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A B S T R A C T   

Over the past years, several efforts have been made to reduce greenhouse gas emissions coming from the 
transport sector. Due to the highly efficient CO2-free combustion and low manufacturing costs, Hydrogen In
ternal Combustion engines (H2ICEs) are considered one of the most promising solutions for the future of medium 
and heavy duty vehicles. However, the combustion of an air-hydrogen mixture presents challenges related to the 
production of nitrogen oxides (NOx) and high knock tendency, mainly due to the chemical characteristics of the 
fuel. Although these problems can be mitigated by the use of a lean mixture, which is also useful to increase the 
combustion efficiency, the presence of excess air reduces exhaust temperatures and, consequently, the enthalpy 
content in the exhaust would be limited, leading to a reduced boosting capability. Therefore, a proper control of 
mixture preparation and combustion phasing is mandatory to limit NOx emissions, avoid abnormal combustions, 
and maximize efficiency without performance limitations. 

This paper focuses on the design of a dedicated control strategy for H2ICEs. Starting from a previously vali
dated 1-D engine model operated with hydrogen, a 0-D Artificial Neural Network (ANN) - based engine model 
has been designed and calibrated. By using the obtained fast running ANN-based model, an innovative torque- 
based engine controller has been developed and both engine and controller models have been tested covering 
different torque profiles. The results show good accuracy within a range of ±5% on producing the requested 
torque by controlling the centre of combustion.   

SYMBOLS/ABBREVIATIONS  

ANN Artificial Neural Network 
BMEP Brake Mean Effective Pressure 
BSFC Brake Specific Fuel Consumption 
CA50 Crank Angle where 50% of fuel mass is burn 
CCV Cycle-to-Cycle Variability 
CoV Coefficient of Variation 
EGR Exhaust Gas Recirculation 
EU European Union 
FCV Fuel Cell Vehicle 
FMEP Friction Mean Effective Pressure 
H2ICE Hydrogen Internal Combustion Engine 
H-DI Hydrogen Direct Injection 
H-PFI Hydrogen Port Fuel Injection 
IMEP Indicated Mean Effective Pressure 
IVC Intake Valve Closing 
λ Relative air-to-fuel ratio 
LuT Look-up Table 
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MAP Manifold Air Pressure 
MAPO Maximum Amplitude Pressure Oscillation 
MAPO98 MAPO 98th Percentile 
MBT Maximum Brake Torque 
MIL Model in the Loop 
NOx Nitrogen Oxides 
NSC NOx Storage Catalyst 
PFI Port Fuel Injection 
PI Proportional Integral 
PID Proportional Integral Derivative 
Pmax Maximum in-cylinder Pressure 
RMSE Root Mean Squared Error 
RMSE % Root Mean Squared Error Percentage 
RPM Revolution per Minute 
RON Research Octane Number 
SA Spark Advance 
SCR Selective Catalyst Reduction 
SI Spark Ignited 
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(continued ) 

σ Standard Deviation 
TDC Top Dead Centre 
THR Throttle valve 
Tmax Maximum in-cylinder Temperature 
TtF Torque to Fuel 
VGT Variable Geometry Turbine 
ΔCA50 CA50 Degradation  

1. Introduction 

In recent years, the goal of reducing CO2 emissions of human activity 
has emerged as a priority on government and agency agendas [1]. The 
European Green Deal outlines the roadmap to address the challenge of 
climate change and achieve European Union (EU) climate neutrality by 
2050 [2]. The 2022 gas and energy security crisis highlighted the 
importance of accelerating the transition toward clean and sustainable 
EU energy sources and technologies. As a result, several companies and 
researchers have been focused on investigating sustainable solutions to 
cut down greenhouse gases in key sectors of economy. In the EU, 
remarkable achievements in emissions reduction have been obtained 
over the past three decades, with the highest reductions occurring in the 
energy supply sector. However, the transport sector still struggles to cut 
down emissions. The use of renewable energy, low carbon fuels, syn
thetic fuels, ammonia, and hydrogen are considered the most promising 
solutions to accelerate this transition [3,4]. 

Because hydrogen combustion products are CO2-free, hydrogen- 
based propulsion technologies have emerged as one of the most prom
ising solutions for the decarbonisation of the transport sector [5]. 
Among these, Fuel Cells (FCs) powertrains and Hydrogen Internal 
Combustion Engines (H2ICEs) represent the most studied technologies. 
Despite FCs being characterized by a higher energy conversion effi
ciency than H2ICEs [6], demanding standards on hydrogen quality and 
high manufacturing cost still are the main limitations for their wide
spread adoption [7]. 

Several works in literature tested conventional internal combustion 
engines operated with hydrogen and demonstrated easy integration 
with stock hardware [8–10]. Table 1 summarizes hydrogen, gasoline 
and diesel main chemical properties. Hydrogen shows a higher Lower 
Heating Value than gasoline and diesel. Despite having a higher 
Research Octane Number (RON), the minimum ignition energy pro
motes spontaneous localized ignitions. Moreover, with respect to con
ventional fuels, hydrogen can burn in a wider range of air-to-fuel ratio 
and with a much lower combustion duration due to its laminar flame 
speed. As regards emissions, conventional fuels are prone to Nitrogen 
Oxides (NOx) production due to high combustion temperature (above 
1800 K) in slightly lean portion of the mixture combined with avail
ability of oxygen [11]. Saravanan et al. [12] studied NOx formation in 
compression ignited diesel engines and discovered that flame tempera
ture, molecular oxygen concentration, ignition delay and density of the 
fuel are the main factors influencing the rate of NOx formation. Luo et al. 
[13] studied NOx formation in turbocharged hydrogen fuelled engine, 
discovering that NOx formation is strictly related to engine speed, boost 
pressure (thus combustion temperature), spark timing and equivalence 

ratio, achieving peak NOx emissions of 7000 ppm. Heffel [14] studied 
the effect of Exhaust Gas Recirculation (EGR) on NOx formation in a 2.0 l 
multi cylinder engine, demonstrating that NOx emissions can be reduced 
down to 1 ppm. The adoption of lean combustion and EGR allows to 
drastically reduce NOx emissions, therefore, various combustion meth
odologies, including compression ignited, spark ignited, turbulent jet 
ignited, and several engine architectures were studied to enhance effi
ciency while minimizing NOx production [15–18]. These studies high
lighted the advantages of hydrogen combustion in engine 
manufacturing, with high power-to-weight ratio, efficiency, and NOx 
emissions [10,19,20]. 

Despite H2ICEs share the entire engine platform with conventional 
ICEs, the injection systems are considered the most challenging com
ponents in hydrogen technology, especially in engine applications. 
Wang et al. [22] numerically investigated the effects of injection pa
rameters on air-fuel mixture preparation in a 0.6 l spark-ignited engine 
equipped with Port Fuel hydrogen injection system (H-PFI). The authors 
demonstrated the influence of injection timings, nozzle hole positions, 
and nozzle hole area on the air-fuel mixture formation. They also 
highlighted the benefits of proper hydrogen-air mixing in terms of 
combustion performance and stability. However, despite being a cost 
effective solution, the injection of gaseous hydrogen in the intake stroke 
decreases the volumetric efficiency and might generate backfire 
(because the air-fuel mixture is within of the flammability range). Ac
cording to Khalid et al. [23], for H-PFI the most crucial aspect on 
backfire is related to hot-spots in the combustion chamber and per
forming injection during the intake strokes allows to reduce the backfire 
risk. 

Hydrogen Direct Injection (H-DI) is deeply investigated by Zhao et al. 
[22]. They both agreed that the introduction of gaseous hydrogen 
directly into the combustion chamber with proper timing (hydrogen 
injection must begin after Intake Valve Closing (IVC)) enhances the 
combustion efficiency and mitigates the risk of backfiring. Moreover, 
they also highlighted that spray targeting injection strategies promote 
the internal mixing processes with benefits on NOx and abnormal 
combustion events mitigation (i.e., knock, preignition, misfire). 

Lai et al. [24] studied the inducing factors and characteristics of 
knock combustion testing a 2.0 l multi-cylinder spark ignited H-DI en
gine. The results revealed that equivalence ratio has greater impact on 
knock compared to injection phasing because of the extremely low 
activation energy of the mixture. As a result, several authors studied the 
effect of the mixture quality and combustion phasing and injection 
pressure on knock [24–27]. Lanz et al. [28,29] and Onorati et al. [28,29] 
documented that knocking combustion in H2ICEs is usually mitigated by 
lean mixture or retarding the combustion process, i.e., increasing the 
Crank Angle where 50% of the mixture is burn (CA50). Remarkable 
benefits of using ultra-lean mixture (i.e., lambda above 2.3) in H2ICEs 
on NOx mitigation were demonstrated by Zao et al. [30,31] and Lee 
et al. [30,31]. The large amount of air in the combustion chamber lowers 
the maximum average charge temperature achieved during the com
bustion process mitigating the NOx emissions. Besides the high equiv
alence ratio, several works in the literature demonstrated that similar 
effects in knock intensity and NOx reduction can be achieved with 
cooled Exhaust Gas Recirculation (EGR) [14,32,33]. The authors 
pointed out that lean and highly diluted mixtures with cooled EGR result 
in nearly NOx-free hydrogen combustion. While effective in mitigating 
NOx under steady-state conditions, all the strategies presented above 
have proven to be less successful during fast transient, where NOx 
production can be limited but not entirely avoided. Therefore, dedicated 
hydrogen aftertreatment devices are currently being investigated. The 
Selective Catalyst Reduction (SCR) system is considered one of the most 
widely used and studied aftertreatment devices, aimed at mitigating 
NOx in a lean combustion environment. Saravanan et al. mounted a 
standard SCR in the exhaust pipeline of a H-PFI single cylinder dual fuel 
compression ignited engine [34]. The authors tested the hydrogen 
combustion in different engine conditions and demonstrated the 

Table 1 
Hydrogen and conventional fuels properties [21].  

Property Hydrogen Gasoline Diesel 

Density (1 atm, 27 ◦C) [kg/m3] 0.09 730–780 830 
Flammability range in air [vol. %] 4–76 1–7.6 0.6–5.5 
Auto-ignition temperature [K] 858 623 523 
Laminar Flame Speed [m/s] 1.85 0.37–0.43 0.37–0.43 
Minimum ignition energy [mJ] 0.02 0.24 0.24 
Lower Heating Value [MJ/kg] 120 44.8 42.5 
Stoichiometric air-to-fuel ratio [/] 34.5 14.7 14.5 
Research Octane Number [/] 130 95 –  
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potential of SCR in NOx abatement, achieving a maximum of 75% 
reduction with marginal reduction in engine efficiency due to the SCR 
management strategy. 

Walter et al. studied the performance of a NOx Storage Catalyst 
(NSC), focusing on the NOx mitigation efficiency in different operating 
conditions [35]. The results showed that the NSC can effectively reduce 
NOx both at low (below 30 ◦C) and high temperatures (above 320 ◦C) 
with an efficiency of 60% and 95%, respectively. 

As mentioned above, to mitigate emissions and avoid anomalous 
combustion, H2ICEs usually operate at ultra-low equivalence ratio [36], 
thanks to very high intake pressures. In conventional ICEs, the boost 
pressure is typically provided by a compressor driven by a turbine, 
where the power needed to drive the compressor is obtained from the 
exhaust gas. Therefore, the thermodynamic conditions of the exhaust 
gases are fundamental to ensure the capability to boost the engine. 
Traditional gasoline combustion relies on stoichiometric air-to-fuel ratio 
allowing to obtain a sufficiently high exhaust temperature. Several au
thors in literature have discussed the difficulties of obtaining high boost 
pressure in H2ICES [37–39]. As previously discussed H2ICEs have to run 
extremely lean (above 2.3) to ensure low NOx production and avoid 
combustion anomalies. Nevertheless, the leaner the combustion the 
lower the enthalpy content of the exhaust gases, resulting in reduced 
boosting capabilities [37,40]. The low enthalpy content limits also the 
transients response, which has been addressed with many alternative 
solutions [41]. Therefore, the management of H2ICEs becomes chal
lenging, particularly during fast transients, where torque request has to 
be delivered on demand while avoiding combustion anomalies and limit 
NOx emissions. Nowadays, torque-based controls are the most suitable 
solution aimed at controlling ICEs and different approaches have been 
developed throughout the years [42–44]. However, such control stra
tegies have to be modified in order to properly control H2ICEs, but the 
development and optimization of a control strategy is a complex, time 
demanding and expensive process. Model-in-the-Loop (MIL) approaches 
represent a possible solution to limit development costs and perform 
tests on a detailed engine model capable of simulating both performance 
and emissions in an accurate way. H2ICEs represent a complex 
multi-domain system, requiring dedicated modelling for a proper rep
resentation of steady-state and dynamic behaviour. Artificial Neural 
Networks (ANNs) have recently emerged as an accurate and fast solution 
for the modelling of ICEs [45–47]. Tosso et al. [48] developed a 
framework aimed at designing a feedforward ANN capable to predict 
fuel mass, lambda, torque and ignition. Different authors have also 
studied the capability of ANNs to predict emissions [49–51]. Moreover, 
Warey et al. [52] exploited convolution neural networks for the pre
diction of in-cylinder emissions from in-cylinder images of equivalence 
ratio, temperature, velocity field and turbulence. 

In summary, H2ICEs pose unique challenges in the development of 
control strategies, due to their particular combustion characteristics and 
dynamic response. Therefore, the need of a well-structured hydrogen 
engine control system is a key factor to achieve the delicate balance 
between power delivery and limit abnormal combustion and NOx 
emission. Moreover, the development of control strategies is an expen
sive process since many tests on the engine have to be performed, 
therefore, the MIL approach represents an optimal solution in order to 
limit the experimental effort. 

This paper focuses on the development of a cutting-edge torque- 
based control strategy for H2ICEs. With the aim of developing a test case 
for a torque-based controller, an ANN-based dynamic 0-D model of a 
hydrogen engine has been developed and calibrated. The training 
database for the 0-D virtual engine calibration has been obtained by 
running a previously validated 1-D engine model scanning the whole 
engine operating range. The data collected from the 1-D model, 
including thermodynamic conditions, the composition of intake and 
exhaust gases, and combustion metrics, under both steady-state and 
transient conditions, enabled the description of stochastic phenomena, 
such as knock occurrence and cycle-to-cycle variability, which have 

been incorporated in the dynamic 0-D model. Once the simulation 
environment has been developed, a dedicated CA50-based control 
structure for hydrogen engines has been designed and implemented. 
Thanks to a specifically conceived fuel controller, the proposed control 
strategy follows external torque requests without exceeding the limita
tions of NOx production and knock, while achieving maximum engine 
efficiency. 

2. Materials and methods 

In this section, the development of the engine model and the 
implementation of the control strategy is presented. 

2.1. Virtual engine design 

As mentioned before, with the aim of finalizing and testing the 
proposed engine control strategy, the first step of the activity is focused 
on the development of a virtual Spark Ignited (SI) engine operated with 
hydrogen in a dynamic simulation environment. The engine platform 
selected for this study is a 6-cylinder 3.0 l turbocharged medium duty SI 
engine specifically modified to operate with hydrogen. Table 2 reports 
the main engine specifications. 

According to the literature on H2ICEs, a complex and integrated 
intake air management system is crucial to enhance the benefits of 
hydrogen combustion while preserving the engine from failures. In the 
engine under study, the boost pressure is generated through a single 
stage turbocharger with Variable Geometry Turbine (VGT). To properly 
control the boost pressure while operating the engine at low loads, when 
the naturally aspirated engine mode is required, the air path also has an 
integrated throttle body before the intake manifold. Moreover, the en
gine is equipped with high pressure exhaust gas recirculation (EGR) 
system. To maximize the benefits of cooled EGR in mitigating NOx and 
reducing knock, a dedicated EGR cooler is placed before the intake 
manifold. To fuel the engine with hydrogen, the engine intake has been 
modified with a twin-injector multi-point PFI system replacing the stock 
injection system. 

Based on the presented engine platform, Millo et al. [53] developed 
and validated a 1-D engine model through a dedicated 0D/1D/3D-CFD 
synergetic approach. They demonstrated that a 3D-CFD numerical 
setup with a detailed chemistry for hydrogen combustion can be used to 
calibrate a predictive combustion model in the 1-D simulation envi
ronment GT Power by Gamma Technologies. The main limitation is the 
capability of the 3D-CFD model to fully capture cycle-to-cycle variability 
and combustion anomalies such as pre-ignition, especially when related 
to hot-spots or hot oil. Using the developed 1-D H2ICE engine model, an 
extended database describing the hydrogen combustion parameters, 
engine performance and engine out emissions is obtained. Several con
ditions of engine speed, relative air-to-hydrogen ratio (λ, defined in 
Equation (1.1)), CA50, EGRratio (defined in Equation (1.2)) and Brake 
Mean Effective Pressure (BMEP) have been investigated collecting a 
wide representation of the engine behaviour. Table 3 summarizes the 
investigated engine conditions, reporting the range where each engine 
parameter has been varied. 

λ=A/F/
(A/F)st

(1.1) 

Table 2 
Engine model characteristics.  

Parameter Value 

Architecture 3.0 l, 6 cylinders 
Compression ratio 12.85 
Injection system Double PFI 
Ignition system Spark Ignited 
Charging system Variable Geometry Turbine 
EGR system Cooled High Pressure EGR  
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EGR rate =
EGRmass

Trappedmass
∗ 100 (1.2) 

In each simulation, the engine is operated at constant speed, load 
(BMEP) and λ through two dedicated closed-loop controllers which 
manage the VGT and throttle (THR) position respectively, following a 
target BMEP. The hydrogen flow is directly calculated using an injector 
model to follow the BMEP request at a defined λ. To obtain a compre
hensive dataset describing the engine behaviour, the centre of com
bustion position is varied from very advanced (− 30 ◦aTDC) to extremely 
retarded (30 ◦aTDC) in each combination of speed-load- λ. By coupling 
the air path controllers (VGT and THR) with the injector model, the 1-D 
virtual engine can automatically adjust the actuators position addressing 
the input requests while the engine efficiency is changing. Moreover, to 
fit EGR into the virtual engine and investigate the impact of different 
EGR rates on hydrogen combustion, a dedicated closed-loop EGR 
controller is also implemented, and EGR rates sweeps were added to the 
inputs list. 

Since the aim of this work is to design a torque-based control strategy 
for H2ICEs in a dynamic simulation environment, a fast-running virtual 
engine is developed and calibrated. Once collected the engine operating 
parameters and combustion feedback running the 1-D engine model in 
its entire operating range, to describe the engine behaviour using a 0-D 
simulation tool, a reduced input-output list is defined. Engine perfor
mance, combustion parameters, actuators positions and engine out 
characteristics were selected and reported in Table 4. 

To accurately represent the behaviour of the engine using the 
reduced dataset (listed in Table 4), dedicated ANNs, one for each 
selected engine parameter, were designed and calibrated (see Fig. 1). 
Artificial Neural Networks have been widely used in the literature to 
model combustion metrics and emissions in internal combustion engines 
[46,54–57]. A generic diagram of a fully connected ANN is reported in 
Fig. 2, with an input layer, two hidden layers, an output layer and a set of 

neurons per each hidden layer. During the training phase, the ANN 
learns, from a set of training data, possible non-linear relationships be
tween input and output. In a fully connected ANN, all the neurons of a 
hidden layer are linked to all the neurons of another one, and each 
connection relies on a specifically calibrated weight during the training 
phase starting from a random value. Finally, to validate the prediction 
capability, the ANN is tested on a reserved dataset of untouched data 
[58]. 

In this work, the entire group of neural networks aimed at describing 
the engine behaviour has been designed and calibrated using the 
MATLAB Statistics and Machine Learning Toolbox. Table 5 reports the 
generic network structure and data selection methodology used for this 
work. 

To accurately describe the physical connections between each engine 
parameter, the 0-D engine model integrates all the previously calibrated 

Table 3 
Test performed.  

Parameter Range Step size 

Engine speed [RPM] 1000–4000 1000 
BMEP [bar] 2 – max achievable BMEP 2 
Lambda [/] 2–2.75 0.25 
CA50 [◦ aTDC ] − 30 – +30 5 
EGR % [%] 0–5 2.5  

Table 4 
Parameters extracted from GT Power model.  

Class Variable 

Input RPM 
SA 
THR position 
VGT position 
Fuel mass injected 
EGR Position 

Indicated parameters IMEP 
BMEP 
CA50 
Brake Specific Fuel Consumption (BSFC) 
Maximum in-cylinder pressure (Pmax) 
Maximum in-cylinder temperature (Tmax) 

Air path In-cylinder trapped air mass 
EGR % 
EGR Flow 
Manifold Air Pressure (MAP) 
Boost pressure 
Turbocharger speed 

Engine-out conditions NOx concentration 
Exhaust temperature 
Exhaust mass flow 
Exhaust pressure  

Fig. 1. 0-D engine modelling development and calibration workflow.  

Fig. 2. Generic ANN layout.  

Table 5 
Generic neural network structure.  

Parameter Value 

Number of available data 835 
Number of hidden layers 1–2 
Number of neurons per hidden layer 10–20 
Data division (% training, % validation, % test) 70–15 – 15 
Data division method random 
Training algorithm Levenberg – Marquardt  
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networks generating an input-output framework, in which each 
parameter is sequentially calculated. To better clarify this modelling 
procedure, an example is provided following the steps reported in Fig. 3: 
the calibration of the network for describing IMEP is obtained using the 
CA50 and other inputs directly coming from the 1-D model. During the 
testing procedure, the IMEP network inputs were taken both from a user- 
selected input list (RPM, SA, VGT, THR, EGR Area and Fuel) and the 
outputs of previously calibrated networks (CA50 and In-cylinder trap
ped mass networks). This modelling approach allows to take into 
consideration all the uncertainties present among the model sections. 
Fig. 4 shows the 0-D virtual engine model and the entire input-output 
ANN pattern. 

By looking at Fig. 4, the main subsystems of the model can be 
identified.  

• the air path (blue area, a) subsystem, where intake conditions, in- 
cylinder trapped air and EGR are calculated;  

• the combustion subsystem (red area, b), where the combustion 
related parameters such as CA50, Maximum Pressure Oscillation 
(MAPO), IMEP are obtained;  

• the engine-out (green area, c) subsystem, where NOx emissions and 
thermodynamic exhaust conditions are produced. 

As highlighted in the combustion subsystem in Fig. 4, the BMEP is 
obtained through a model-based approach. Following the Chen-Flynn 
friction model [59], the Friction Mean Effective Pressure (FMEP) has 
been calculated by the calibration of the model coefficients as a function 
of Pcyl,max and cp,m, which stand for the maximum in-cylinder pressure 
and the mean piston speed respectively. The FMEP and the BMEP 
calculation models used in this work are reported in Equation (1.3) and 
Equation (1.4) respectively. 

FMEP= FMEPconstant + A ∗ Pcyl,max + B ∗ cp,m + C ∗ c2
p,m (1.3)  

BMEP= IMEP − FMEP (1.4) 

The 0-D fast running engine model is validated in steady-state 
operating mode by comparing the output of the 1-D engine model 
using the same user-defined inputs. The difference between the two 
models is quantified through the Root Mean Squared Error (RMSE), 
RMSE percentage (RMSE%) and R-squared calculations. 

As it is possible to notice in Table 6, the maximum RMSE% is below 
1%, demonstrating the accuracy of the 0-D model for all the considered 
parameters. It is worth pointing out that, due to the lack of consistent 
data with high NOx emission, the NOx emissions validation is limited to 
2000 ppm. 

Fig. 5, Figs. 6 and 7 present the validation and testing process per
formed for the main parameters. As it is possible to see, all the param
eters show an excellent correlation between the 1D GT Power model and 
the 0D ANN-based model. Lambda shows the worst correlation: this is 

related to the fact that a small error on the amount of air becomes 
dominant in the calculus of lambda, since the amount of fuel is exter
nally imposed (equal to that coming from the 1D GT Power model). 

Once the 0-D model has been validated in steady state conditions, it 
has been further modified to be representative of the 1-D model 
behaviour even during transients. Significant modifications have then 
been introduced in the air path to increase the accuracy of the proposed 
0-D model during transients, as suggested by the literature [60]: intake 
manifold air dynamics and turbocharger dynamics were added. The 
intake manifold, positioned between throttle and intake ducts, damps 
out the pressure oscillations related to step variations in the upstream 
pressure (due to THR or boost pressure variations). Following the 
approach proposed by Mezher et al. [61], a specifically calibrated first 
order dynamic system is used to replicate the intake manifold dynamics. 
In fact, assuming the manifold pressure equal in every point of the 
plenum, the filling and emptying of the manifold can be described 
starting from the continuity equation. The air flow through the valves 
can be described as a function of the valves area, discharge coefficient 
and pressure across the valves. Neglecting the dependencies of the 
discharge coefficient and assuming a constant temperature in the 
plenum, the pressure behaviour can be described as a first order system 
where the time constant is proportional to the ratio of manifold and 
cylinder volumes [62]. 

Several methodologies aimed at modelling the turbocharger dy
namics are reported in the literature [63–65]. The speed variation of the 
shaft can be described as the net torque applied to the shaft over the 
overall inertia of the turbocharger [66]. Venson et al. [67] demonstrated 
that a change in combustion conditions (e.g., as a result of a positive step 
in the injected fuel) determines an acceleration of the turbocharger that 
can be represented as a first order system, due to the absence of over
damping and underdamping effects (neglecting combustion inertial ef
fects), linking injected fuel mass with turbocharger speed. This 
acceleration of the turbocharger can be achieved with a variation in fuel 
or air mass flow rate, or turbine inlet pressure [67]. The simple identi
fication of the response, gain constant, frequency gain amplitude and 
phase shift allows the turbocharger dynamics to be accurately 
represented. 

As a result, since detailed modelling of the turbocharger is out of the 
scope of the presented work, the turbocharger dynamics were obtained 
through a properly calibrated first order dynamic system, in which the 
characteristics of the system were mapped as a function of the operating 
conditions. Additional dynamic effects, such as the fuel and exhaust path 
transient behaviours, and the thermal effects related to the combustion 
chamber heating or cooling, were neglected. Fig. 8 shows a comparison 
between the turbocharger speed coming from the 1-D GT Power model 
and the first order model in two different conditions of RPM, combustion 
phasing, lambda, and VGT variation. 

Once the dynamic effects were included in the 0-D model, transient 
validation of the fast-running virtual engine has been performed. To 

Fig. 3. Example of IMEP ANN test procedure.  
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achieve this goal, specifically designed simulations were conducted 
using the 1-D engine model to obtain reference values during transient 
conditions. Time-based profiles for the following parameters were set: 
RPM, VGT, THR, fuel mass, and SA. Then, dynamic simulations oper
ating the 0-D fast running virtual engine with the previously defined 
time-based profiles were conducted. 

The comparison between simulations results (generated from the 
same time-based transient using both 0-D and 1-D models) in terms of air 
path parameters, combustion parameters, and engine-out conditions are 
reported in Figs. 9–11, respectively. The accuracy of the 0-D model is 
evaluated through the Relative Percentage Error calculation defined in 
Equation (1.5). As it is possible to observe, all the analyzed parameters 

show relative errors always between ±10% apart during fast transient 
zones (such as t = 23 s, and t = 150 s, and t = 180 s). Globally, the mean 
errors always fall between − 3 % and 1 % except for the turbocharger 
speed and NOx where a maximum mean error of − 4.9 % occurs. 

Error %=
1D GT Power Model Value − 0D ANN Model Value

1D GT Power Model Value
∗ 100

(1.5) 

Since the combustion controller is fed with cycle-based data, to 
improve the simulation quality the engine stochastic behaviour has been 
incorporated in the 0-D fast running model. As a matter of fact, ac
cording to Azeem et al. [68], in SI H2ICEs significant variations can be 
observed during the combustion process. As described in the literature, 
to keep into account the effect of Cycle-to-Cycle Variability (CCV) on 
engine performance, CCV models were investigated [69,70]. Based on 
the proposed approaches the ANN-based methodology outlined in 
Fig. 12 has been adopted. Aforementioned simulations, run using the 
1-D engine model, delivered the maps of average CA50 (μCA50) in 
different engine conditions, while for CA50 standard deviation (σCA50) 
experimental data were used as reference. Then, the associated ANNs 
(μCA50 and σCA50) were calibrated and implemented in the 0-D fast 
running model, allowing the calculation of the Gaussian statistical dis
tribution of CA50 (defined in Equation (1.6)) for the given running 
condition. A random value can now be selected for each engine cycle out 
of the CA50 distribution, and considered as the current cycle CA50 for 
the entire engine model (e.g., for the determination of other metrics). 

f(x)=
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2πσ2

CA50

√ e
−
(x− μCA50)

2

2σ2
CA50 (1.6) 

Fig. 4. Schematic representation of the input-output relationship in the 0-D model, air path (a), combustion subsystem (b) and engine-out (c).  

Table 6 
0-D engine model validation.  

Parameter RMSE RMSE % R2 

Turbocharger Speed [RPM] 1077 0.007 0.998 
Boost Pressure [bar] 0.022 0.009 0.997 
Manifold Pressure [bar] 0.023 0.008 0.998 
In-cylinder trapped air mass [mg] 12 0.01 0.996 
EGR % [/] 0.053 0.76 0.994 
CA50 [◦CA] 0.26 0.56 0.996 
IMEP [bar] 0.058 0.38 0.997 
BSFC [g/kWh] 2.26 0.75 0.994 
Pmax [bar] 0.93 0.81 0.998 
Tmax [K] 6.57 0.41 0.998 
NOx (below 2000 ppm) [ppm] 11 0.56 0.996 
Exhaust pressure [bar] 0.05 0.8 0.992 
Exhaust temperature [K] 3.5 0.7 0.997 
Exhaust Flow [g/s] 0.7 0.35 0.999  
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Another crucial engine-related stochastic phenomenon, which pro
duces deviations in the combustion metrics, is knock. The final step in 
the development of the 0-D engine model focused on the knock 
modelling. To achieve this, the statistical distribution and average value 
of the knock intensity index were evaluated for each operating condition 

running the 1-D engine model. In this work, MAPO is considered to 
represent the knock intensity. Cavina et al. [71] demonstrated how a 0-D 
predictive knock model can be developed starting form trapped air mass 
and in-cylinder maximum pressure. Then, following the same approach 
proposed to model the CCV in the 0-D engine model, two additional 

Fig. 5. Testing and validation of air path parameters: turbocharger speed (a), MAP (b), trapped air mass (c), lambda (d).  

Fig. 6. Testing and validation of combustion parameters: BMEP (a), BSFC (b), Pmax (c), Tmax (d).  
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ANNs were calibrated using as inputs CA50, hydrogen mass, EGR%, λ, 
boost pressure, and RPM. It is worth to point out that using the CA50 as 
one of the inputs of the knock-related ANN, statistical considerations in 
the modelling of knock events were enabled and partially justified by the 
CCV. However, as opposed to Pmax and IMEP, the dispersion of MAPO 
cannot be satisfactorily represented by CA50 alone. This is due to the 
sensitivity of knock to lambda and temperature spatial distributions 
[72]. To obtain the current value of MAPO, starting from the outputs of 
the ANNs, i.e., average MAPO and MAPO standard deviation, a 
lognormal distribution is defined and a random value within the 

distribution is selected for each engine cycle. The ANN-based knock 
model validation is performed operating the 0-D fast running engine 
model under steady-state conditions (500 cycles were considered). The 
comparison between the obtained 98th percentile of MAPO (MAPO98) 
using the 0-D virtual engine and the reference value (coming from the 
1-D virtual engine) is reported in Fig. 13. As evident from the results, the 
knock index calculated through the proposed methodology demon
strates a strong correlation (with R2 equal to 0.968) with the reference 
MAPO98. This methodology allows the prediction of end-gas knocking, 
but not of ignition due to hot-spots; however, the proposed approach 
remains valid, since it allows the generation of a statistical knocking 
behaviour fundamental for the correct development of the knock control 
strategy. 

2.2. Control strategy model 

As documented in the literature, H2ICEs demonstrate maximum 
benefits in terms of efficiency and NOx reduction when operated with 
ultra-lean air-fuel mixtures. Nevertheless, standard control strategies 
have shown limited effectiveness in managing hydrogen combustion 
across the entire engine operating range, mainly because of its chemical 
characteristics (high RON and wide flammability range). To bridge this 
gap, this section describes the developed torque-based engine control 
strategy for H2ICEs management aimed at mitigating the efficiency- 
emission trade-off and maximizing the engine reliability. The 
following subsections describe the main features of the control strategy, 
which can be summarized in two main parts: fuel and CA50 manage
ment (fast-path) and air management (slow-path). 

2.2.1. Fuel management 
To properly control the engine torque without the risk of abnormal 

combustions (i.e., knock, misfire, preignition), a dedicated fuel man
agement controller is designed. The goal is to calculate the hydrogen 
mass to produce the requested torque while considering both reliability 
and emissions limitations simultaneously. Fig. 14 describes the fuel 

Fig. 7. Testing and validation of engine-out parameters: exhaust pressure (a), exhaust temperature (b), exhaust flow (c), NOx (d).  

Fig. 8. Turbocharger speed behaviour for the 1-D GT Power model and the first 
order modelling at 2000 RPM, lambda = 2.3 (a) and 3000 RPM, lambda =
2.2 (b). 
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Fig. 9. Validation of the transient behaviour of air path (GT Power reference in red, 0-D ANN-based model in blue and percentage error in black): turbocharger speed 
(mean error − 4.2 %) (a), MAP (mean error − 0.3 %) (b), in-cylinder trapped air mass (mean error 0.6 %) (c) and lambda (mean error 0.5 %) (d). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Validation of the transient behaviour of indicated parameters path (GT Power reference in red, 0-D ANN-based model in blue and percentage error in black): 
BMEP (mean error 1 %) (a), BSFC (mean error − 0.5 %) (b), maximum in-cylinder pressure (mean error − 1.6 %) (c) and maximum in-cylinder temperature (mean 
error − 0.2 %) (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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controller structure and the determination of the fuel request. 
The inputs of the fuel controller are the engine load (BMEP) and 

speed. Starting from this externally defined input, BMEP is converted 
into an equivalent IMEP request adding engine friction (FMEP). Unlike 
the model-based approach for FMEP estimation (function of RPM and 
Pmax) described in the previous section, the engine controller calculates 
FMEP through a Look-up Table (LuT), as a function of RPM and 
requested BMEP. It is important to point out that the FMEP reported in 
Fig. 11 can slightly differ from the instantaneous FMEP (modelled, for 
each cycle, through Equation (1.3)), mainly because different inputs 
were used to quantify the load (when the controller calculates the target 

fuel mass, the instantaneous maximum pressure peak is not available). 
Then, the obtained requested IMEP is converted into hydrogen mass 

trough the “Torque-to-Fuel” (TtF) LuT reported in Fig. 15. The TtF LuT 
describes the work production (IMEP) of the hydrogen combustion in 
the engine under study operated at a reference air/fuel ratio and 
Maximum Brake Torque (MBT) phasing. 

However, to address the engine reliability limitations (i.e., optimal 
CA50 would generate knocking), corrective actions have to be consid
ered. The typical approach, often used in conventional control strategies 
for SI engines to prevent knocking is to retard the combustion process 
[14–17] by increasing the CA50. Although effective, this methodology 

Fig. 11. Validation of the transient behaviour of engine-out (GT Power reference in red, 0-D ANN-based model in blue and percentage error in black): exhaust 
pressure (mean error − 2.9 %) (a), exhaust temperature (mean error − 0.3 %) (b), flow exhaust (mean error − 2 %) (c) and NOx (mean error − 4.6 %) (d). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Procedure for instantaneous CA50 determination.  
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leads to a less efficient combustion, resulting in reduced torque output 
(if the fuel mass is kept constant). Thus, as reported in Fig. 14, the 
hydrogen mass coming from the TtF LuT is corrected using an efficiency 
map (ηCA50). Such map, bounded between one and zero (ηCA50 = 1 for 
knock-safe conditions when optimal CA50 can be applied, ηCA50 < 1 for 
knock-limited conditions), increases the hydrogen mass during 
knock-limited conditions. 

Since the goal of the proposed strategy is to maximize the efficiency- 
emissions trade-off while preserving the engine from failures, two 
additional fuel limitations were considered. Due to the hydrogen com
bustion performance sensitivity to the mixture preparation, the pro
posed limitations were expressed in terms of λ, and then converted into 
hydrogen mass boundaries (minimum and maximum) in the whole en
gine operating range. The upper λ limitation prevents misfire, while the 
lower λ limitation is defined as the minimum λ for addressing knock and 
NOx emissions limits. As a result, for each engine condition the mini
mum and maximum λ were calculated and converted in an equivalent 
allowable hydrogen quantity (using the estimated air flowrate coming 
from the air controller). In this way, the hydrogen mass is always 
bounded in the most safe and efficient range. 

Bounding the fuel requests generates benefits especially when 
running fast transients. When a steep decrease in the requested BMEP 

occurs (from high to low load), the requested hydrogen without satu
ration would result in a very small quantity. However, due to slower 
dynamics in the intake manifold with respect to the fuel controller, the 
air fuel mixture may result too lean, increasing the risk of misfire. 
Therefore, the injection controller slightly increases the amount of 
hydrogen avoiding misfire events. It is important to mention that the 
proposed torque-based strategy manages the CA50 to run at MBT (if 
possible). As a result, because of the misfire protection, the increase in 
injected fuel generates extra torque, which leads to a deviation from the 
requested load. Such a deviation will be instantaneously mitigated 
decreasing the combustion efficiency by retarding the CA50. This aspect 
will be discussed in the next paragraph, where the procedure for the 
identification of the target CA50 is reported. 

2.2.2. CA50 management 
The second subsystem of the fast path in the torque-based engine 

control strategy focuses on the determination of the SA. Since mixture 
quality and dilution have a high impact on flame propagation in 
hydrogen combustion [33], the conventional SA control strategy for 
achieving maximum efficiency might result ineffective for proper 
H2ICEs management. For this reason, an innovative CA50-based control 
strategy has been developed. Fig. 16 shows the schematic representation 
of the proposed control structure, which integrates both open and closed 

Fig. 13. Reference 98th percentile vs 0-D ANN-Based MAPO 98.  

Fig. 14. Hydrogen request determination.  

Fig. 15. Torque to fuel map.  
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loop contributions in the CA50 target calculation pathway. 
The open loop quantity, aimed at defining the CA50 baseline (MBT 

condition), is calculated as function of RPM, requested IMEP and the 
estimated λ. Then, the first check on the gross torque production (IMEP) 
is performed in the “Maximum Available Torque” subsystem. Two 
different scenarios can be identified:  

1. IMEP requested ≥ IMEP available: the engine has no extra torque 
production capability. CA50 is at MBT and the engine is already 
producing the maximum available torque using the CA50 baseline 
(coming from the lookup table) using the previously defined 
hydrogen mass; 

2. IMEP requested < IMEP available: the engine has extra torque pro
duction capability. To align the requested and delivered torque, the 
engine conversion efficiency is decreased by adjusting CA50 further 
away from MBT. To quantify the performance degradation related to 
the combustion phasing, a normalized trend of performance vs 
phasing (‘umbrella curve’) is derived from different engine condi
tions. Fig. 17 shows the trend of normalized IMEP vs ΔCA50 for 
several engine conditions, and the average normalized umbrella 
curve used in the “Maximum Available Torque” subsystem. There
fore, the new CA50 is the sum of the baseline CA50 and the penalty 
contribution from the normalized umbrella curve, ensuring equiva
lence in terms of the requested and delivered torque. 

After obtaining the CA50 target that meets the torque production 
requirements, to guarantee the stability of the combustion process while 
respecting the emissions constraints, two additional CA50 limitations 
were added. These limitations define the range in which CA50 may be 
located for each engine condition, preserving the engine from abnormal 
combustions (misfire and knock) and limiting NOx emissions. 

As it can be seen in Fig. 16, the closed loop contribution in the CA50 
management can be summarized as a reliability-related limitation based 
on the combustion feedback. For this application, both instantaneous 
and statistical MAPO and Pmax were selected as reliability-related fac
tors. Direct measurement of in-cylinder pressure can easily provide such 
feedback [73], but costly measurement toolchain and sensors make this 
methodology unsuitable for large scale applications. However, in order 
to reduce costs and promote the diffusion of H2ICE, several works prove 
that the same information can be estimated through low-cost sensors, 
such as accelerometers, microphones and piezoelectric washers [26, 
74–76]. Fig. 18 shows the subsystem for the statistical knock protection. 

As discussed in literature, in hydrogen engines the statistical distri
bution of MAPO can be represented by a lognormal distribution [77]. As 
a result, during steady-states (i.e., when engine speed, THR and VGT 
variations are included within a range of ±5%), the instantaneous 

MAPO is collected in buffers of 50 cycles, and the lognormal distribution 
parameters are derived. Once obtained the MAPO statistical distribu
tion, the 98th highest percentage of knock intensity (MAPO98) [71], is 
calculated. Then, to detect knocking, the MAPO98 is compared with a 
standard knocking threshold as a function of RPM [78]. If the calculated 
MAPO98 exceeds the defined limit, a properly calibrated 
Proportional-Integral (PI) controller starts delaying the centre of com
bustion defined in the previous subsystem. Despite lowering the com
bustion efficiency, a retarded combustion preserves the engine from 
severe engine operating conditions. 

Beside the statistical knock protection, to shield the engine from 
heavy knocking (or pre-ignition), instantaneous MAPO is also monitored 
and the cyclic knock protection is designed. By comparing cyclic MAPO 
with a user-defined threshold (the engine reliability is the main driver 
for selecting the limit), heavy knock events can be detected. Fig. 19 
highlights the heavy knock protection subsystem. If the cyclic MAPO 
exceeds the limit, a time-based CA50 delay (in this case a ramp is 
considered) increases the lower bound in the CA50 range. A retarded 
CA50 lowers the peak in the bulk temperature and hinders the formation 
of combustion chamber condition that can lead to abnormal and 

Fig. 16. Target CA50 determination.  

Fig. 17. ΔCA50 vs normalized IMEP for different engine speed, VGT position, 
THR position and lambda and mean characteristic in red. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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potentially dangerous combustion events. It is important to mention that 
both statistical and cyclic knock protections were integrated in the same 
subsystem and contribute to CA50 target determination. 

As already remarked, to obtain very high efficiency, H2ICEs are 
characterized by high compression ratio and very low equivalence ratio. 
The combination of these two aspects leads to an increase in boost 
pressure, resulting in extremely high in-cylinder pressure peaks during 
combustion. As a result, Pmax might reach values very close to the 
mechanical reliability threshold of the engine. For this reason, Pmax 
protection is also designed. Since Pmax is highly correlated with CA50 
and its statistical cycle-to-cycle behaviour, following the same knock- 
related approach, a statistical monitoring on average Pmax is imple
mented (potential issues generated by excessive peak pressure does not 
require statistical manipulation). If the average Pmax in the analyzed 
buffer overcomes the user-defined reliability threshold, the Pmax pro
tection progressively retards CA50 preserving the engine from me
chanical failures. 

Finally, the calculated CA50 target (open loop and closed loop con
tributions are integrated) is converted into a corresponding SA by using 
a previously calibrated ANN as function of CA50, engine speed, VGT, 
EGR, and air-to-fuel ratio. 

2.2.3. Air management 
The last control strategy subsystem focuses on air delivery manage

ment. As reported in Fig. 17, where the VGT management is presented, 
after defining the boost requirements based on the engine operating 
conditions (2-D lookup table is previously calibrated using the outcome 
of the 1-D engine model), the actuators position in the air path are 
defined. The same control structure is also implemented for THR man
agement. To properly control boost and manifold pressure based on 
actual feedback (coming from the 0-D engine model), VGT and THR are 
managed coupling both open and closed loop inputs. Following the 

example shown in Fig. 20, the open loop position of the actuator (VGT in 
this case) is calculated form a 2-D lookup table, and then the position is 
corrected with a properly calibrated PI controller, which slightly 
changes the position to meet the requested boost. As regards EGR 
management, the open loop position of the EGR valve is calculated by 
means of a 2D look up table, as a function of engine speed and requested 
IMEP. In this case, the EGR position is controlled only in open loop. 

3. Results and discussion 

This section describes the results obtained by coupling the 0-D fast 
running virtual engine with the developed torque-based engine control 
strategy. To properly evaluate the performance of the engine controller 
(to deliver the requested torque and control the combustion process), 
the inputs for each simulation were defined as time-based RPM and 
BMEP demanded profiles. Both fast transient and steady-state conditions 
were investigated, and all the engine parameters were monitored. 

First findings were obtained by the analysis of the air system 
behaviour. Fig. 21 a) and b) show the comparison between target and 
actual values in boost pressure and MAP, respectively. As confirmed by 
the percentage error evaluation (black dashed lines in Fig. 21), the 
developed strategy can accurately control the air request for engine 
management. 

It is noticeable that due to the physical behaviour of the engine 
intake (turbocharger and intake manifold dynamics), when steep vari
ations in boost pressure are requested (t = 5s, and t = 15s), the air 
controller is not able to keep the pressure close to its target value. Such 
deviations are generated by the typical behaviour of PI controllers 
during fast transients. As a matter of fact, the boost requests trace a step 
variation, which cannot be followed instantaneously due to air dy
namics. This results in a slight overshoot in the actual boost pressure, as 
soon as it exceeds the target. This aspect can be controlled introducing a 

Fig. 18. Statistical MAPO control.  

Fig. 19. Instantaneous MAPO control.  
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rate limiter on the requested boost pressure. 
It is observed that due to the reliability and emissions limitations 

considered in the control strategy, the λ and CA50 values might not 
exceed safety thresholds during steep increases or decreases in load re
quests (t = 5s, and t = 15s). As a result, the hydrogen quantity is 
bounded and CA50 is adjusted accordingly. Figs. 22 and 23 show the 
behaviour of the hydrogen mass and CA50 controllers, respectively. 

By looking at the fuel mass controller separately (Fig. 19), the actual 
hydrogen mass is well aligned with the target, except during fast load 
transients (in those portions a saturation is present). In particular, 
saturation takes places in point 1 to avoid an excessively riche mixture, 
due to slow air dynamics, and points 2 and 3 avoiding too-lean mixtures. 
Overall, the fuel controller can effectively manage the load demand by 
controlling the hydrogen injected quantity (i.e., torque) complying with 
knock/NOx and misfire limitations. 

Fig. 23 shows both the target and actual CA50 values, clearly high
lighting the characteristic cyclic variations of SI combustion due to the 
CCV, while the average actual value closely aligns with the target. 
Furthermore, during steep load decreasings at t = 15s and t = 35s, the 
influence of misfire protection becomes predominant in defining the 
target CA50. As extensively explained in the previous section, when the 
engine has extra torque production capability, both fuel and combustion 
controllers cooperate to produce the requested torque: the misfire pro
tection limits the minimum hydrogen injected quantity and the com
bustion controller delays the CA50 to keep the load at the requested 
value. 

It is important to mention that, during the previously shown simu
lations, the engine is always operating in knock-safe conditions. As a 
result, the developed knock protection strategy is inactive: to test its 
impact on CA50 management, the engine is operated under knocking 
conditions while running the same load-speed profile. Fig. 24 shows the 
contribution of knock protections on CA50 management while running 
the engine in unsafe conditions. 

As previously described, the knock protection operates using both 
instantaneous and statistical knock indexes (MAPO and MAPO98). After 
collecting enough engine cycles under steady-state conditions and 
calculating the statistical knock index, i.e., MAPO98, the knock pro
tection strategy intervenes when MAPO98 exceeds the user-defined 
MAPO98 threshold. The protection progressively retards the 

Fig. 20. Closed loop determination of VGT.  

Fig. 21. Boost (a) and MAP (b) comparison between targets (in red) and actual 
values (in blue) and percentage error (in black). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 22. Fuel comparison between unsaturated (in red), saturated (in blue) and 
minimum (in black dotted line) and maximum (in black solid line) limits. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Fig. 23. CA50 instantaneous (in blue) and target (in red). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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combustion process (the PI controller increases the CA50 target) until 
the statistical index exceeds the threshold. An example of such situation 
is reported in Fig. 21 from t = 9 s to t = 12 s. Then, after operating 
retarded combustion, the MAPO98 returns below the safety threshold, 
the impact of the statistical knock protection ends and the target CA50 is 
reinstated. As mentioned before, both instantaneous and statistical 
knock protection are enabled. Fig. 24 shows the contribution of 
instantaneous knock protection when the MAPO index of a given cycle 
exceeds the user-defined reliability threshold (4 bar in this case). After 
each detected conditions, to preserve the engine from consecutive sever 
knocking, the following engine cycles were characterized by delayed 
CA50 (t = 7.2s, t = 7.3s, t = 7.5s, and t = 11s). 

To verify the performance of the developed engine controller 
following user-defined torque profiles, Fig. 25 compares requested (red 
curve) and delivered (blue curve) BMEP. As it can be noticed, the pro
posed torque-based controller can effectively manage the engine 
following the load profile within a range of ±5% BMEP error and a 
maximum derivative BMEP deviation of 3.75 bar/s. By the analysis of 
the engine behaviour operating with the proposed engine management 
strategy, the observed lag in torque production is strictly related to the 
air path dynamics (turbocharger). When a steep increase in load is 
requested (t = 5s), due to the time-to-boost delay (i.e., turbo-lag), the 
hydrogen injected quantity (and then BMEP) is bounded until a proper 

amount of air is available according to the lower λ limit (t = 6s). 
By looking at Fig. 25, it is important to highlight remarkable BMEP 

variations at high load (from t = 7s to t = 15s). Such behaviour can be 
easily explained by the high sensitivity to CCV when the engine is 
operated with retarded CA50 (knock-limited conditions). As reported in 
Fig. 17, the normalized umbrella curve shows a steeper performance 
degradation region when running the engine with retarded combustion, 
compared to the area near MBT [79]. 

Fig. 26 shows the impact of the designed knock protections and NOx 
emission limitations. As a matter of fact, retarded CA50 and low-lambda 
limitation lower the bulk gas temperature during combustion and then 
generate near-zero NOx emissions at high load (from t = 7s to t = 15s) 
[80–83]. Finally, due to the relatively low boost pressure and the pre
viously described engine behaviour at high load, the Pmax (Fig. 26 a)) is 
always well-below the user-defined reliability threshold (equal to 140 
bar). As a result, the Pmax protection is never triggered. However, the 
presence of this feature might become crucial when higher boost and 
compression ratios are selected. 

4. Conclusions & future developments 

This paper describes the development of a torque-based control 
strategy to manage hydrogen combustion in hydrogen fuelled internal 
combustion engines (H2ICEs). The controller is able to deliver the 
requested torque in safe, clean and reliable conditions. Moreover, due to 
the torque-based structure, the presented engine controller can be 
adopted for the control of complex zero-emission hybrid powertrains 
(series/parallel) based on H2ICE, where the overall torque request can 
be split between thermal and electric power sources. 

With the aim of performing software in the loop testing of the 
combustion controller, a fast running 0-D Artificial Neural Network 
(ANN)-based virtual engine is designed and calibrated starting from a 
previously calibrated 1D engine model. To obtain the dataset for the 
dynamic 0-D engine model development, a wide set of simulations 
running the detailed 1-D virtual engine were performed. Then, several 
ANNs representing the dynamic of the 0-D virtual engine were trained 
and tested. The engine simulator demonstrated good accuracy on 
replicating the engine behaviour both in steady-state and transient 
conditions compared to the 1-D engine model. 

At the same time, the torque-based control strategy is designed in 
two main subsystems: fuel and 50% burned mass crank angle (CA50) 
management, and air management. The first subsystem mainly consists 
of. 

Fig. 24. Instantaneous MAPO (in black), MAPO 98 (in blue dotted), instanta
neous MAPO threshold (in dotted grey), statistical MAPO threshold (in dotted 
red), instantaneous CA50 (in blue) and target CA50 (in red). (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 

Fig. 25. BMEP behaviour under a transient simulation.  Fig. 26. Pmax (a) and NOx (b) behaviours under a transient simulation.  
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• fuel request management including knock, nitrogen oxides (NOx) 
and misfire protections;  

• CA50 target definition and management including knock, NOx and 
misfire protections. 

The second subsystem manages the actuators positions following the 
air request. Boost pressure and manifold air pressure were controlled 
with both dedicated open and closed loop contributions. 

To quantify the benefits of the developed control strategy on engine 
controllability and emissions mitigation while operating on hydrogen, 
dynamic user-defined engine conditions based on Brake Mean Effective 
Pressure (BMEP) and engine speed were tested using the developed 
engine controller. The analysis of the results highlighted the potential of 
the control structure in hydrogen combustion effective management. 
Load requests (BMEP) can be followed within a ±5% both steady-state 
and transient conditions (maximum BMEP gradient deviation of 3.75 
bar/s). Moreover, due to proper control of the target equivalence ratio 
and CA50 in all the tested operating points, the engine is always oper
ated in knock-safe conditions, and NOx emissions were effectively 
mitigated. Since relatively low boost pressure values were obtained at 
high load, maximum in-cylinder pressure is also kept well-below the 
user-defined reliability limit. The innovative controller here developed 
can improve the widespread of H2ICEs, enhancing hydrogen-based 
mobility since it allows to properly deliver the requested torque in a 
safe, clean and reliable manner. 

Future developments of this work are mainly focused on NOx emis
sion control through a dedicated hydrogen-based Selective Catalyst 
Reduction (SCR) model. Moreover, since cold-start management repre
sents one of the most critical aspects in emissions mitigation operating 
ICE, the thermal dynamics of the exhaust line will be modelled and 
added in the 0-D virtual engine. A dedicated cold-start engine man
agement strategy will also be designed and calibrated. In this frame
work, the developed control strategy will be further improved by adding 
a hydrogen consumption minimization strategy (considering both 
hydrogen quantity for combustion and for SCR management). Further
more, the control strategy will be optimized, introducing other de
pendencies for the identification of the optimal CA50 (i.e., air 
temperature, humidity). 
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