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High-Cycle Fatigue Design Curves of Mild- and

High-Strength Steels for Offshore Applications

Paulo Mendes1,∗, José A.F.O Correia1, António Mourão1, Rita Dantas1,2,
Ab́ılio de Jesus2,3, Claúdio Horas1, Nicholas Fantuzzi4, Lance Manuel5

Abstract

Fatigue analysis holds profound significance in the design and maintenance of

offshore wind energy systems, especially within the framework for transition-

ing from oil and gas to renewable energies. Addressing the impact of fatigue

life variability is essential when generating reliable S-N curves and establish-

ing safe operational domains. In contrast to commonly applied global S-N ap-

proaches presented in standards, local approaches provide a more comprehen-

sive understanding of the material’s fatigue strength. This study implements

various probabilistic methods for generating fatigue strength curves, includ-

ing the guidelines recommended by ISO 12107, a two-parameter Weibull

distribution, the Castillo & Fernández-Canteli (CFC) model, and a Bayesian

method that incorporates a Markov Chain Monte Carlo algorithm. Using

experimental data from literature for S355 (base) and S690QL (base and

welded) steels, two distinct model fitting approaches - classical linear regres-
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sion (CLR) and orthogonal linear regression (OLR) - were applied. Also,

this study explores how corrosion affects fatigue strength by deriving fatigue

strength curves that consider this influence. In practical scenarios, CLR is

recommended for the design of new projects, whereas OLR is recommended

for retrofitting purposes in order to leverage the structural capacity and fa-

tigue resistance of materials and structures that have been in long-term op-

eration. Based on this comparative analysis, the most conservative model

for CLR is the two-parameter Weibull distribution, whereas the most con-

servative model for OLR is the Bayesian approach incorporating the Markov

Chain Monte Carlo algorithm. These models are identified as particularly

well-suited for high-cycle fatigue, predicting shorter fatigue lives and indicat-

ing a higher potential for fatigue damage, thereby enhancing fatigue strength

modelling for current offshore materials.

Keywords: Fatigue design, S355 steel, S690QL steel, Offshore structures,
Probabilistic modelling, Statistical analysis, Corrosion

1. Introduction

The transition to renewable energy is a global imperative, and offshore

structures have emerged as key players in this transformation [1–6]. As the

offshore wind industry grows, it is important to determine safe and sustain-

able methods for disposing, using, or repurposing these existing structures.

[7–11]. The vast majority of offshore structures, specially fixed offshore plat-

forms, have been constructed using medium-grade structural steels with yield

strengths around 355 MPa. The use of high-strength steels, characterised by

yield strengths above 420 MPa, is increasingly gaining prominence in the

offshore industry, since their superior performance enhances the strength-to-
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weight ratio, reduces costs, shortens construction timelines [12], and improves

fatigue resistance. Fatigue is a complex phenomenon that can lead to the

failure of mechanical components and materials, being defined as the progres-

sive degradation resultant of repeated stress-strain cycles, leading to gradual

cracking and eventual fracture. This intricate phenomenon is responsible for

approximately half of all mechanical failures [13]. In the context of welded

joints, fatigue failure can be initiated by regions of stress concentration [14–

19]. Cui [20] highlighted recent developments in fatigue life prediction meth-

ods, categorising influencing factors, including material properties, structure,

applied loads, and environmental conditions.

The fatigue life of a structure depends on stochastic variables that cannot

be predicted with certainty, relying instead on a certain degree of probabil-

ity. Therefore, a fatigue design criteria should consider probabilistic mod-

elling and analysis, accounting for the variability in applied loads, material

strength and structural details [21–23]. The intrinsic nature of uncertainty

in input data is demonstrated by its scatter, often quantified by the coef-

ficient of variation (CV ) [24]. This statistical parameter, expressed as the

ratio of the standard deviation (σx) to the mean value (µx) of the parameter

or random variable x, is denoted as CVx = σx

µx
. Some parameters such as the

conventional fatigue endurance limit, σ0, and the fatigue strength coefficient,

σ′
f , present some degree of uncertainty associated. According with some au-

thors [24–26], the coefficient of variation of σ0 ranges between 0.05 and 0.1

for plain specimens and between 0.1-0.2 for welded joints. Additionally, for

the σ′
f the CV is assumed as 0.05, as suggested in [24–26]. Thus, adopt-

ing a probabilistic modelling approach is essential to integrate the inherent
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uncertainty in input data into fatigue-life assessment.

Conventional S-N or Wohler’s curves, which provide deterministic aver-

age life predictions, fall short in designing for applications that must account

for variability. Therefore, using stochastic methods to elaborate probabilistic

S-N fields (p-S-N fields) offers reliable estimates for structural design, con-

sidering the inherent uncertainty in fatigue life [27–35]. Many probabilistic

distributions have been proposed for the prediction of fatigue life [8, 23, 34–

40], and to gain valuable insights into the fatigue behaviour of materials and

structural details.

Correia et al. [41] proposed an unified approach for deriving probabilistic

S–N fields for notched details, considering both crack initiation and crack

propagation phases, based on experimental data and numerical simulation.

Strzelecki et al. [42] introduced an innovative analytical method for deriving

the S-N curve characteristics of aluminum material. Kang et al. [43] pre-

sented a probabilistic fatigue reliability assessment method for steel members

using Gumbel, lognormal, exponential, and Weibull probability distributions.

Caiza et al. [44] suggested S-N curves based on the Stüssi model and the

Weibull distribution function to strength the modelling of structural details.

In a recent study, Correia et al. [45] developed a fatigue strength assessment

methodology for riveted railway bridge details based on regression analyses

combined with probabilistic models. Other authors [46, 47] have established

design S-N curves using a Bayesian approach, which has proven its capabil-

ity to offer more accurate estimates of the fatigue strength of materials and

structural components compared to classical statistical methods.

Corrosion stands out as a primary structural degradation process that
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significantly impacts structural integrity, a reduction in the effective cross-

sectional area, moment of inertia, torsional and warping constants [48, 49].

The interaction between corrosion and cyclic loading, commonly recognised

as corrosion fatigue, affects the mechanical properties of steel, resulting in

the initiation of cracks from the corrosion-induced surface and a substantial

decrease in fatigue strength [50–53]. This degradation is evident in a typical

S-N curve of a material exposed to an air environment influenced by the

corrosion process, as depicted in Figure 1.

Number of cycles, N

Number of cycles, N

log 𝜎𝑎

log𝑁𝑓

Uncorroded material/detail

Corroded material/detail

𝑁𝑓,0 𝑁𝑓,0,𝐿𝑁𝑓,𝑦

𝜎0,𝐿,cor

𝜎0,cor

𝜎0,𝐿

𝜎0

𝜎𝑦

Figure 1: Effect of corrosion on the S-N curve of materials or details, adapted from [53].

The stress-based approach stands as the preferred method for predicting

crack initiation in structural components/materials subject to load-controlled

conditions and to describe the medium and high-cycle fatigue regime. This

approach is particularly effective when stress levels predominantly fall within

the elastic range of the material, minimising plastic deformation and non-

linear behaviour [34, 54]. Among local approaches, the stress-based approach
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one, which utilises the applied stress amplitude, σa, to predict the number of

cycles to failure, Nf , is the most commonly used due to its ease of application

and the abundance of literature on the fatigue properties of materials. The

stress-based approach, expressed through the Basquin law [55], is given by

Equation 1:

σa = σ′
f (Nf )

b (1)

where, σa represents the stress amplitude, σ′
f represents the fatigue strength

coefficient, b is the fatigue strength exponent commonly between −0.12 <

b < −0.05 with an average of -0.085 [24], and Nf is the number of cycles

until failure.

Based on the same stress-based approach, a formula for the S-N curve of

corroded steel was proposed by Adasooriya et al. [52]. This concept is based

on the degradation mechanism (corrosion effects) discussed in [52, 53] and is

expressed in Equation 2:

σa,cor =
(
σ′
fN

c
f,y

)
N

(b−c)
f , with c = log

[
σ0

σ0,cor

]
/ log

[
Nf,0

Nf,y

]
(2)

where, σa,cor represents the fatigue strength of corroded material correspond-

ing to the number of cycles until failure, Nf , and σ0,cor represents the constant

amplitude fatigue limit for the corroded material. The constant amplitude

fatigue limit represents the maximum stress that a structural element or ma-

terial can withstand under constant amplitude loading without experiencing

fatigue failure over a specific number of cycles. These limits are defined

for specific numbers of cycles to failure, with Nf,0 set as 5E6 cycles for the

Eurocode 3: Part 1-9 [56], and 1E7 cycles for the DNVGL-RP-C203 [57]
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standard, respectively. These authors [53] postulated that when the stress

amplitude is equal to the yield strength, σy, the number of cycles to fatigue

failure of the uncorroded material is denoted as Nf,y and is dependent on

the yield strength and on the high-cycle fatigue curve for the uncorroded

material.

When conducting fatigue tests under different stress ratios, it is necessary

to consider the influence of mean stress. To address this influence, a mean

stress adjustment can be applied to convert a stress cycle into an equivalent

stress cycle without the mean stress influence. Several approaches have been

proposed to address the impact of mean stress on fatigue life for steels and

alloys, including the Soderberg, Goodman, and Gerber diagrams [58–60].

Dowling et al. [61] provides a comparative analysis of different methods

to account for mean stress in fatigue analysis, highlighting the limitations

and strengths of each method, and noting material-specific considerations

for steels and aluminium alloys. For steels, the Walker method [62] produces

better outcomes when there is data accessible for adjusting the parameter γ.

Equation 3 provides a relationship between the stress ratio, stress amplitude

and the parameter γ in order to normalise the stress amplitude σa,norm to

completely reversed conditions (R = −1).

σa,norm = σa

(
2

1−R

)1−γ

(3)

The material property, γ, from Equation 3 can be estimated using Equa-

tion 4 which relates γ with the tensile strength, σu, of steels.

γ = −0.0002σu + 0.8818 (4)
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In this work, results obtained from fatigue testing conducted on S355 mild

steel and S690QL base and welded steels were used for probabilistic fatigue

characterization, considering their widespread application in the offshore in-

dustry. The proposed statistical methods were implemented to analyse the

obtained experimental data and to establish reliable uncorroded and cor-

roded fatigue curves. It is noteworthy that the derivation of the corroded

fatigue curve was based on postulated fatigue data. The parameters for these

fatigue curves were obtained using the classical linear (CLR) and orthogonal

linear regression (OLR) methods. A conservative approach was adopted for

both methods, with CLR being the preferred choice for novel project design,

due to its simplicity and interpretability. On the other hand, when aiming

to improve longevity, OLR was recommended. CLR allows for a straightfor-

ward understanding of fundamental relationships between variables, making

it suitable for designing innovative fatigue-resistant systems. In contrast,

OLR ensures the stability of parameter estimates over time, proving advan-

tageous for this type of applications where model consistency is required

throughout the entire lifespan of the system. The structure of this paper is

organised in five sections: Section 2 provides details on the materials used

in this study. Section 3 and 4 describe the proposed models behind this

probabilistic modelling, presenting the resulting uncorroded and corroded

probabilistic fatigue strength curves and conducting a comparative analysis.

Conclusions, along with decisive findings, are presented in Section 5.
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2. Materials and experimental details

Dantas et al. [63] evaluated the fatigue behaviour of the S355J2 structural

steel material in the high-cycle fatigue regime. This work involved uniaxial

and biaxial (axial+torsion in-phase) fatigue tests conducted under different

stress ratios, with loads applied using sinusoidal functions of constant am-

plitude at a frequency of 10 Hz. For the sake of this work, only the axial

fatigue results were taken into consideration.

Mendes et al. [64] performed fatigue tests with alternating tensile and

compressive stresses on two distinct specimens- S690QL base steel material

(BM) and S690QL welded steel material (WM). A total of 56 and 26 speci-

mens were used for the S690QL base and welded steels, respectively, derived

from a 30-millimeters (J30) and a 60-millimeters (J60) thick S690QL steel

welded joints. The fatigue tests for the S690QL steel welded joints were con-

ducted under rotating bending, with a stress ratio of R = −1, and performed

at a frequency of 23 Hz.

Tables 1 and 2 present the mechanical properties and the chemical com-

position of the S355 and S690QL base and welded steels, as reported in [63]

and [64], respectively. Coreweld 69 LT H4 is the metal cored wire used as

weld steel for the welding of the S690QL plates [65]. These mechanical prop-

erties were supplied by the steel manufacturer, and therefore, they should

include some level of uncertainty. In Table 2, the coefficients of variation,

associated with each material, were based on default values suggested by P.H

Wirsching [66].
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Table 1: Chemical composition (wt.%) of the S355, S690QL base and welded steels.

Material C Si Mn P S Cr Cu Ni Al Mo Ti Nb, V, N, B

S355 0.160 0.300 1.280 0.030 0.002 0.200 0.200 - - - - 0.009

S690QL (J30) 0.140 0.279 1.203 0.020 0.002 0.299 0.025 0.011 0.035 0.178 0.016 0.050

S690QL (J60) 0.149 0.276 1.253 0.011 0.001 0.621 0.030 0.012 0.030 0.259 0.016 0.023

Coreweld 69 LT H4 0.050 0.500 1.700 0.011 0.008 0.060 - 2.300 0.010 0.500 0.012 0.005

Table 2: Mechanical properties for the S355 and S690QL base and welded steels with

associated uncertainty.

Material Yield strength, σy [MPa] CV, σy Tensile strength, σu [MPa] CV, σu

S355 367 0.07 579 0.05

S690QL (J30) 814 0.07 857 0.05

S690QL (J60) 758 0.07 835 0.05

Coreweld 69 LT H4 755 0.07 790 0.05

In Figure 2 a) and Figure 2 b), the experimental data points for the S355

base and for the S690QL base and welded steels are represented. Note that

the experimental data points marked with an arrow (−→) represent run-

outs. For detailed experimental fatigue results from the testing conducted

by Dantas et al. [63] and Mendes et al. [64], please refer to the data provided

in Appendix A. As the experimental data for the S355 was obtained under

different stress ratios, it was necessary to normalise stresses for the same

stress ratio. For comparison purposes, Figure 3 depicts all the experimental

fatigue data normalised to the stress amplitude under completely reversed

conditions (R = −1) using Equation 3.
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a) b)

Figure 2: Experimental fatigue data for the a) S355 [63] and b) S690QL base and welded

steels [64].

Figure 3: Experimental normalised fatigue data for S355 base [63] and S690QL base and

welded steels [64].
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3. Probabilistic fatigue strength modelling

3.1. Fitting methods - regression analysis

Different probability distributions and models were used to establish fa-

tigue curves, relating σa and Nf , with a comparison being conducted be-

tween them. The flowchart presented in Figure 4 summarises the different

steps taken in this work to analyse the experimental data and derive reliable

fatigue strength curves.

START

- Classical Linear  Regression (CLR)

- Or thogonal Linear  Regression (OLR)

InputExper imental 
fatigue data

ISO 12107 Weibull  distr ibution Casti l lo & 
Fernández-Cantel i

Bayesian Inference

Methods of Estimation

(?w ; ?w)

Probabi l istic fatigue str ength cur ves

(LSM; MLM ; MM; WLSM)

Markov chain Monte Car lo

Gibbs sampling (Normal)

Figure 4: Flowchart describing the probabilistic modelling procedure to obtain reliable

fatigue curves.

Classical linear regression (CLR) (Figure 5 a)), often referred to as ordi-
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nary least squares (OLS) regression, is a method used to identify trends in

data by fitting a straight line to the variables. In a graph with an X-axis

and a Y -axis, usually X represents the independent variable (or predictor

variable), while Y represents the dependent variable (or response variable).

Classical linear regression introduces asymmetry between the variables and

seeks to minimise the vertical distances in Y and horizontal distances in X.

Orthogonal linear regression (OLR) (Figure 5 b)), also known as total

least squares (TLS) regression, is a method that symmetrically relates the

variables X and Y , unlike classical linear regression. In this model, the min-

imised distances are the orthogonal distances (perpendicular distances) from

the data points to the obtained regression-fitted line. This means that if the

variables are inverted, the minimised distances will remain the same. OLR

is particularly advantageous when the aim is to minimise errors in both the

X− and Y -directions, which is relevant when the data contains uncertainties

in both variables. OLR tends to yield robust parameter estimates against

variations in the data and errors and effectively handle outliers, which are

examples of data discrepancies. This attribute contributes to enhanced reli-

ability in predicting fatigue behaviour.
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Fitted model

Residuals 
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b) a) 

log 𝜎𝑎

log𝑁𝑓

Uncorroded material/detail

Corroded material/detail 

Figure 5: Linear regression methods: a) Classical linear regression (CLR); b) Orthogonal

linear regression (OLR).

Estimating the parameters that define the linear relationship between the

variables using linear regression is an important step. Assuming logNf as

the dependent variable and log σa as the independent variable (denoted as Y

and X, respectively), the linear fit equation, Equation 5, is used:

logNf = A+B log σa ⇔ Y = A+BX (5)

The parameters, A and B, are the linear fit coefficients of the model,

which are obtained by minimising the sum of squares of the residuals. This

involves replacing the values in Equation 5 to obtain Equation 6:

Â = Ȳ − B̂X̄ (6)

where, Â and B̂ are the estimated constants, X̄ = 1
n

∑n
i=1 Xi and Ȳ =

1
n

∑n
i=1 Yi are the mean values of log σa,i and logNf,i, respectively, while n is
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the number of data items. For the classical linear regression, the value of B

is approximated by its estimator, B̂, in Equation 7:

B̂ =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)∑n
i=1

(
Xi − X̄

)2 (7)

CLR aims to approximate the solution by minimising the sum of squares

of the residuals between every data point and the regression line. The sum

of squared vertical residuals for the CLR analysis, ECLR, is calculated using

Equation 8:

ECLR =
n∑

i=1

(
Yi − Ŷi

)2

=
n∑

i=1

(Yi − (A+BXi))
2 (8)

In the OLR, the estimator B̂ is calculated using Equation 9, which in-

volves variables W and Z.

B̂ =
W +

√
W 2 + Z2

Z
(9)

where,

• Z = 2
∑n

i=1

(
Xi − X̄

) (
Yi − Ȳ

)
;

• W =
∑n

i=1

(
Yi − Ȳ

)2 − (
Xi − X̄

)2
.

OLR calculates an optimal linear fit that minimises the sum of the squared

Euclidean distances from the points to the regression line while accommo-

dating uncertainties in both X and Y [67], in order to ensure robustness to

outliers. The sum of the squared residuals for the OLR analysis, EOLR, is

defined by Equation 10.
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EOLR =
n∑

i=1

d2i =
n∑

i=1

(
Yi − Ŷi

)2

B2 + 1
(10)

As mentioned, this study used local models to derive probabilistic fatigue

curves for the different materials. The relationship between the regression pa-

rameters and the fatigue material parameters σ′
f and b is established through

Equations 11 and 12:

σ′
f = 10−

A
B (11)

b = 1/B (12)

3.2. Methods for statistical analysis

3.2.1. ISO 12107 standard

ISO 12107 standard [68] outlines methodologies for planning fatigue tests

and conducting statistical analyses of the resulting data. This standard has

been adapted for determining the lower fatigue limit using statistical meth-

ods, assuming that the logarithm of fatigue life follows a normal distribution

with a constant variance. The cumulative probability function (CDF) can

be calculated using Equation 13:

p(x) =
1

σx

√
2π

∫ x

−∞
exp

[
−1

2

(
x− µx

σx

)2
]
dx (13)

where, x = logNf , and µx and σx are the mean and standard deviation of x,

respectively. Equation 14 defines the characteristic S-N curve, representing
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the lower limit associated with probability of failure pf for samples at a

confidence level (1− αn) and for a sample size n:

logNf = Â+B̂ log σa−k(1−αn),pf ,nŝ

√√√√1 +
1

n
+

(log σa − log σa)2∑n
i=1

(
log σa,i − log σa

)2 (14)

where, B̂ and Â denote the slope and intercept of the S-N curve, respectively,

k(1−αn),pf ,n represents the one-sided tolerance limit for a normal distribution,

which depends on the confidence level, (1− αn), probability of failure, pf ,

and sample size, n. The variables ŝ and log σa correspond to the standard

deviation of the logarithm of fatigue life and the mean value of applied stress

amplitude, respectively. The term within square root is a correction to the

estimated standard deviation and depends on the number of tests and the

range covered by the tests. When the number and range of tests are suffi-

ciently large, the correction term approximates 1 and can be disregarded.

3.2.2. Two-parameter Weibull distribution

The two-parameter Weibull distribution, widely used for modelling reli-

ability and lifetime data, including fatigue data [27, 28, 34, 35, 40] is rec-

ommended by international standards such as ISO 12107 [68] and ASTM

E739 [69] standards, along with the normal distribution. The CDF of the

two-parameter Weibull distribution is expressed by Equation 15:

F (x) = 1− e

(
− x

αw(1−αn)

)βw(1−αn)

(15)

where αw(1−αn)
is the Weibull scale parameter and βw(1−αn)

is the Weibull

shape parameter, which depends on the confidence level, (1− αn). The esti-

17



mation of confidence levels involves calculating the lower and upper bounds

based on the assumed normal distribution of the estimated parameters.

For the determination of the scale and shape Weibull parameters, four dif-

ferent methods of estimation can be selected - Maximum Likelihood Method

(MLM), Method of Moments (MM), Linear Least Square Method (LSM) and

Weight Linear Least Squares Estimation Method (WLSM). Certain methods

require a prior computation of the probability of failure, and in such cases,

Benard’s median rank estimator [70] is used, as defined by Equation 16:

F̂ (x) =
i− 0.3

n+ 0.4
(16)

where, i is the order number of failures and n denotes the sample size. Identi-

fying an outperforming method is not straightforward, as it hinges on specific

data characteristics, sample size and analysis objectives [27, 71]. For the sake

of simplicity, the Maximum Likelihood Method was chosen in this study to

derive the probabilistic fatigue curves, given its widespread use in modelling

reliability data and fitting the Weibull distribution [35, 72–75]. The MLM in-

volves estimating the maximum value of a defined likelihood function [75, 76].

For the Weibull distribution, the likelihood function, Equation 17, for a sam-

ple of independent and identically distributed observations x1, x2, . . . , xn is

expressed as:

L(αw, βw | x) =
n∏

i=1

f (xi | αw, βw)

=
n∏

i=1

[
βw

αw

(
xi

αw

)(βw−1)

exp

{
−
(

xi

αw

)βw
}] (17)

After that, this function is turned into a log-likelihood function by apply-
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ing the natural ln, Equation 18, and the unknown parameters, αw and βw,

are determined by maximising it.

lnL(αw, βw | x) =
n∑

i=1

[
ln

βw

αw

+ (βw − 1) ln

(
x

αw

)
−
(

x

αw

)βw
]

(18)

Upon estimation of the shape and scale parameters, the Equation 19

proposed by Júnior et al. [77] can be applied to derive probabilistic fatigue

strength curves.

log σa =

log

(
NNorm

αw(1−αn)(− ln(1−pf))
1/βw(1−αn)

)
B

− A

B
(19)

where, NNorm is the normalised number of cycles, which is estimated using

Equation 20:

NNorm =
Nf

N̄
(20)

where, N̄ is the average number of cycles to failure from the mean S-N

curve, and Nf is the number of cycles to failure. Normalising the number

of cycles is a common practice when computing fatigue curves based on the

two-parameter Weibull distribution.

3.2.3. Castillo and Fernández-Canteli (CFC) model

Castillo and Fernández-Canteli (CFC) [34] introduced a three-parameter

Weibull regression model suitable for variable stress ranges and fixed stress

levels, such as stress R-ratio or mean stress. This model is ideal for high-

or very-high cycle fatigue and is based on physical conditions and statisti-

cal requirements, with compatibility conditions between lifetime and stress
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range distributions. Nevertheless, the model can be expressed taking into

consideration the stress amplitude using Equation 21:

pf (logNf ; log σa) = 1− exp

{
−
[
(logNf −B)(log σa − C)− λ

δ

]β}
V = (logNf −B)(log σa − C) ≥ λ

(21)

where, pf is the probability of failure, Nf represents the number of cycles to

failure, σa is the stress amplitude, B is the threshold parameter for the life-

time (B = lnN0), C is threshold parameter for stress amplitude (C = lnσ0),

also representing the conventional fatigue endurance limit, λ is the Weibull

location parameter for normalised variable V , δ is the Weibull scale parame-

ter, and β is the Weibull shape parameter. These parameters of can be esti-

mated through several methods such as the maximum likelihood method, the

probability-weighted moments [78] and the Castillo-Hadi method [79]. The

ProFatigue software [80] was used to apply this model and obtain the proba-

bilistic field for the experimental fatigue data. This software ( developed by

the authors of the model) simplifies the estimation of model parameters for

any fatigue data.

3.2.4. Bayesian method based on Markov Chain Monte Carlo algorithm (MCMC)

Hierarchical Bayesian models have been applied to estimate the param-

eters of different probabilistic models for assessing fatigue life [81, 82]. The

hierarchical Bayesian method requires numerical integration, typically using

using methods like the Markov Chain Monte Carlo algorithm. The MCMC

is a sampling method, that combines Monte Carlo simulation [83] and the
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Markov chain [84], often used to estimate the posterior distribution of param-

eters in a probabilistic model. Among MCMC algorithms, Gibbs sampling

is one of the most widely used for simulating Markov chains. It is a par-

ticular case of the Metropolis-Hastings algorithm [85, 86] and generates a

multi-dimensional Markov chain by dividing the vector of random variables,

θ, into subvectors, typically scalars, and sampling each subvector in turn,

conditional on the most recent values of all other elements of θ [87]. This

process involves iterative sampling from the conditional distributions of each

variable within the distribution, given the current values of all other vari-

ables. To apply the Bayesian method with Gibbs sampling, the OpenBugs

software was used [88, 89]. Equation 5 was reformulated, incorporating the

random effect of materials and random errors in observations as a normal

distribution:

Y = A+BX + δi (22)

where, δi = σiei with σi being the standard deviation of the logarithmic

fatigue life under the stress level σa,i and ei ∼ Normal (0,1). According to

the suggestion by Guida et al. [46], ui = log σa,i and ū = 1
n

∑n
i=1 log σa,i,

Equation 22 turns out as:

Yi = A+BXi +Normal
(
0, σ2

i

)
(23)

where, Yi = logNi, Xi = ui − ū. Equation 23 was modified to take into

account a normal distribution with mean µ = A+BXi and variance σ2
i :

Yij ∼ Normal
(
A+BXi, σ

2
i

)
(24)
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or

Yij ∼ Normal
(
µi, σ

2
i

)
for i = 1, . . . , n and j = 1, . . . ,m (25)

where, µi = A + BXi, Yij is the jth observation of the ith stress level. The

prior distributions in the second stage assume A|µA, σA ∼ Normal(µA, σ
2
A),

B|µB, σB ∼ Normal(µB, σ
2
B).

4. Results and discussion

This section presents a comparative analysis between different proba-

bilistic S-N (p-S-N) curves derived using ISO 12107 standard [68], the two-

parameter Weibull distribution, and a Bayesian method (MCMC), each in-

corporating either the classical linear regression (CLR) or the orthogonal lin-

ear regression (OLR) analysis. The Castillo-Fernández Canteli (CFC) model

is also included for comparison with the proposed probabilistic models.

In the context of offshore structures and welded joints, where safety is of

utmost importance, it is a common practice to assess fatigue curves while

considering a probability of failure of 2.3% (pf = 2.3%) or 5% (pf = 5%)

as benchmarks for evaluating fatigue life. These benchmarks align with the

commonly used standards for steel structures, such as DNVGL-RP-C203 [57],

the International Institute of Welding (IIW) [90], and Eurocode 3: Part 1-9

[56]. For the Eurocode 3: Part 1-9 [56] and for the International Institute of

Welding [90] standards, the fatigue detail category, denoted as ∆σC , assigns a

numerical value to specific details for a given direction of stress fluctuation.

This numerical designation indicates which design fatigue curve should be

used to assess the fatigue strength of details. Typically, the category number

aligns with the fatigue strength at a specified reference number of cycles,
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which, in these cases, is Nf = 2E6 cycles. This estimation was conducted for

a 75% confidence level with a 5% probability of failure, taking into account

factors such as standard deviation, sample size, and residual stress effects.

The DNVGL-RP-C203 standard [57] further recommends different types of

S-N curves, derived from experimental fatigue tests, associated with a 2.3%

probability of failure (pf = 2.3%), where the mean curve was determined with

a 75% confidence level. The constant amplitude fatigue limit is assumed to

be at Nf,0 = 5E6 cycles for the Eurocode 3: Part 1-9 [56] and at Nf,0 = 1E7

cycles for the DNVGL-RP-C203 [57] and IIW [90] standards.

4.1. Probabilistic fatigue strength curves for uncorroded materials

Figure 6 and 7 present the experimental fatigue results of the S355 base

material and its p-S-N curves with a 5% probability of failure (pf = 5%),

derived using the CLR and OLR analysis, respectively. In this section, it

is important to recall that the probabilistic models adopted considered a

confidence level of 75% in the parameters throughout the analysis.
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Figure 6: Comparison of all the p-S-N curves (pf = 5%) for the S355 base material using

CLR.

Figure 7: Comparison of all the p-S-N curves (pf = 5%) for the S355 base material using

OLR.
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Upon close examination of both figures, it is evident that the probabilistic

fatigue curve derived through the Bayesian method (MCMC) almost aligns

with the ISO 12107 standard [68] curve due to the application of the nor-

mal distribution in both models for CLR analysis. When it comes to OLR

analysis combined with the Bayesian method (MCMC), this approach tends

to underestimate fatigue life, particularly at high-stress levels. However, the

Bayesian method (MCMC) using CLR analysis proves to be the least conser-

vative model for the low-cycle fatigue regime. The fatigue curves obtained

using the ISO 12107 standard [68] and a two-parameter Weibull distribution

display similar characteristics for both regression analysis methods, with the

CLR analysis curves being more conservative. Among the proposed models

for the CLR, the fatigue curve obtained using the two-parameter Weibull

distribution stands as the most conservative curve for all stress levels. Upon

comparison between the curves obtained by both regression methods, the

curves derived through CLR demonstrate a superior fit to the actual exper-

imental data. This superiority is attributed to the lower sum of root mean

square (RMSE) value associated with the CLR derived curves, presented in

Table 4, underscoring their closer alignment with the observed fatigue data.

The CFC model provides a non-linear p-S-N curve that effectively captures

different trends in the experimental fatigue data, particularly in the transi-

tion between medium and high-cycle fatigue regimes. Nevertheless, it does

not meet the safety design criteria, as at least one specimen from the exper-

imental data falls outside the safety margins of the fatigue curve. Consid-

ering that offshore structures primarily face high-cycle fatigue loading, with

a 5% probability of failure (pf = 5%) and to maintain safety margin levels
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through regression analysis, the most suitable choice is the fatigue curve de-

rived from the two-parameter Weibull distribution, specifically using CLR,

and the Bayesian method (MCMC), specifically using OLR.

Similarly to the previous analysis, Figures 8 and 9 depict the experimental

fatigue data of the S690QL base material (BM) and the corresponding p-S-N

curves derived through the proposed probabilistic models for CLR and OLR

analyses. The experimental fatigue data used in this probabilistic analysis

was combined from both S690QL welded joints (J30 and J60).

Figure 8: Comparison of all the p-S-N curves (pf = 5%) for the S690QL base material

using CLR.
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Figure 9: Comparison of all the p-S-N curves (pf = 5%) for the S690QL base material

using OLR.

In Figure 8, it is also evident that the CLR analysis yields similar trend

lines for the ISO 12107 standard [68] and the Bayesian method (MCMC)

curves, primarily because both models use the normal distribution as the

probabilistic distribution model. The Bayesian method (MCMC) curve offers

a strong fit to the experimental data but appears less conservative, specifi-

cally in the medium-cycle fatigue regime, with some specimens falling outside

the safety margins of the obtained probabilistic fatigue curve. Within CLR

analysis, all proposed probabilistic curves maintain a similar trend line across

various stress levels, with the two-parameter Weibull distribution curve as

the most conservative among them. For the OLR analysis, the CFC model

and the Bayesian method (MCMC) predict the most conservative results in

the high-cycle fatigue regime. The CFC model proves to be the most con-
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servative for the medium-cycle fatigue regime and its conservatism decreases

as it approaches the low-cycle fatigue (LCF) regime.

Figures 10 and 11 showcase the experimental fatigue results of the S690QL

welded steel material (WM) alongside the p-S-N curves derived using the

proposed probabilistic models using the CLR and the OLR analyses, respec-

tively. It is important to note that the fatigue data from both weld joints

were combined to generate these curves, due to limited data availability.

Figure 10: Comparison of all the p-S-N curves (pf = 5%) for the S690QL welded steel

material using CLR.
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Figure 11: Comparison of all the p-S-N curves (pf = 5%) for the S690QL welded steel

material using OLR.

In OLR analysis, the Bayesian method (MCMC) curve tends to over-

estimate fatigue life at low-stress levels, but it the most conservative and

appropriate choice for the high-cycle fatigue regime. In contrast, at higher

stress levels, the Bayesian method (MCMC) curve using OLR analysis tends

to be less conservative when compared to the CLR analysis curve. To min-

imise fatigue data falling outside safety margins, the two-parameter Weibull

distribution using CLR should be adopted as the most appropriate method

to derive probabilistic fatigue curves for the weld material used in S690QL

welded joints across all fatigue regimes. While the CFC model demonstrates

a strong fit to the fatigue data at a 5% probability of failure (pf = 5%), cau-

tion is advised given that some specimen results closely align with the curve.

Additionally, the CFC model seems to accurately predict the constant ampli-
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tude fatigue limit, aligning with the observed run-out fatigue data presented

in Appendix A.

Table 3 presents the parameters used to define the CFC model for both

the S355 and S690QL base and welded steels.

Table 3: Parameters defining the CFC model for each material.

Material B C N0 σ0 λ δ β

S355 7.78 5.04 2395 154.38 1.64 0.62 1.77

S690QL - BM -82.95 -4.11 ≈ 0 ≈ 0 964.70 15.00 1.91

S690QL - WM 9.92 6.09 20333 441.42 -0.68 1.01 15.00

Table 4 summarises the material parameters for the fatigue strength

curves of both S355 and S690QL base and welded steels, according to each

probabilistic and regression model corresponding to probabilities of failure of

pf = 2.3%, pf = 5%, and pf = 50% (mean curve). The sum of the root mean

square error (RMSE) in the X-axis (logNf ) is also provided as a measure of

the model’s accuracy.
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Table 4: Summary of the material parameters for the S355 and for the S690QL base and

welded steels, according to each probabilistic and regression model.

Material Probabilistic model Regression model RMSE (logNf )
σ′
f [MPa]

b CVσ′
f

pf = 2.3% pf = 5% pf = 50% StD

S355

ISO 12107
CLR 0.306 742.57 767.88 906.99 31.44 -0.104 0.035

OLR 0.522 342.94 349.73 385.53 7.82 -0.036 0.020

Weibull distribution
CLR 0.306 642.40 692.48 906.99 91.63 -0.104 0.101

OLR 0.522 319.01 332.50 385.53 33.00 -0.036 0.086

Bayesian method (MCMC)
CLRBayesian - 921.00 951.44 1108.27 44.63 -0.120 0.040

OLRBayesian - 745.58 765.83 868.45 28.83 -0.101 0.033

S690QL - BM

ISO 12107
CLR 0.255 1664.71 1706.43 1924.53 54.90 -0.109 0.029

OLR 0.312 1105.13 1127.70 1243.99 28.95 -0.073 0.023

Weibull distribution
CLR 0.255 1504.35 1590.97 1924.53 149.45 -0.109 0.078

OLR 0.312 1054.14 1095.29 1243.99 69.48 -0.073 0.056

Bayesian method (MCMC)
CLRBayesian - 1747.96 1789.86 2000.18 58.68 -0.113 0.029

OLRBayesian - 1694.51 1733.41 1928.41 54.27 -0.109 0.028

S690QL - WM

ISO 12107
CLR 0.322 1198.38 1229.23 1393.37 38.36 -0.081 0.028

OLR 0.409 850.57 867.77 957.82 20.77 -0.050 0.022

Weibull distribution
CLR 0.322 1112.79 1170.02 1393.37 96.99 -0.081 0.070

OLR 0.409 785.38 820.74 957.82 69.34 -0.050 0.072

Bayesian method (MCMC)
CLRBayesian - 1261.62 1291.10 1438.89 41.17 -0.084 0.029

OLRBayesian - 1278.87 1309.07 1460.65 42.25 -0.085 0.029

The higher coefficient of variation (CV ) between the two-parameter Weibull

distribution and the other models can be attributed to the shape of their re-

spective probability density functions. The Weibull distribution has a heavier

tail compared to the normal distribution, resulting in a wider spread of data

points and thus a higher standard deviation. This discrepancy can be ex-

plained by the fact that the two-parameter Weibull distribution allows for

a non-linear relationship between the stress amplitude σa and the number

of cycles Nf , whereas the normal distribution assumes a linear relationship.

Also, a higher CV results in larger safety margins, accommodating a wider

spectrum of loading conditions.
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4.2. Probabilistic fatigue strength curves for corroded materials

To account for the influence of corrosion on the probabilistic modelling

of fatigue strength data, Equation 2 must be applied. Due to limited ex-

perimental fatigue results for materials affected by corrosion, it is necessary

to reference relevant literature. Several authors [52, 91, 92] have conducted

fatigue testing on multiple grades of both uncorroded and corroded steels.

By considering the constant amplitude fatigue limit for each uncorroded ma-

terial, as indicated in Table 6 for Nf,0 = 1E7 cycles, and establishing the

ratio of σ0,cor/σ0 = 0.37 for the S355 mild steel, and σ0,cor/σ0 = 0.27 for the

S690QL base and weld steels from [53, 93], the corroded constant amplitude

fatigue limit, σ0,cor, was calculated for each material.

To estimate the number of cycles, Nf,y , at the yield strength, σy, the most

conservative uncorroded probabilistic models from Section 4.1 were taken into

account. These models were evaluated from the high-cycle fatigue region for

each material. Table 5 presents the corresponding number of cycles, Nf,y , at

the yield strength, σy, for both S355 and S690QL base and welded steels.

Table 5: Number of cycles (Nf,y ) at the yield strength (σy) for both S355 and S690QL

base and welded steels.

Material Regression model Probabilistic model pf = 2.3% pf = 5% pf = 50%

S355
CLR Weibull distribution 216 444 4769

OLR Bayesian method (MCMC) 1136 1483 5166

S690QL - BM
CLR Weibull distribution 379 632 3414

OLR Bayesian method (MCMC) 1121 1380 3655

S690QL - WM
CLR Weibull distribution 122 226 1746

OLR Bayesian method (MCMC) 499 658 2393

Table 6 provides the uncorroded constant amplitude fatigue limits, σ0,

for both S355 and S690QL base and welded steels. The results are based on
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each probabilistic and regression model, and are given for different defined

numbers of cycles.

Table 6: Constant amplitude fatigue limit (σ0) for the S355 and S690QL base and weld

steels, according to each probabilistic and regression model.

Material Regression model Probabilistic model

Constant amplitude fatigue limit, σ0 [MPa]

Nf,0 = 5E6 cycles Nf,0 = 1E7 cycles

pf = 2.3% pf = 5% pf = 50% pf = 2.3% pf = 5% pf = 50%

S355
CLR Weibull distribution 128.83 138.88 177.85 119.86 129.21 165.46

OLR Bayesian method (MCMC) 157.62 161.90 183.59 146.99 150.98 171.21

S690QL - BM
CLR Weibull distribution 278.55 294.59 354.24 258.22 273.09 328.39

OLR Bayesian method (MCMC) 313.47 320.67 356.74 290.58 297.25 330.69

S690QL - WM
CLR Weibull distribution 319.92 336.38 396.80 302.49 318.05 375.18

OLR Bayesian method (MCMC) 345.65 353.81 394.78 325.91 333.61 372.24

The probabilistic corroded fatigue curves were established based on Equa-

tion 2. The estimated corroded data points were determined from the newly

established corroded curve. However, to precisely generate postulated cor-

roded data points from these first estimated corroded data points, the root

mean square error (RMSE) of the deviations between the experimental data

and the predicted values, according to the used uncorroded probabilistic

model, was considered. These postulated data points are identified with an

asterisk (*) in the legend of each figure.

Figure 12 and Figure 13 depict the corroded and uncorroded probabilis-

tic fatigue curves for the S355 base material using CLR and OLR for a 50%

probability of failure (pf = 50%), respectively. The uncorroded constant am-

plitude fatigue limits, σ0, for the S355 base material are 165.46 MPa (CLR)

and 171.20 MPa (OLR). Correspondingly, the corroded constant amplitude

fatigue limits, σ0,cor, are 62.62 MPa (CLR) and 63.35 MPa (OLR).
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Figure 12: Uncorroded and corroded p-S-N curves (pf = 50%) with experimental

uncorroded and postulated corroded* data for the S355 base material using CLR.

Figure 13: Uncorroded and corroded p-S-N curves (pf = 50%) with experimental

uncorroded and postulated corroded* data for the S355 base material using OLR.
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Figure 14 and Figure 15 show the corroded and uncorroded probabilistic

mean fatigue strength curves for the S690QL base material using CLR and

OLR, respectively. For CLR analysis, the uncorroded constant amplitude

fatigue limit for the S690QL base material is 328.38 MPa. The corroded

constant amplitude fatigue limit for the same material, under CLR analysis,

is 89.41 MPa. Similarly, for OLR analysis, the uncorroded constant am-

plitude fatigue limit is 330.69 MPa, and the corroded constant amplitude

fatigue limit is 89.50 MPa.

Figure 14: Uncorroded and corroded p-S-N curves (pf = 50%) with experimental

uncorroded and postulated corroded* data for the S690QL base material using CLR.
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Figure 15: Uncorroded and corroded p-S-N curves (pf = 50%) with experimental

uncorroded and postulated corroded* data for the S690QL base material using OLR.

Figure 16 and Figure 17 present the mean probabilistic fatigue strength

curves for the S690QL welded steel, both for corroded and uncorroded con-

ditions, using CLR and OLR, respectively. Based on CLR analysis, the con-

stant amplitude fatigue limits for uncorroded and corroded S690QL welded

steel are 375.18 MPa and 101.54 MPa, respectively. Similarly, through OLR

analysis, the uncorroded constant amplitude fatigue limit remains at 372.24

MPa, whereas the corroded constant amplitude fatigue limit is 100.75 MPa.
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Figure 16: Uncorroded and corroded p-S-N curves (pf = 50%) with experimental

uncorroded and postulated corroded* data for the S690QL welded steel using CLR.

Figure 17: Uncorroded and corroded p-S-N curves (pf = 50%) with experimental

uncorroded and postulated corroded* data for the S690QL welded steel using OLR.
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4.3. Proposed fatigue strength curves

For the derivation of probabilistic fatigue curves, it is important to pro-

pose curves that cover the entire range of a typical fatigue response (across

distinct scenarios). Standards such as Eurocode 3: Part 1-9 [56], DNVGL-

RP-C203 [57] and IIW [90] define different limits for constant or variable

amplitude fatigue limits, ensuring safety against fatigue failure. Typically,

this is at Nf,0 = 5E6 cycles, according to Eurocode 3: Part 1-9 [56], and Nf,0

= 1E7 cycles, according to DNVGL-RP-C203 [57]. The variable amplitude

fatigue limit, also known as the cut-off fatigue limit, refers to the specific

number of cycles below which the material or detail is considered to have an

infinite fatigue life under variable amplitude loading. Eurocode 3: Part 1-9

[56] and DNVGL-RP-C203 [57] set the cut-off limit at Nf,0,L = 1E8 cycles. In

contrast, IIW [90] guidelines designates the variable amplitude fatigue limit

similarly to the constant amplitude fatigue limit at Nf,0,L = 1E7 cycles.

Equation 26, based on the Eurocode 3: Part 1-9 [56] and DNVGL-RP-

C203 [57], proposes a relationship to relate the uncorroded constant ampli-

tude fatigue limit, σ0, to the uncorroded variable fatigue limit, σ0,L.

σ0,L =

(
Nf,0

Nf,0,L

)bL

σ0 (26)

where, Nf,0 represents the number of cycles for a constant amplitude fatigue

limit, σ0, according to each standard, and Nf,0,L represents the number of

cycles for the variable fatigue limit, σ0,L, based on each standard. The pa-

rameter b0 denotes the inverse slope of the constant amplitude fatigue limit,

defined as 1/m, wherem is 3, in both Eurocode 3: Part 1-9 [56] and DNVGL-

RP-C203 [57] standards. The inverse slope of the variable amplitude fatigue
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limit for the material, bL, can be estimated using Equation 27.

bL = − b

2b0 + 1
(27)

Equation 28 adapts the proposed relationship to the corroded curve, esti-

mating the corroded variable amplitude fatigue limit, σ0,Lcor , using the same

approach.

σ0,Lcor =

(
Nf,0

Nf,0,L

)bL,cor

σ0,cor (28)

Considering bcor equal to (b− c), as presented in Equation 2, bL,cor can be

expressed using Equation 29.

bL,cor = − bcor
2b0 + 1

(29)

Taking into account the most conservative probabilistic model from the

CLR analysis and the proposed relationships, Figures 18 to 20 present the

proposed fatigue strength curves for the S355 and S690QL base and welded

steels, respectively, for different probabilities of failure. The parameters re-

quired to establish the fatigue strength curves for the S355 and S690QL base

and welded steels, based on the most conservative probabilistic model from

the OLR analysis, can be found in Table 7.

39



Figure 18: Proposed uncorroded and corroded fatigue strength curves for the S355 base

material using CLR.

Figure 19: Proposed uncorroded and corroded fatigue strength curves for the S690QL

base material using CLR.
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Figure 20: Proposed uncorroded and corroded fatigue strength curves for the S690QL

welded steel using CLR.

Table 7 provides a summary of the estimated parameters for deriving the

proposed corroded fatigue strength curves, taking into account the most con-

servative probabilistic model for CLR and OLR. It is important to highlight

that σ′
f,cor = σ′

fN
c
f,y

and bcor = b− c considering Equation 2.
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Table 7: Overview of the parameters used for the proposed corroded fatigue strength

curves, considering CLR and OLR for each material.

CLR OLR

S355

σ′
f,cor [MPa]

pf = 2.3% 1291.96 1878.89

pf = 5% 1529.50 1998.53

pf = 50% 2727.64 2670.19

bcor -0.234 -0.232

σ0,cor [MPa] pf = 50%
Nf,0 = 5E6 cycles 73.65 74.41

Nf,0 = 1E7 cycles 62.62 63.35

σ0,L [MPa] pf = 50%
Nf,0 = 5E6 cycles 147.48 153.18

Nf,0 = 1E7 cycles 143.28 148.96

σ0,Lcor [MPa] pf = 50%
Nf,0 = 5E6 cycles 48.35 49.02

Nf,0 = 1E7 cycles 45.31 45.97

S690QL - BM

σ′
f,cor [MPa]

pf = 2.3% 3976.67 5403.21

pf = 5% 4573.39 5719.89

pf = 50% 7291.57 7474.30

bcor -0.273 -0.275

σ0,cor [MPa] pf = 50%
Nf,0 = 5E6 cycles 108.04 108.26

Nf,0 = 1E7 cycles 89.41 89.50

σ0,L [MPa] pf = 50%
Nf,0 = 5E6 cycles 291.04 293.06

Nf,0 = 1E7 cycles 282.35 284.30

σ0,Lcor [MPa] pf = 50%
Nf,0 = 5E6 cycles 66.13 66.10

Nf,0 = 1E7 cycles 61.31 61.25

S690QL - WM

σ′
f,cor [MPa]

pf = 2.3% 2297.48 3386.98

pf = 5% 2653.02 3619.76

pf = 50% 4302.28 4945.37

bcor -0.232 -0.241

σ0,cor [MPa] pf = 50%
Nf,0 = 5E6 cycles 120.39 119.11

Nf,0 = 1E7 cycles 101.54 100.75

σ0,L [MPa] pf = 50%
Nf,0 = 5E6 cycles 343.15 338.96

Nf,0 = 1E7 cycles 335.55 331.08

σ0,Lcor [MPa] pf = 50%
Nf,0 = 5E6 cycles 79.36 77.16

Nf,0 = 1E7 cycles 74.42 72.16
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5. Concluding remarks

This work applies different probabilistic models to compare and derive

fatigue strength curves for S355 and for S690QL base and welded steels. The

probabilistic fatigue models, including the ISO 12107 standard [68], the two-

parameter Weibull distribution and the Bayesian method (MCMC), were

utilised under two different linear regression analysis methods. Additionally,

the non-linear Castillo and Fernandéz-Canteli (CFC) model was applied for

comparison. The material’s applicability was highlighted as a major factor

in selecting the appropriate probabilistic curve, especially in contexts like

offshore structures subjected to high-frequency cyclic loads with relatively

low-stress levels. Corroded probabilistic curves were proposed based on the

selected probabilistic models. When it comes to choosing between classical

and orthogonal linear regression for fatigue design, there are a few factors to

consider. For new project design, classical linear regression may be the more

appropriate choice as it can provide a clear understanding of the relationship

between different design factors and the fatigue life of a system. However, for

retrofitting purposes, where there may be uncertainty or error in the data,

orthogonal linear regression may be a more suitable option as it takes these

factors into account. The primary objective of this study was to analyse fa-

tigue experimental data from diverse sources of fatigue tests involving steels,

commonly used in the offshore industry, in order to establish reliable uncor-

roded and corroded proposals of fatigue strength curves to characterise these

materials. Related to this study, the following key findings and conclusions

can be stated:

• The orthogonal linear regression (OLR) analysis showed a more con-
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servative fit compared to classical linear regression (CLR) analysis at

high-stress levels (LCF regime).

• In both regression analyses, the coefficient of variation (CV ) estimated

from the curves based on the ISO 12107 standard [68] was below 0.05.

As a result, the recommended CV value in existing literature is con-

servative and appropriate, ensuring larger safety margins.

• Among the proposed linear probabilistic models, the Bayesian method

(MCMC) using a CLR analysis yielded the least conservative curve for

all fatigue regimes. Conversely, the two-parameter Weibull curve with

a CLR analysis presented the most conservative fit for medium- and

high-cycle fatigue regimes;

• In the other hand, the Bayesian method (MCMC) using a OLR analysis

presents the most conservative curve for the high-cycle fatigue regime.

• The probabilistic curve from the ISO 12107 standard [68] displayed an

approximate trend line compared to the Bayesian method (MCMC)

using CLR analysis, due to the normal distribution being the distri-

bution model, especially for the S690QL base material where they are

practically aligned and overlapped;

• While the CFC model provides advantages, such as allowing the accu-

rate prediction of the constant amplitude fatigue limit, it yields some

non-conservative results. Nevertheless, it demonstrates a strong fit

and potential for the high-cycle fatigue regime, as long as there are no

asymptotes that limit curve fitting.
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• Corroded fatigue strength curves were proposed for the S355 and S690QL

base and welded steels based on the most conservative probabilistic

models in the high-cycle fatigue regime (Nf = 1E7 cycles).

• A decrease in the ratio between the corroded and uncorroded constant

amplitude fatigue limit corresponds to an increase in the difference

between the corroded and uncorroded variable amplitude fatigue limit,

accompanied by a more pronounced steepness in the proposed corroded

fatigue curve.

• It is noteworthy that the corroded fatigue strength coefficient is markedly

high, which ensures that both the corroded and uncorroded condition

curves exhibit the same number of cycles at the yield strength. The

corroded curve displays a steeper slope, indicative of accelerated degra-

dation,, meaning that the material’s fatigue life and resistance to cyclic

loading deteriorate more rapidly under corrosive conditions. This effect

highlights the increased susceptibility of the material to fatigue failure

due to the combined effects of mechanical loading and the corrosive

environment.

• When considering the fatigue design for new systems using CLR, the

two-parameter Weibull distribution is recommended. However, if the

objective is to extend the lifespan the OLR should be used and the

Bayesian approach (MCMC) is suggested as the most feasible option,

taking advantage of the fatigue resistant capacity of long term operated

materials and structures without jeopardising the retrofitting project.
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Appendix A. Experimental fatigue data

Table A.8: Pure axial fatigue data for the S355 mild steel.

Specimen Number of cycles, Nf Stress ratio, R Stress amplitude, σa [MPa] Normalised stress amplitude, σanorm [MPa] Runout

1 5.00E+06 0.01 168.30 198.40 1 (excluded)

6 5.00E+06 0.01 182.16 214.74 1 (excluded)

7 5.00E+06 0.01 187.61 221.16 1 (excluded)

8 5.00E+06 0.01 190.58 224.66 1 (excluded)

9 5.00E+06 0.01 193.05 227.58 1 (excluded)

4 3.24E+05 0.01 196.02 231.08

5 2.82E+05 0.01 196.02 231.08

11 6.21E+05 0.01 201.47 237.50

12 1.31E+05 0.01 201.47 237.50

21 2.47E+05 0.01 207.41 244.50

22 3.16E+05 0.01 207.41 244.50

19 1.22E+05 0.01 215.82 254.42

20 7.61E+04 0.01 215.82 254.42

18 5.00E+06 -1 232 232 1 (excluded)

17 2.15E+06 -1 232 232

14 5.62E+05 -1 249 249

16 4.07E+05 -1 249 249

13 1.58E+05 -1 272 272

15 9.86E+04 -1 272 272
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Table A.9: Rotating bending fatigue results for the S690QL base material, R = -1

(Specimen 1 to Specimen 33).

Specimen Number of cycles, Nf Stress amplitude, σa [MPa] Runout

1 1.15E+05 520

2 1.84E+05 520

3 1.42E+05 520

4 2.92E+05 500

5 1.14E+05 520

6 9.41E+04 500

7 1.00E+07 440 1 (excluded)

8 4.18E+05 460

9 1.00E+07 440 1 (excluded)

10 1.35E+06 440

11 3.12E+05 460

12 3.68E+05 440

13 4.24E+04 600

14 1.31E+05 520

15 5.00E+04 600

16 9.35E+04 540

17 5.39E+04 600

18 1.53E+05 540

19 1.28E+05 540

20 4.01E+05 480

21 3.59E+05 460

22 2.28E+05 480

23 2.68E+05 480

24 2.02E+05 500

25 9.90E+04 535

26 2.06E+05 524

27 1.41E+05 540

28 1.38E+05 520

29 5.09E+05 520

30 3.20E+05 520

31 5.76E+04 600

32 3.32E+04 600

33 5.75E+04 600
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Table A.10: Rotating bending fatigue results for the S690QL base material, R = -1

(Specimen 34 to Specimen 56).

Specimen Number of cycles, Nf Stress amplitude, σa [MPa] Runout

34 6.57E+05 480

35 1.31E+06 480

36 3.33E+05 480

37 1.00E+07 440 1 (excluded)

38 1.00E+07 440 1 (excluded)

39 1.00E+07 440 1 (excluded)

40 1.24E+05 540

41 1.13E+05 520

42 2.49E+04 520

43 1.29E+05 520

44 1.77E+05 520

45 3.86E+05 480

46 1.00E+07 480 1 (excluded)

47 9.33E+05 480

48 4.39E+04 600

49 2.36E+04 600

50 3.30E+04 600

51 1.00E+07 460 1 (excluded)

52 1.22E+06 460

53 1.01E+05 460

54 1.00E+07 440 1 (excluded)

55 1.00E+07 440 1 (excluded)

56 1.00E+07 440 1 (excluded)
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Table A.11: Rotating bending fatigue results for the S690QL welded steel, R = -1.

Specimen Number of cycles, Nf Stress amplitude, σa [MPa] Runout

1 1.00E+07 480 1 (excluded)

2 1.00E+07 480 1 (excluded)

3 1.00E+07 480 1 (excluded)

4 1.78E+05 480

5 1.84E+05 520

6 9.98E+04 520

7 3.58E+04 520

8 4.21E+04 520

9 3.70E+05 480

10 3.94E+04 600

11 6.38E+05 480

12 5.27E+04 600

13 6.85E+05 480

14 6.78E+04 600

15 1.00E+07 477.57 1 (excluded)

16 3.48E+05 478.01

17 1.98E+06 478.17

18 5.63E+05 496.02

19 2.88E+05 496.08

20 4.65E+05 496.12

21 1.54E+05 540

22 1.45E+05 540

23 9.91E+04 540

24 1.00E+07 440 1 (excluded)

25 1.00E+07 440 1 (excluded)

26 1.00E+07 460 1 (excluded)
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[36] E. Castillo, M. López-Aenlle, A. Ramos, A. Fernández-Canteli,

R. Kieselbach, V. Esslinger, Specimen length effect on parameter estima-

tion in modelling fatigue strength by Weibull distribution, International

Journal of Fatigue 28 (2006) 1047–1058. Fatigue lifetime prediction of

metals based on microstructural behaviour.

[37] A. Fernández Canteli, E. Castillo, S. Blasón, J. Correia, A. de Jesus,

Generalization of the Weibull probabilistic compatible model to assess

fatigue data into three domains: LCF, HCF and VHCF, International

Journal of Fatigue 159 (2022). doi:10.1016/j.ijfatigue.2022.106771.

[38] J. Correia, P. Raposo, M. Muniz-Calvente, S. Blasón, G. Lesiuk,

A. De Jesus, P. Moreira, R. Calçada, A. Canteli, A generaliza-
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exponential and power laws equations, Composites Part B: Engineering

56 (2014) 582–590. doi:10.1016/j.compositesb.2013.08.036.

[78] J. A. Greenwood, J. M. Landwehr, N. C. Matalas, J. R. Wallis, Probabil-

ity weighted moments: Definition and relation to parameters of several

distributions expressable in inverse form, Water Resources Research 15

(1979) 1049–1054. doi:10.1029/WR015i005p01049.

[79] E. Castillo, A. S. Hadi, Parameter and quantile estimation for the gen-

eralized extreme-value distribution, Environmetrics 5 (1994) 417–432.

doi:10.1002/env.3170050405.

[80] A. Fernández-Canteli, C. Przybilla, M. Nogal, M. L. Aenlle, E. Castillo,

Profatigue: A software program for probabilistic assessment of ex-

perimental fatigue data sets, Procedia Engineering 74 (2014) 236–

241. doi:10.1016/j.proeng.2014.06.255, XVII International Colloquium

on Mechanical Fatigue of Metals (ICMFM17).

[81] X.-W. Liu, D.-G. Lu, P. C. Hoogenboom, Hierarchical bayesian fatigue

data analysis, International Journal of Fatigue 100 (2017) 418–428.

[82] X.-W. Liu, D.-G. Lu, Survival analysis of fatigue data: Application of

generalized linear models and hierarchical bayesian model, International

Journal of Fatigue 117 (2018) 39–46. doi:10.1016/j.ijfatigue.2018.07.027.

[83] C. Z. Mooney, Monte Carlo simulation / Christopher Z. Mooney., Sage

Publications, Thousand Oaks, California, 1997.

63



[84] J. R. Norris, Markov Chains, Cambridge Series in Statistical

and Probabilistic Mathematics, Cambridge University Press, 1997.

doi:10.1017/CBO9780511810633.

[85] W. K. Hastings, Monte Carlo sampling methods using Markov

chains and their applications, Biometrika 57 (1970) 97–109.

doi:10.1093/biomet/57.1.97.

[86] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,

E. Teller, Equation of State Calculations by Fast Computing Ma-

chines, The journal of chemical physics 21 (1953) 1087–1092.

doi:10.1063/1.1699114.

[87] L. David, J. Chris, B. Nicky, T. Andrew, S. David, The BUGS Book,

Chapman & Hall, Boca Raton, FL, USA, 2012.

[88] E. Castillo, M. Muniz-Calvente, A. Fernández-Canteli, S. Blasón,

Fatigue assessment strategy using bayesian techniques, Materi-

als 12 (2019). URL: https://www.mdpi.com/1996-1944/12/19/3239.

doi:10.3390/ma12193239.

[89] M. Li, W. Q. Meeker, Application of bayesian methods in reli-

ability data analyses, Journal of Quality Technology 46 (2014)

1–23. URL: https://doi.org/10.1080/00224065.2014.11917951.

doi:10.1080/00224065.2014.11917951. arXiv:https://doi.org/10.1080/00224065.2014.11917951.

[90] A. F. Hobbacher, IIW document IIW-1823-07 recommendations for

fatigue design of welded joints and components, International Institute

of Welding (2008).

64



[91] H. E. Boyer, A. S. Metals, Atlas of Fatigue Curves, ASM International,

1985.

[92] A. J. McEvily, Atlas of Stress Corrosion and Corrosion Fatigue Curves,

ASM International, 1990.

[93] T. Zhao, Z. Liu, C. Du, C. Dai, X. Li, B. Zhang, Corrosion fatigue crack

initiation and initial propagation mechanism of E690 steel in simulated

seawater, Materials Science and Engineering: A 708 (2017) 181–192.

doi:10.1016/j.msea.2017.09.078.

65


