Finally, the included studies were evaluated according to the 2011 Oxford Center
for Evidence-Based Medicine (OCEBM) level of evidence [21]. OCEBM levels function
as a hierarchical guide to identify the most reliable evidence. They are designed to
offer a quick reference for busy clinicians, researchers, or patients seeking the strongest
available evidence; the OCEBM Levels aid clinicians in swiftly appraising evidence
on their own. While pre-appraised sources such as Clinical Evidence, NHS Clinical
Knowledge Summaries, and UpToDate may offer more extensive information, they
carry the potential for over-reliance on expert opinion. Additionally, it’s important
to note that the OCEBM levels do not provide a definitive assessment of evidence
quality. In certain instances, lower-level evidence, such as a compelling observa-
tional study, can yield stronger evidence compared to a higher-level study, such as
a systematic review with inconclusive findings. Moreover, the levels do not offer spe-
cific recommendations; they act as a framework for evaluating evidence, and ultimate
decisions should be guided by clinical judgment and the unique circumstances of each
patient. In short, the levels serve as efficient tools for swift clinical decision-making,
eliminating the reliance on pre-appraised sources. They provide practical rules of
thumb comparable in effectiveness to more intricate approaches. Importantly, they
encompass a broad spectrum of clinical questions, enabling the assessment of evidence
regarding prevalence, diagnostic accuracy, prognosis, treatment effects, risks, and
screening effectiveness [22].

3. Results
3.1. Search Results

Overall, the search identified 468 records, of which 53 articles were excluded as they
were duplicates. The initial screening of the remaining 415 articles by title and abstract
resulted in the exclusion of 385 articles that did not meet the inclusion criteria of the
current review. The remaining 30 articles were eligible for full-text review, after which
another 16 were excluded for different reasons. Only one article caused disagreement
among the reviewers, where the authors assessed the validity of an Al total that may
guide the decision to either perform partial or radical nephrectomy (after discussion
among the reviewers, it was excluded as this tool has no effect on the surgical skills of
the novice) [23]. Finally, 14 articles met our inclusion criteria and were included in the
current systematic review [24-37]. Figure 1 illustrates the PRISMA flow diagram for the
search process.
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PRISMA 2020 flow diagram for new systematic reviews which included searches of databases and registers only
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*Consider, if feasible to do so, reporting the number of records identified from each database or register searched (rather than the
total number across all databases/registers).

**If automation tools were used, indicate how many records were excluded by a human and how many were excluded by
automation tools.

Figure 1. PRISMA flow diagram for the search process.

3.2. Al and Surgical Training for Kidney Cancer

There is a scarcity of evidence in the literature regarding the application of Al to
enhance surgical skills in the urological discipline. This also applies to the field of surgical
training for kidney cancer, where Al has predominantly been employed in the realm of
surgical simulations and robot-assisted surgery [24-37]. Table 1 shows a summary of the
included studies concerning the use of Al in the field of renal cancer training.
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Table 1. Summary of the included studies concerning the use of Alin the field of renal cancer training.

Reference

N. of Cases

Al Tool

Study Summary

Instruments and objects annotation/segmentation

Amir-Khalili A, et al.,
2014 [30]

Dataset obtained from
eight RAPN videos

Computer vision

Using phase-based video magnification for
automated identification of faint motion
invisible to human eyes (resulting from small
blood vessels hidden within the fat around the
renal hilum), thus facilitating the identification
of renal vessels during surgery.

Amir-Khalili A, et al.,
2015 [37]

Validation in 15 RAPN
videos

Computer vision

The authors used color and texture visual cues
in combination with pulsatile motion to
automatically identify renal vessels (especially
those concealed by fat) during minimally
invasive partial nephrectomy (an extension of
their previous study [27]). The area under the
ROC curve for this technique was 0.72.

Nosrati M. S, et al.,
2016 [31]

Dataset obtained from
15 RAPN videos

Machine learning
(random
decision forest)

Using data from the preoperative imaging
studies (to estimate the 3D pose and
deformities of anatomical structures) together
with color and texture visual cues (obtained
from the endoscopic field) for automatic
real-time tissue tracking and identification of
occluded structures. This technique improved
structure identification by 45%.

Nakawala H, et al.,
2019 [24]

9 RAPN

Deep learning
(CRNN and
CNN-HMM)

The authors used a dataset obtained from
splitting nine RAPN videos into small videos of
30 s and annotated them to train the Deep-Onto

model to identify the surgical workflow of
RAPN. The model resulted in the identification

of 10 RAPN steps with an accuracy of 74.29%.

Nakawala H, et al.,
2020 [26]

9 RAPN

Deep learning
(CNN and LTSM
and ILP)

The authors extended their previous work [21]
on automatic analysis of the surgical workflow
of RAPN. The authors successfully introduced
new Al algorithms to use relational information
between surgical entities to predict the current
surgical step and the corresponding
surgical step.

Casella A, et al.,
2020 [27]

8 RAPN videos

Deep learning
(Fully CNNs)

The authors trained a 3D Fully convolutional
neural network using 741,573 frames extracted
from eight RAPN for segmentation of renal
vessels. Subsequently, 240 frames were used for
validation, and the last 240 frames were used
for testing the algorithm.

De Backer P, et al.,
2022 [35]

82 videos of RAPN

Deep learning

The authors presented a “bottom-up”
framework for the annotation of surgical
instruments in RAPN. Subsequently, the images
annotated using this framework were validated
for use by a deep learning algorithm.

De Backer P, et al.,
2023 [33]

10 RAPN patients

Deep learning
(ANN)

65,927 labeled instruments in 15,100 video
frames obtained from 57 RAPN videos were
used to train an ANN model to correctly
annotate surgical instruments. This model aims
for real-time identification of robotic
instruments during augmented
reality-guided RAPN.
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Table 1. Cont.

Reference

N. of Cases

Al Tool

Study Summary

LE

Tissue tracking and 3D registration/augmented reality

Yip M.C,, et al,,
2012 [36]

Laparoscopic partial
nephrectomy videos

Computer vision

Using different methods of computer vision
for real-time tissue tracking during
minimally invasive surgeries, both in vitro
(porcine models) and in vivo (laparoscopic
partial nephrectomy videos), in order to
provide more accurate registration of
3D models.

Zhang X, et al,,
2019 [29]

1062 images from 9
different laparoscopic
partial nephrectomy

Computer vision
and Deep learning
(CNN)

Computer vision and machine learning were
used to develop an automatic markerless,
deformable registration framework for
laparoscopic partial nephrectomy. The
proposed technique was able to provide
automatic segmentation with
an accuracy of 94.4%.

Gaoy, etal.,
2021 [28]

31 patients with
Giant RAML

Deep learning

The authors used deep learning segmentation
algorithms to aid in the creation of 3D-printed
models of patients with giant renal
angiomyolipoma. Subsequently, they
compared surgeries performed with the aid of
deep learning—3D models—versus standard
surgeries (without the aid of models). Deep
learning—3D-printed models resulted in
higher rates of partial nephrectomy compared
to routine surgeries.

3b

PadovanE, et al.,
2022 [25]

9 RAPN videos

Deep Learning
(CNN)

The segmentation CNN model uses the RGB
images from the endoscopic view to
differentiate between different structures in
the field. Subsequently, a rotation CNN
model is used to calculate the rotation values
based on a rigid instrument or an organ.
Finally, the information from both models is
used for automatic registration and
orientation of the 3D model over the
endoscopic field during RAPN. This model
showed good performance.

Amparore D, et al.,
2022 [34]

10 RAPN patients

Computer vision

During surgery, super-enhancement of the
kidney using ICG was performed to
differentiate it from surrounding structures
in the firefly mode of the DaVinci robot.
Registration of the AR model was performed
using the kidney as an anchoring site (fine
tuning can be performed by a professional
operator), followed by automatic anchoring
during the surgery. This technique was
successfully applied for superimposing the
3D model over the kidney during seven
RAPN cases with completely
endophytic tumors.
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Table 1. Cont.

Reference N. of Cases Al Tool Study Summary LE
Skills assessment
Segmented RAPN videos were initially
evaluated by human reviewers using GEARS
and OSATS scores. Subsequently, a human
reviewer labeled each portion of the robotic
. instruments in a subset of videos. These labels
Wang Y, et al. 872 images from Deep learnin; were used to train the semantic segmentation
& ! 150 segmented p & . & 5
2023 [32] (multi-task CNN) network. A multi-task CNN was used to

RAPN videos predict the GEARS and OSATS scores. The

model performed well in terms of prediction of
force sensitivity and knowledge of instruments,
but further training of the model is required to
improve its overall evaluation of surgical skills.

N. = number; Al = artificial intelligence; CRNN = convolutional recurrent neural network; CNN-HMM = convo-
lutional neural network with hidden Markov Models; ICG = indocyanine green; CNN = convolutional neural
network; GEARS = Global Evaluative Assessment of Robotic Skills; OSATS = Objective Assessment of Tech-
nical Skills; ANN = artificial neural network; RAML = Renal Angiomyolipoma; ROC = Receiver Operating
Characteristic Curve; RAPN = robotic-assisted partial nephrectomy.

3.2.1. Al and Performance Assessment

The application of Al techniques in the automated analysis of surgical video is crucial
and holds central importance in this context. Subfields, such as CV and ML, are increas-
ingly being applied to surgical videos, enabling surgical workflow analysis, intraoperative
guidance, and objective assessment of actions, errors, and risks. Detecting and estimating
the pose and movement of surgical instruments plays a key role in surgical video and image
analysis for performance assessment [32]. It can also provide insights into the surgeon’s
intent and facilitate a better understanding of the surgical workflow [26]. In this setting,
Nakawala et al., used DL algorithms to obtain a detailed workflow of RAPN by implement-
ing a “Deep-Onto” network on surgical videos, which accurately (74.3%) identified not
only the steps of RAPN but also anatomy and instruments [24]. This “Deep-Onto” network
consisted mainly of two models, the first of which is made of two components: a convolu-
tional recurrent neural network (CRNN) model that is responsible for the recognition of
the current surgical step and a “Sequence” model that uses the outcomes provided by the
CRNN model to anticipate the upcoming surgical step. Secondly, a “Knowledge” model is
applied to provide further information about the ongoing step including the instruments
used, actions, and phase [24]. The same authors combined the predictions of the CRNN
and “Subsequent” models as a predicate defining the ongoing surgical step, and the corre-
sponding consecutive step, where correctly predicted step sequences were identified as
positive examples in the Inductive Logic Programming (ILP) system. Subsequently, ILP
was applied to identify relational information between different surgical entities [26].

However, instrument annotation represents the cornerstone for robotic surgical Al
projects focused on instrument detection and surgical workflow analysis; no clear guidelines
for instrument annotation are currently available. In this setting, Pieter De Backer et al. [35]
have developed an efficient bottom-up approach for team annotation of robotic instruments
in robot-assisted partial nephrectomy (RAPN). Interestingly, a recent study used 872 labeled
images from 150 segmented RAPN videos to train a multi-task convolutional neural network
model to predict the surgical proficiency scores as Objective Structured Assessment of
Technical Skills (OSATS) and Global Evaluative Assessment of Robotic Skills (GEARS),
demonstrating that the model’s performance was comparable to human ratters in some
subcategories such as identification of instruments and force sensitivity; however, it may
be generally associated with less reliable results compared to human ratters. The authors
explained these findings by citing the lack of data that was used for model training [32].
Despite the limitations reported in this study, it represents a progression for automated
performance assessment in the field of renal cancer.
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3.2.2. Al and AR

On the other hand, the integration of virtual reality and augmented reality with
Al is capable of improving minimally invasive renal cancer surgery training, planning,
and outcomes. In this setting, the ORSI Academy workgroup showcased the potential
for enhancing augmented reality in robotic renal surgery through DL techniques [33].
They developed an algorithm based on deep learning networks to identify nonorganic
objects, specifically robotic instruments, during robot-assisted partial nephrectomy and
renal transplantation. This enabled the overlay of virtual 3-D images onto the surgical
stream without obstructing the view of the robotic tools. As a result, surgeons could employ
the tools while simultaneously benefiting from this augmented virtual reality approach.
Although the study encountered some challenges, it is undeniably an encouraging step
forward in the field [33]. Similarly, Padovan E, et al., proposed a framework consisting of
a segmentation CNN that differentiates between structures in the endoscopic view and
a rotation CNN that calculates the rotation values (X, Y, and Z axis) [25]. The performance
and function of the rotation CNN differ according to the anchoring structure; in the case
of an anchoring rigid instrument such as urethral catheter in patients undergoing robotic-
assisted radical prostatectomy, it can be used for both registration and tracking tasks. On
the other hand, a soft tissue anchoring structure can be more complex as a result of its
deformability; thus, rotation CNN can be used only for registration (as in the prostate), and
it can even require manual adjustments in the case of more complex organs (such as the
kidneys) [25]. Considering laparoscopic renal surgery, an automatic deformable marker-
less registration framework of a video see-through AR system demonstrated an average
registration error of 1.28 mm when tested on renal phantom models [29]. This system is
based on a disparity map of the laparoscopic image that is generated using a semi-global
block matching method. The disparity image is used for accurate pixel-to-pixel matching
through path-wise optimization of the global cost function. Subsequently, a manually
trained Mask R-CNN is used for segmentation of the renal surface regions. Finally, 3D
reconstruction within the identified region is performed to attain the reconstruction point
cloud of the renal surface [29].

In line with the previous studies, CV in the form of a modified Center Surrounded
Extremas for Real-time Feature Detection (Cen-SuRE) known as STAR in combination
with Binary Robust Independent Elementary Feature (BRIEF) was successfully used to
detect salient features in an endoscopic frame that can be employed for real-time tissue
tracking during RAPN [36]. Moreover, Amparore et al., used CV technology to aid the
automatic anchoring of the 3D model over the real anatomy during RAPN. The authors
differentiated the kidney from surrounding structures using super-enhancement of the
kidney by employing indocyanine green (ICG). Despite the promising results reported
by the authors, there were some limitations, including the need for human interference
during the initial phases, the failure of anchoring in cases of posterior lesions where the
kidney is largely rotated, and the burdensome tracking when there was not homogenous
ICG perfusion [34].

Hilar dissection and clamping of renal arteries are among the most demanding steps
of partial nephrectomy, particularly for novice surgeons, as any missed vessel or improper
clamping may result in significant bleeding and compromise the outcomes of surgery. In
these settings, different Al algorithms, such as the 3D Fully Convolutional Neural Network,
a modified Eulerian motion processing technique, have been applied for the segmentation
of renal vessels and the identification of occluded vessels that might not be visible to the
naked eye during minimally invasive partial nephrectomy [27,30,37]. Similarly, Nosarti
MS et al. [31] utilized color and texture visual cues through the use of random decision
forest algorithms together with the preoperative data obtained from imaging studies for
segmentation of the endoscopic view that may help in the identification of occluded tissues
such as vessels occluded by fat and endophytic tumors. Furthermore, it can be used for
augmentation of endoscopic view through tissue tracking [31].
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3.2.3. Al and 3D-Printing

On the other hand, DL algorithms were proposed for the 3D reconstruction of renal
models in patients with giant angiomyolipomas, which in turn can be printed to help
in preoperative planning, patient-specific rehearsal, and intraoperative guidance during
even open surgery. This combination of 3D printing and Al has the potential to enhance
training and improve surgical outcomes [28]. In comparison with standard techniques, this
combination resulted in significantly higher success rates for partial nephrectomy (30%
versus 72%) [28].

4. Discussion

Al will potentially change the landscape of medicine and reshape the healthcare
industry over the coming years. Generally, the applications of Al in healthcare include,
but are not limited to, drug development, health monitoring, medical data management,
disease diagnostics and decision aids, digital consultation, personalized disease treatment,
analysis of health plans, and surgical education [38-40]. Expectations for Al applications in
medicine are high, and some workers in the healthcare industry believe that if Al systems
are currently capable of efficiently driving cars, they might be able to autonomously control
surgical robots one day. However, it should be noted that Al is not a replacement for the
human factor; it is just a tool to help medical professionals do their job more efficiently
and safely [41]. The urological field is not an exception, where Al has made significant
advancements in enhancing diagnosis, prognosis, outcome prediction, and treatment
planning [17,42-45].

Considering surgical training, numerous studies have emphasized the significance of
surgical skills in determining patient outcomes, including mortality, complication rates,
operation length, and re-operation and re-admission rates [46,47]. Interestingly, surgical
skills may account for up to 25% of the variation in patient outcomes [48]. Therefore,
it is crucial to evaluate surgical skills effectively to enhance training, credentialing, and
education and ultimately provide the highest quality of care to patients.

Medical training has traditionally followed the Halstedian model, where trainees
observe, perform, and then teach procedures [49]. However, new regulations, increased
paperwork, and concerns about inexperienced surgeons operating on patients have high-
lighted the need for a change in surgical training [49,50]. This is particularly important
because studies have shown that complications tend to occur during the early stages of
a surgeon’s learning curve [51]. Therefore, surgical training should prioritize structured
and validated processes, including proficiency-based progression training and objective as-
sessments. Accordingly, training should involve practice in a controlled setting or through
simulations, where trainees could only move on to real-life procedures after reaching
an established proficiency benchmark to enhance patient safety [52,53]. Noteworthy, the
process of performance evaluation requires manual peer appraisal by trained surgical
experts either during surgery or review of surgical videos. This is a time-consuming
and unreliable process due to the lack of a standardized definition of success among
different surgeons [54].

Interestingly, Al can be integrated with conventional proficiency-based training ap-
proaches to provide an objective assessment of surgical skills [52], which has paved the
way for the development of automated machine-based scoring methods, particularly in
the field of robotic surgery [55-58]. A recent randomized control trial demonstrated that
the virtual operative assistant system (an Al-based tutoring system) provided superior
performance outcomes and better skill acquisition compared to remote expert tutoring [59].

Considering autonomous assessment of surgical skills during kidney cancer surgeries,
we are still taking our first steps, where most of the published studies are concerned with
the identification of surgical workflow of RAPN [24,26], instrument annotation [33,35], and
different tissue identification (blood vessels, tumors, anatomical spaces) [27,30,31,37], while
only one study took a step forward towards actual automatic assessment of surgical skills
during RAPN [32].
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In this context, it's evident how kidney imaging plays a pivotal role in the field of
Al applied to renal surgical training. Over recent years, there has been a consistent drive
for innovative imaging techniques. These developments aim to empower surgeons to
conduct thorough examinations of the kidney, including remarkable three-dimensional
(3D) reconstruction technology. The use of 3D models results in patient-specific virtual or
physical replicas, leading to reduced operative time, clamping duration, and estimated
blood loss [60,61]. Additionally, these techniques play a crucial role in educating patients
and their families, providing a deeper understanding of tumor characteristics and the
range of available treatment options [62,63]. The application of 3D-volumetry, a technol-
ogy utilizing CT scans to assess renal volume, proves essential in evaluating split renal
function [64]. The introduction of holographic technology represents a ground-breaking
approach, providing an immersive and interactive experience based on 3D visualization.
This fosters a greater appreciation of patient-specific anatomy [65].

Moreover, intraoperative navigation guided by 3D virtual models leads to lower compli-
cation rates and improved outcomes [66]. Intraoperative imaging, which encompasses both
morphological and fluorescence techniques, is vital for tumor identification and assessment
of ischemia through tools such as laparoscopic US probes [67] and intraoperative fluores-
cent imaging [68]. Embracing pathological intraoperative imaging through technologies
such as fluorescence confocal microscopy [69,70] and optical coherence tomography [71]
holds immense promise in guiding the treatment of small renal masses and advancing
cancer control.

In their comprehensive examination of innovative imaging technologies for robotic
kidney cancer surgery, Puliatti et al., meticulously detail the techniques mentioned above,
highlighting the potential application of 3D visualization technologies and augmented real-
ity navigation for guiding operations and providing training in renal cancer surgery [72].
Furthermore, the integration of VR and AR with Al is capable of improving robotic renal
cancer surgeries and training [73]. Particularly, AR may have a great potential for reducing
surgical complications and improving outcomes after surgery by guiding novice surgeons
through the initial learning curve. However, the main limitation of AR-guided surgery
is the registration process, where the 3D reconstructed model is superimposed over the
corresponding anatomy in the endoscopic view. Furthermore, real-time object or structure
tracking is another concern. Particularly, the kidneys are more complex organs (as they
are not fixed to anatomical constraints) compared to other ones, such as the prostate, and
thus require more sophisticated registration and tracking techniques [25]. In these settings,
four studies in the literature focused on the use of Al for the automatic registration of
3D models and for real-time tissue tracking during surgery to overcome the limitations
of tissue deformability and mobility [25,29,34,36]. Future work should concentrate on
annotating soft tissues to study and quantify tool-tissue interactions. Accurate soft tis-
sue segmentation in conjunction with instrument segmentation is crucial for successful
augmented reality applications, ensuring the correct registration of 3D models with the
intraoperative view [74].

In these settings, training machines to identify anatomical spaces, instruments, and
different stages of various procedures is crucial not just for offering real-time assistance and
feedback to surgeons during operations but also for providing young surgeons in a training
environment with an understanding of their proficiency level in a specific surgical step.
When it comes to kidney cancer, we still have a considerable distance to go before achieving
this type of application.

4.1. Al Limitations

One of the major limitations restricting Al-based publications in the field of kidney
cancer surgical training is the lack of standardized metrics for the objective evaluation of
trainees’ ability to perform RAPN. Thus, Rui Farinha et al. [75] presented an international
expert consensus on the metric-based characterization of left-sided RAPN cases, but
these metrics are not applicable to other scenarios. They also established evidence
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supporting the validity of these metrics, showing reliable scoring and discrimination
between experienced and novice RAPN surgeons [76]. However, the progression in
the field of RAPN metrics development in the near future will allow the integration of
Al to enable real-time error recognition during surgery and provide feedback during
training, which holds promise for offering valuable insights and assistance in enhancing
surgical performance.

Additionally, robotic surgery serves as an ideal testing ground for the advancement of
Al-based programs due to its ability to capture detailed records of surgeons’ movements
and provide continuous visualization of instruments. According to a Delphi consensus
statement in 2022, the integration of Al into robotic surgical training holds significant
promise, but it also introduces ethical risks. These risks encompass data privacy, trans-
parency, biases, accountability, and liabilities that require recognition and resolution [77].

Furthermore, despite the extensive published literature on the significant potential of Al,
there are no reports on its efficacy in improving patient safety in robot-assisted surgery [14].

Other general limitations to the robustness and acceptance of Al applications in the
field of medicine include the heterogeneity of the research methodology of the published
studies, the restricted generalizability as most of the developed Al algorithms are trained
and validated using similar datasets, which may result in overfitting of the models, and
the fact that many of the ML algorithms (particularly ANN) are very complex and difficult
to understand, resembling a black box, which represents an obstacle towards rigorous
testing of these algorithms [78]. Finally, the availability of large labeled datasets in the
medical field is scarce in comparison to other fields [79]. In this setting, verified benchmark
datasets are essential;, however, producing a high-quality benchmark dataset is a complex
and time-consuming process [80]. Most of the available benchmark datasets in the field
of kidney cancer are mainly related to the histopathological or radiological evaluation of
kidneys (i.e., the 2019 kidney and kidney tumor segmentation challenge [KiTS19], KiTS21,
and KMC datasets) [81-83]. According to our knowledge, there are no benchmark datasets
related to the segmentation of instruments and tissues during minimally invasive partial
nephrectomy. Noteworthy, it is not always about the size and quality of the dataset. Gaél
Varoquaux and colleagues effectively shed light on methodological errors in various aspects
of clinical imaging within their review [79]. Despite extensive research in this field, the
clinical impact remains constrained. The review pinpoints challenges in dataset selection,
evaluation methods, and publication incentives, proposing strategies for improvement. It
underscores the necessity for procedural and normative changes to unlock the full potential
of machine learning in healthcare. The authors stress the tendency for research to be
influenced by academic incentives rather than meeting the needs of clinicians and patients.
Dataset bias is identified as a significant concern, emphasizing the importance of accurately
representative datasets. Robust evaluation methods beyond benchmark performance are
called for, along with the adoption of sound statistical practices. The publication process
may fall short of promoting clarity, potentially hindering reproducibility and transparency.
Researchers are urged to prioritize scientific problem-solving over publication optimization,
considering broader impacts beyond benchmarks [79].

4.2. Future Perspectives

Al-powered technologies will impact all areas of surgical education. Starting with
the communication between trainers and trainees, Al-powered language translators will
allow an English trainer/trainee and a Chinese-speaking trainee/trainer, to interact in
their native languages, improving communication and breaking language/cultural bar-
riers. Moving to e-learning platforms, where Al can be used to fully guarantee trainees’
identification through biometric facial recognition technologies, thus allowing personalized
e-learning courses that are customized to the previous knowledge and skills of each trainee.
Furthermore, Al will facilitate the classification, editing, and tagging of videos to create
personalized e-learning platform content.
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Soon, Al-tutoring systems will be able to objectively assess trainees’ surgical skills in
the laboratory and clinical practice, providing personalized quantitative feedback on their
technical proficiency. This feedback will help identify areas for skill improvement and track
their progress over time. Defining expert proficiency benchmarks will become easier, and
comparing them with the trainee’s performance will facilitate proficiency-based training.
This monitoring will allow an active and constant adaptation of the training program
based on individual needs. These systems will use CV and ML techniques to monitor
trainees’ actions, identify errors and critical errors, and offer corrective advice. They will
serve as virtual trainers, enhancing the learning experience and ensuring best practices
are followed. A bilateral conversation, activated through voice recognition software, will
allow personalized virtual trainers to answer questions and keep trainees on track of
their progress.

Furthermore, combining Al with VR and AR technologies will increase the potential
to create impactful and immersive education and training experiences. This combination
will be capable of guiding novice surgeons step-by-step during their initial learning curve,
thus improving surgical outcomes.

Finally, Al will aid in continuous learning and knowledge integration since its
algorithms will process vast amounts of medical literature, surgical videos, and patient
data, extracting relevant insights, identifying trends, and providing trainees with up-to-
date information.

5. Conclusions

The applications of Al in the field of surgical training for kidney cancer are still in the
initial phase of discovery, with multiple limitations and restrictions. However, Al-based
surgical training holds the promise of improving the quality of surgical training without
compromising patients’ safety. Further studies are required to explore the potential of this
technology in the surgical education of renal cancer.
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