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Suzanne Angeli, Delphine Nobileau, Achille Ballabeni, Alessandro Lotti, Alfredo Locarini,

Dario Modenini, Member, IEEE, Paolo Tortora, Senior Member, IEEE, and Michal Gumiela

Abstract—Enhancing agricultural methods through the uti-
lization of Earth observation and artificial intelligence (AI)
has emerged as a significant concern. The ability to quantify
soil parameters on a large scale can play a pivotal role in
optimizing the fertilization process. While techniques for non-
invasive estimation of soil parameters from hyperspectral images
exist, their validation typically occurs across different datasets
and employs varying validation protocols. This diversity renders
them inherently challenging (or even impossible) to compare
objectively. We address this research gap and introduce an AI-
ready dataset containing airborne hyperspectral images collo-
cated with in-situ measurements of phosphorus pentoxide, potas-
sium oxide, magnesium, and soil pH . Furthermore, we propose
a standardized validation procedure to adhere to when assessing
the performance of the emerging algorithms for estimating soil
parameters. This dataset was utilized in the HYPERVIEW:
“Seeing Beyond the Visible” challenge, with the goal of deploying
data-driven soil analysis algorithms on board Intuition-1—a
satellite equipped with a hyperspectral camera and on-board
AI capabilities. In this article, we present the top-4 solutions
(HYPERVIEW attracted almost 160 teams with 46 actively
submitting predictions to the validation server) and provide the
organizers’ perspective on the challenge, its progress, statistics,
and insights. To ensure reproducibility, we made the dataset
available through the permanently open version of HYPERVIEW
at https://platform.ai4eo.eu/seeing-beyond-the-visible-permanent.
We believe that our efforts will play a crucial role in establishing
a standardized approach for the validation of AI solutions, not
only in the domain of soil analysis but in related fields as well.

Index Terms—Benchmark, soil analysis, deep learning, ma-
chine learning, hyperspectral imaging.
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I. INTRODUCTION

THE agricultural sector has witnessed significant trans-

formations, largely influenced by technological advance-

ments [1]. With limited arable land [2], the need to enhance

crop productivity to meet the nutritional demands of a growing

population is critical [3]. Consequently, precision agriculture

emerged as a fundamental approach for efficient food pro-

duction, targeting the problem of reducing the environmental

impact of agricultural practices [4]. This suite of targeted

strategies includes, among others, the evaluation and moni-

toring of soil quality, moisture levels, fertilizer content, tem-

perature, and seasonal ecosystem changes over time [5], [6].

Estimating planned yields for specific regions [7] also provides

vital information regarding the effectiveness of implemented

practices [8]. Precise monitoring of soil composition, espe-

cially soil pH , is instrumental in averting soil degradation [9].

Monitoring soil parameters traditionally involves in-situ

measurements where soil samples are analyzed in laboratory

conditions [10]–[12]. However, this method is associated with

high costs, time inefficiency, and limited scalability over

large areas [13]. Current approaches often necessitate mixing

soil samples from an entire field, preventing the extraction

of soil parameters for specific field segments [14]. Also,

the quality of the obtained soil samples and the laboratory

settings may influence the extracted parameters [15], [16].

To overcome these limitations, non-invasive imaging methods

have gained traction for assessing the spatial distribution

of soil components, offering improved scalability [17], [18].

To create data-driven supervised machine learning models

for this task, various imagery sources, such as drones [8],

[19]–[21], airborne platforms [22]–[24], or satellites [25]–

[27] are combined with in-situ measurements, ideally with

precise geospatial information [12], [28], to create ground-

truth datasets [26], [29]. These datasets not only serve to

develop models but also to assess their generalization.

However, the process of building high-quality, represen-

tative, and diverse ground-truth data is costly, not scalable,

and relies on human efforts. It also requires meticulous

coordination between soil sample collection and image ac-

quisition campaigns [12], [18], [30]. Although some studies

have collected in-field measurements and images within the
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same month but in different years [31], [32], this can lead to

inaccurate ground-truth information, especially for fertilized

regions. Moreover, external factors like atmospheric condi-

tions, weather, and seasonality [33] influence measurements,

necessitating careful planning of data acquisition scenarios. Of

note, various prior studies have recommended the adoption

of the Mehlich 3 extractant for conducting comprehensive

soil elemental analysis, with the goal of enhancing soil

analysis across the globe, e.g., in the United States [34],

Zimbabwe [35], China [36], Kenya [37], or Poland [38].

While this approach requires a significant amount of time,

involves intricate testing procedures, and comes with elevated

testing costs, it remains the state of the art in extracting soil

parameters (with proven repeatability and reproducibility [15],

[16])—the current efforts are focused on accelerating it and

making it more affordable [39]. Given these challenges, pub-

licly available datasets for validating data-driven algorithms to

estimate soil parameters from image data are lacking.

Satellite remote sensing is a valuable tool for identifying soil

composition [40], [41] and tracking changes in soil character-

istics [5]. This technology offers scalability to monitor large

areas [42] and to build a documented history of the area [43].

By leveraging remotely-sensed data, practitioners can optimize

their practices [31]. The acquired satellite image data comes in

various modalities, with multispectral images (MSIs [21], [28])

and hyperspectral images (HSIs [3], [24], [44]) commonly

used in precision agriculture. Multispectral instruments capture

several broad spectral bands [45], while HSI records hundreds

of narrow and contiguous bands across the electromagnetic

spectrum. Vegetation indices (VIs), being spectral indices

derived from MSI [46], are often employed in agriculture

for tasks like bare soil detection, chlorophyll monitoring, and

vegetation tracking [46]–[49]. The lower spectral resolution

of MSIs can limit their ability to detect subtle changes [50],

such as plant diseases [51], [52]. In contrast, hyperspectral

instruments with high spectral resolution [3], [13] offer new

possibilities for developing algorithms to detect nutrient defi-

ciencies, soil hydration, and other ecosystem processes [53].

Numerous agricultural parameters have been investigated in

the context of extracting them from HSIs. They span across

the crop volume [8], soil and crop irrigation levels [54], [55],

soil temperature [6], type [56] and texture [32], its com-

position accompanied by the identification of minerals [57],

nutrients [21], [32], organic carbon [25], [47], salinity [44],

soil pH [29] or soil pollution [58]. A prompt and reliable eval-

uation of soil parameters is vital in resource management [4],

[44], especially when applying fertilizers [3], [17]. Particular

attention should be paid to the parameters that a farmer can

influence by providing the soil with nutrients, such as nitrogen

(N ) [3], [17], [32], [40], phosphorus (P ) [3], [17], [21],

[32], [40], potassium (K) [3], [17], [21], [40], magnesium

(Mg) [21], [32] and organic carbon (OC) [17], [32], as

well as soil pH [21] affecting vegetation. The assessment

of soil composition should prioritize bare soil areas due to

the substantial impact on results from even small remnants of

green vegetation that may remain after the harvest [22], [47].

There are prior insights concerning the spectral signatures

of specific soil parameters that may be used while extracting

them. The absorbance maxima for both the basic and neu-

tral forms of bromothymol blue, a phenol-based dye often

used to test pH , occur at 618 nm and 420 nm [59]. The

wavelength range from 630 to 780 nm [60] is also important

here. The strong lines of K are found at various wave-

lengths such as 441.81 nm, 465.08 nm, 476.03 nm, 495.14 nm,

600.77 nm, 607.93 nm, and 612.62 nm [61]. The atomic emis-

sion spectra of Mg are 285.21 nm, 279.55 nm, 279.81 nm, and

280.27 nm [62], and magnesium may not have a well-defined

spectral signature in the 400–900 nm range. The soil pH , on

the other hand, affects the spectral characteristics of various

substances, which can be used to determine pH [63].

The algorithms used to extract soil parameters from image

data (MSIs and HSIs) can be split into classic statistical

analysis (SA) [12], [21] techniques, as well as classic and

deep machine learning (ML) approaches [18], [64]. In the

former group, we benefit from a range of VIs, such as the

Normalized Difference Vegetation Index (NDVI), Enhanced

Vegetation Index (EVI), Optimized Soil Adjusted Vegetation

Index (OSAVI) [25], [32], [65], and many others [25], [32],

[65] to estimate C [25], [66], P and its compounds [32],

[65], K and its compounds [65], [67], and pH [33], [68].

They are calculated based on the pre-processed imagery [29]

which undergoes various corrections, e.g., atmospheric [32].

In ML algorithms, we either use hand-crafted features [9],

[67], [69], which are later fed to supervised learners that per-

form prediction [68], or benefit from automated representation

learning offered by deep learning. The classic ML models

used for estimating soil parameters encompass Support Vector

Machines (SVMs) [24], [70], Random Forests (RFs) [3], [24],

Multiple Linear Regression (MLR) models [18], Partial Least

Squares Regression (PLSR) techniques [33], and a plethora

of boosting strategies [32]. Deep learning algorithms have

been deployed for soil parameters’ estimation as well [71],

and they are very often coupled with data augmentation [72]

and transfer learning [73] to deal with limited ground truth.

The majority of the approaches were validated over the

data captured for a selected region, commonly exploiting a

single image [3], [31]. There are studies in which several

dozens of images were collected [47], but this data was

captured over the years, and the actual composition of the

soil is not documented. Various strategies, including multi-

fold cross-validation [26], [69], were used to eliminate the

risk of leaking the information across the training and test

sets [29], [74]. Ideally, the algorithms should be trained and

validated over spatially and temporally de-correlated datasets.

Incorrectly designed validation procedures lead to elaborating

overly optimistic estimations of the generalization capabilities

of ML models—this issue has been thoroughly investigated

in our previous works [75], [76]. Finally, there are quality

metrics that are used to assess the quality of automated soil

estimation, with the coefficient of determination (R2) and

the root mean square error (RSME) being well-established in

the field [3], [17], [70]. In the supplementary materials, we

gather a tabular summary of a representative set of techniques

for estimating soil parameters from different data modalities

showing a notable diversity of the validation approaches. The

lack of standardization of this process can, unfortunately, lead
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to the “illusion of progress” in the field, as the results obtained

for the emerging approaches cannot be directly compared with

others, and they may not be reproducible, ultimately leading

to the reproducibility crisis [77]. In this article, we address

this research gap by introducing an AI-ready dataset that can

be used for fair validation of such approaches.

A. Contribution

We tackle the problem of estimating soil parameters from

HSIs and address the research gaps related to the data

availability, unbiased and objective validation of emerging

algorithms for this task, and ensuring full reproducibility of

such methods. Overall, our contributions are as follows:

• We gathered real-life data, including airborne HSIs collo-

cated with in-situ soil samples which underwent laboratory

analysis to precisely extract four, practically important soil

parameters: phosphorus pentoxide (P2O5), potassium oxide

(K2O), magnesium (Mg), and the soil pH . Knowing these

parameters may help optimize agricultural management,

ultimately improving the quality and quantity of crop yield.

• We designed and implemented a validation procedure, to-

gether with the AI-ready dataset, including the training-test

split alongside the quantitative metrics for comparing the al-

gorithms, and for ensuring the experimental reproducibility.

• We organized the HYPERVIEW: “Seeing Beyond the Vis-
ible” challenge focused on developing algorithms for esti-

mating soil parameters from HSIs, with the goal of deploy-

ing them on board the satellite. Thanks to HYPERVIEW,

we gathered the first-of-its-kind ranking of soil analysis

algorithms validated over the same data and following the

same validation strategy. Thus, we ensure the transparency

and objectiveness of the entire process.

• We made the HYPERVIEW dataset available at

https://platform.ai4eo.eu/seeing-beyond-the-visible-

permanent to allow the community compare their

techniques with the current state of the art, hence to

monitor the progress in the field objectively.

• We discuss the top-ranked HYPERVIEW solutions (out

of all 46 submitted solutions; the challenge attracted the

attention of 159 registered teams from all over the world),

and focus on the process of designing and verifying them.

It provides the participants’ perspective on the challenge.

• We provide the organizers’ perspective on HYPERVIEW, its

progress, various statistics, and insights, also concerning the

HYPERVIEW dataset, which was not revealed to the partic-

ipants during the challenge, as they might have influenced

the algorithms, e.g., by injecting some additional “expert

knowledge” into machine learning models.

We assembled a multidisciplinary consortium of experts in

remote sensing, agriculture, artificial intelligence (AI), space

operations, and hardware engineering. The central objective of

the HYPERVIEW challenge was to advance the state of the art

in soil parameter retrieval from hyperspectral data, especially

in view of the Intuition-1 mission. Intuition-1 is a 6U-class

satellite (Fig. 1) designed by KP Labs1 to observe the Earth

using a hyperspectral instrument and an on-board computing

unit capable of processing data using AI. It is the world’s

first satellite with a processing power capable of advanced

processing of HSIs in orbit—Intuition-1 was launched on

November 11, 2023. Of note, the algorithms for soil parameter

estimation are independent of the internals of Intuition-1 and

can be deployed on board other satellites with hyperspectral

sensors and AI capabilities. The winners of HYPERVIEW

were awarded the unique opportunity to deploy their so-

lutions aboard Intuition-1, hence contributing to advancing

Earth observation. Eligibility for inclusion in the rankings was

contingent upon participants delivering their implementations,

with the rigorous verifiability and reproducibility of their

submissions being unequivocally established.

Fig. 1: Intuition-1 (credits: KP Labs, AAC Clyde Space).

We believe that our work will be an important step toward

standardizing the way the community validates the emerging

solutions in (not only) soil analysis from remotely-sensed

HSIs. We hope that our dataset, alongside the current state-of-

the-art results will become an exciting point of departure for

further research in precision agriculture, ultimately bringing

commercial and scientific value to the community.

B. Article Structure

In Section II, we present the details of the HYPERVIEW

dataset and elaborate on the process of data acquisition, pre-

processing, and designing the AI-ready datasets used in the

challenge. It is discussed in Section III, where we present

the validation procedure, and analyze the results of HYPER-

VIEW. Here, we deliver the organizers’ insights concerning

the progress of the challenge, dataset characteristics, and show

1KP Labs is a New Space company based in Poland, with the mission of
accelerating space exploration by advancing autonomous spacecraft operation
and robotic technology. For more details, see https://kplabs.space/.
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how to assess the best-performing algorithms using other met-

rics commonly exploited in precision agriculture. Sections IV–

VII summarize the top-ranked algorithms, providing the par-

ticipants’ perspective on HYPERVIEW. In the supplementary

materials, we present the participants’ strategies for verifying

the algorithms during the challenge, when the quantitative

results over the full test set were not revealed. Section VIII

delivers the conclusions, summarizes the current state of the

art in estimating soil parameters from the HYPERVIEW data,

and highlights some interesting research pathways. In the sup-

plementary materials, we include the co-authors’ affiliations

and roles, and a table of abbreviations used in this article.

II. HYPERVIEW: DATASET

On March 3, 2021, the data acquisition campaign was

conducted, utilizing hyperspectral imagers mounted on the

Piper PA-31 Navajo aircraft. It operated at an altitude of

2550 to 2700 meters, maintaining a cruising speed of 61.8

meters per second, and capturing imagery at a ground sam-

pling distance (GSD) of 2 meters. The acquisition process

was performed in the cloudless and windless weather. The

acquisition system was founded upon HySpex VS-725 (Norsk

Elektro Optikk AS), and comprised two SWIR-384 imagers

and one VNIR-1800 imager, facilitating simultaneous data

acquisition (Table I). Once the HSIs had been acquired on

board the aircraft, the pre-processing routines were applied:

• Radiometric calibration. The raw spectral data are initially

stored as discrete Digital Numbers (DNs), which are influ-

enced by a complex interplay of factors, such as surface

conditions, atmospheric effects, topographic influences, and

sensor characteristics [78]. We radiometrically corrected

such DN values to obtain the normalized values of DNs.

• Geometric correction was applied based on the Digital

Surface Model (DSM) and flight parameters registered

by the Global Positioning & Inertial Navigation System.

The nearest neighbor technique was used for data re-

sampling—it was done using PARGE (https://www.hyspex.

com/hyspex-products/hyspex-processing-software/parge/,

accessed on March 21, 2024).

• Atmospheric correction was performed using the moderate

resolution atmospheric transmission technique [79], [80].

• Mosaicing—each of the hyperspectral mosaics consisted of

hyperspectral series, with the horizontal overlay between

them equal to 30% (or more). The bands below the 965 nm

wavelength were captured by the HySpex VNIR-1800 sen-

sor, whereas the bands above 965 nm were acquired by the

HySpex SWIR-384 sensor. The resulting images are of 2 m

GSD and encompass a total of 430 hyperspectral bands.

TABLE I: Characteristics of the imagers. For more details, see

the supplementary materials.

Characteristics SWIR-384 VNIR-1800
Spectral range [nm] 930–2500 400–1000

Spectral resolution [nm] 5.45 3.26
Number of bands 288 186

The in-situ measurements of the soil parameters were

collected in August–November 2020, and the lab analysis

was performed following the Mehlich 3 approach [81]–[83].

In our study, 12 soil samples were acquired for each field

following the Zig-Zag pattern [84], and the fields varied in

size, ranging from 0.5 to 4.0 hectares. Thus, for larger fields,

the heterogeneity of collected soil samples may be inherently

larger than for spatially smaller fields. As in other soil analysis

studies [34], collected soil samples were mixed together and

underwent the laboratory analysis which resulted in one tuple

of four ground-truth values per each field (corresponding to

one hyperspectral patch), containing phosphorus pentoxide

(P2O5), potassium oxide (K2O), magnesium (Mg), and the

soil pH . Therefore, the HYPERVIEW dataset contains the

hyperspectral patch-level ground-truth values for each soil

parameter, where each hyperspectral patch corresponds to one

field (the ground-truth values of specific pixels within the patch

are thus unknown)—it might be considered a limitation of the

dataset. Additionally, since the soil samples collected in each

field are mixed together before the laboratory analysis, the

information about their spatial locations within the field is lost.

In Fig. 2, we show the pivotal steps of creating the dataset.

TABLE II: Descriptive statistics of the ground-truth soil pa-

rameters in the T , V , and Ψ sets.

Parameter Subset Min Max Average Median
P2O5 T 20.3 325.0 70.3 65.1

V 18.0 309.0 70.6 64.5
Ψ 4.8 309.0 70.8 64.3

K2O T 21.1 625.0 228.0 216.0
V 114.0 636.0 229.3 216.0
Ψ 114.0 636.0 227.8 215.0

Mg T 26.8 400.0 159.3 155.0
V 61.9 410.0 161.6 155.0
Ψ 61.9 410.0 160.6 156.0

pH T 5.6 7.8 6.8 6.8
V 5.9 7.9 6.8 6.8
Ψ 5.5 7.9 6.8 6.8

The HYPERVIEW dataset includes 2886 hyperspectral

patches, and each patch corresponds to exactly one field—see

the examples in the supplementary materials. These patches

never overlap and are spatially disjoint. The patch size varies

(depending on the field), and it is around 60 × 60 pixels on

average. Each patch contains 150 contiguous hyperspectral

bands from the 462–942 nm spectral range (spectral resolution

of 3.2 nm), reflecting the spectral range of the Intuition-

1 sensor. All patches are split into 1732 training patches,

constituting the training set T , and 1154 test patches, being

the test set Ψ. We extracted the validation set V from Ψ,

containing 50% random test patches (thus, V ⊂ Ψ). This

validation set was used during the challenge to monitor the

progress of the participating teams. To reduce the probability

of over-fitting to Ψ, the participants were able to see their

results obtained exclusively over V during the challenge. In

Table II, we can see that the characteristics of the T , V
and Ψ are consistent, as they are all stratified according to

the distributions of the ground-truth measurements of all soil

parameters. This observation is confirmed in Figs. 3–5 which

render the distribution of the ground-truth measurements,

together with their cumulative distributions and histograms for

T , V , and Ψ. Finally, the spatial coverage of the hyperspectral

patches included in T , V , and Ψ amounts to 2220, 370,

and 740 hectares. It makes the HYPERVIEW dataset—to our
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Fig. 2: The process of creating the HYPERVIEW dataset involved acquiring soil samples and airborne HSIs, performing the

laboratory analysis of soil samples, and introducing the training-test split with the evaluation strategy to assess the algorithms.

knowledge—the largest dataset that could be used to validate

data-driven algorithms for estimating soil parameters from

HSIs.

III. HYPERVIEW: CHALLENGE

Although the HYPERVIEW challenge has been already

concluded [85], there is a permanently open version of HY-

PERVIEW available on the AI4EO platform: https://platform.

ai4eo.eu/seeing-beyond-the-visible-permanent. Here, the HY-

PERVIEW dataset (split into the training and test subsets;

note that the ground-truth data for the test set have never

been revealed to the public) can be downloaded. Thus, anyone

can push the state of the art in estimating soil parameters

from HSIs through developing new algorithms and confronting

them with the best solutions, as the up-to-date Leaderboard is

available as well. To help participants get started with the chal-

lenge, we prepared a Jupyter Notebook (Starter Pack) to guide

them through the data input/output operations, visualization,

prediction using a baseline algorithm, and creating a valid sub-

mission. The Starter Pack is available through GitHub: https://

github.com/AI4EO/kp-labs-seeing-beyond-visible-challenge.

A. Evaluation

1) Quality metric (HYPERVIEW Score): The quality score

(dubbed the HYPERVIEW score) of each participating team,

which quantifies their performance in the HYPERVIEW chal-

lenge, is computed through the following methodology:

Score =

∑4
i=1

(
MSEi/MSEbase

i

)

4
, (1)

where the mean squared error for the i-th soil parameter is:

MSEi =

∑|Ψ|
j=1 (pi,j − p̂i,j)

2

|Ψ| , (2)

and |Ψ| is the cardinality of the test set (being the number of

test patches), pi,j and p̂i,j are the estimated and ground-truth

soil parameters for the i-th soil parameter (P2O5, K2O, Mg,

or pH) in the j-th test patch. We calculate four mean squared

error (MSEi) values over the entire validation/test set (V or

Ψ), one for each parameter (P2O5, K2O, Mg, or pH), and

divide them by the corresponding MSE value obtained using a

“trivial” algorithm returning the average soil parameter from

T . The lower scores denote the better solutions, as they

reflect predictions that closely align with the ground truth,

with a quality score of zero representing a perfect match.

2) Illustrative example: Let us assume the following2:

• We have three competing algorithms: Algorithm A, Algo-

rithm B, and Algorithm C. Each of them yields specific

MSE values for all parameters (P2O5, K2O, Mg, and pH).

• The baseline algorithm, which computes the average param-

eter value from T , generates the following MSE scores over

Ψ for P2O5, K2O, Mg, and pH: 2500, 1100, 2000, and 3.

In Table III, we present the baseline MSE alongside the MSE

values obtained by three algorithms A–C, and divided by the

baseline MSE. The baseline MSE serves as a metric to evaluate

the performance of an algorithm that simply calculates the

average value for each parameter based on the data within the

2In order to ensure consistency with the HYPERVIEW documentation
which was shared with the participating teams, the same illustrative example
of the scoring methodology was given to the participants of the challenge [85].
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Fig. 3: The ground-truth measurements of all soil parameters

in the T , V , and Ψ sets.

training set. The MSE values are subsequently used to compute

the quality scores, which are further linked to the rankings

(Table IV). It is important to emphasize that Algorithm B

exhibits the most favorable performance, as it attains the

lowest quality score. Algorithm B surpasses both Algorithm

A and C, which is reflected in its superior ranking.

TABLE III: The baseline MSE, together with the MSE values

obtained using three competing algorithms (Algorithm A–

C). The best MSE and the best HYPERVIEW scores are

boldfaced—the HYPERVIEW score amounts to 0.000 for

Algorithm B for the pH estimation, meaning that it obtained

the perfect predictions equal to the ground-truth pH values.

MSE MSE/MSEbase

Parameter Baseline Alg. A Alg. B Alg. C Alg. A Alg. B Alg. C
P2O5 1100 500 1000 1500 0.455 0.909 1.364
K2O 2500 2000 2100 100 0.800 0.840 0.040
Mg 2000 1500 100 1700 0.750 0.050 0.850
pH 3 1 0 5 0.333 0.000 1.667

Fig. 4: Cumulative distribution function (ECDF) of the ground-

truth measurements of all soil parameters in T , V , and Ψ.

TABLE IV: The aggregated HYPERVIEW score obtained for

three soil parameter estimation algorithms A–C, alongside the

corresponding ranking. Algorithm B is the winner (the smaller

the score gets, the better algorithm is, as it returns the soil

parameter values which are closer to the ground truth in-situ

measurements). The best HYPERVIEW score is boldfaced.

Algorithm Score Ranking
Algorithm B 0.450 1
Algorithm A 0.584 2
Algorithm C 0.980 3

B. The Results

The live scoring tool was continuously evaluating the qual-

ity of the submitted solutions throughout the challenge—all

valid submissions were ranked based on the HYPERVIEW

score (Section III-A1). Each valid submission was required to

include predictions for the soil parameters across all samples

within Ψ. To maintain fairness and prevent potential server

overload and undesirable practices like “sampling” the test

data distribution, participating teams were allowed to up-

load their solutions at intervals of 12 hours. Furthermore,
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Fig. 5: The histograms of the ground-truth measurements of

all soil parameters in the T , V , and Ψ sets.

to mitigate the risk of over-fitting to Ψ, participants had the

opportunity to assess their quantitative results, specifically the

aggregated HYPERVIEW score, which was obtained over V ,

encompassing 50% of all test samples (see Section II). In

this case, the MSE value obtained by the baseline (“trivial”)

solution returning the average value of each parameter (based

on T ) was calculated for V as well. The HYPERVIEW scores

achieved over V were displayed on the Public Leaderboard,

providing participants with continuous visibility into their

performance—its final layout is given in Table V. In total,

the challenge garnered active participation from 46 teams, out

of the 159 teams that had registered for the event. In Fig. 6,

we can observe the distribution of the scores obtained over

V by the top 25 teams. While there were outlier submissions

for nearly all teams, this figure highlights the convergence of

the top participants toward high-quality solutions which were

finally fine-tuned (see the “clustered” scores on the left).

Once the challenge had finished, the final ranking was re-

computed based on Ψ, including 1154 test examples, and

the Private Leaderboard including the HYPERVIEW scores

TABLE V: The final status of the Public Leaderboard (i.e., the

HYPERVIEW scores obtained for the validation set V ). The

teams which submitted the Jupyter Notebooks for the final

evaluation are boldfaced (those solutions which we were

unable to successfully reproduce are underlined).

Rank Team Submissions# Score
1 EagleEyes 67 0.781
2 MOAH 78 0.797
3 Black Cat 32 0.803
4 WEGIS 16 0.812
5 Cap2AIScience 45 0.816
6 Predictia 45 0.848
7 deep brain 6 0.853

8 u3s lab 31 0.871
9 πK 32 0.875

10 CMG 10 0.877
11 rdeggau 39 0.885

. . .
15 jsoeo 10 0.909

. . .
20 Hyper Sense 4 0.945

. . .
25 Tmw geographer 9 0.977

. . .
28 GU Orbit 7 0.989

. . .
46 RandomAccess 6 2.119

obtained for Ψ was determined. This process could have led

to changes in the final ranking, since the HYPERVIEW score

on V may differ from the score on Ψ. In HYPERVIEW,

we were devoted to combat the reproducibility crisis [77].

Thus, to be classified in the final ranking, the teams had

to submit a Jupyter Notebook with the implementation to

allow the organizers to reproduce the predictions. Out of 10

top-performing teams, seven teams submitted their implemen-

tations, and we were able to reproduce five of them (for

πK, there were unresolved issues in the submitted Jupyter

notebook, whereas deep brain did not share their models

with us, and we were unable to re-train them to obtain the

HYPERVIEW scores similar to those calculated based on the

submitted predictions). Finally, the top-4 teams (EagleEyes,

MOAH, Cap2AIScience, and u3s lab) decided to share the

description of their approaches and related experimentation

with us, hence they contributed to this manuscript.

TABLE VI: The HYPERVIEW scores obtained by the top-5

teams over V and Ψ, and calculated (i) by the server during

the challenge (Submitted), and (ii) by the organizers using

the models delivered by the participants (Reproduced). We

report the difference (Δ) between the validation and test scores

calculated by the organizers and by the server.

Validation set (V ) Test set (Ψ)
Rank Team Submitted Reproduced Δ Submitted Reproduced Δ

1 EagleEyes 0.781 0.788 −0.007 0.789 0.795 −0.006
2 MOAH 0.797 0.797 0.000 0.808 0.808 0.000
3 Cap2AIScience 0.816 0.817 −0.002 0.827 0.828 −0.001
4 u3s lab 0.871 0.871 0.000 0.878 0.878 0.000
5 rdeggau 0.885 0.885 0.000 0.896 0.896 0.000

In Table VI, we gather the final HYPERVIEW scores. For

all top-performing teams, we report the scores calculated over

V and Ψ for the best submitted predictions (Submitted), and

obtained through our reproducibility study based on the re-

ceived Jupyter Notebooks (Reproduced)—the latter were used

as the final scores for all participants. All of those techniques
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Fig. 6: The distribution of the HYPERVIEW scores for the top-25 teams (Public Leaderboard) participating in the challenge.

Fig. 7: The HYPERVIEW scores obtained by the top-5 teams

during the challenge over the validation set V .

are reproducible with rather minor differences between the

submitted and reproduced predictions (Table VI). Those minor

differences did not affect the final ranking. It is interesting

to see Fig. 7, where we render the progress of the top-5

teams, quantified as the HYPERVIEW score calculated over

V . The winning team (EagleEyes) converged to their high-

quality solutions relatively fast (in less than 40 days), and

then they were subjected to fine-tuning. On the other hand,

u3s lab managed to improve their algorithm at the very end

of the challenge. This progress plot (Fig. 7) was not visible to

the participants, therefore they were unable to easily monitor

that (unless they had implemented it themselves).

To investigate the quality of predictions of the top-5 teams,

we show the Bland-Altman plots in Fig. 8, alongside additional

metrics, with MSE, mean absolute error (MAE), mean absolute

percentage error (MAPE), and coefficient of determination

(R2) commonly used in the soil analysis research:

MAEi =

∑|Ψ|
j=1 |pi,j − p̂i,j |

|Ψ| , (3)

MAPEi =
100%

|Ψ|
|Ψ|∑
j=1

∣∣∣∣
pi,j − p̂i,j

pi,j

∣∣∣∣ , (4)

and

R2
i =

∑|Ψ|
j=1 (pi,j − p̂i,j)

2

∑|Ψ|
j=1 (pi,j − p̄i)

2
, (5)

where |Ψ| denotes the cardinality of the test set (the number of

test patches), pi,j and p̂i,j are the estimated and ground-truth

soil parameter values for the i-th soil parameter (P2O5, K2O,

Mg, or pH) in the j-th test patch. Additionally, we calculate

the relative mean absolute error (rMAE), which divides MAE

of the algorithm by MAE of the baseline technique returning

Page 15 of 43

http://mc.manuscriptcentral.com/grsm

IEEE Geoscience and Remote Sensing Magazine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

Fig. 8: Bland-Altman plots for the top-5 teams obtained over Ψ show the agreement between the predictions and ground truth.

the average of the i-th parameter value (pbasei ) based on T :

rMAEi =

∑|Ψ|
j=1 |pi,j − p̂i,j |∑|Ψ|

j=1

∣∣pi,j − pbasei

∣∣ . (6)

Also, we report the symmetric MAPE (sMAPE), being a

modified version of MAPE, where the divisor is half of the

sum of the ground truth and predicted i-th soil parameter [86]:

sMAPEi =
200%

|Ψ|
|Ψ|∑
j=1

|pi,j − p̂i,j |
|pi,j |+ |p̂i,j | . (7)

The rMAE values indicate that all of the top teams outper-

formed the baseline, and all other measures consistently show

that EagleEyes achieved the highest-quality predictions of all

parameters. The shape of the Bland-Altman plots is similar for

all top-performing methods—the largest errors are observed

for large values of P2O5, K2O, and Mg, as the patches

corresponding to such parameters were under-represented in T
(Fig. 3). An interesting distribution of the pH errors in Fig. 8

reflects the in-situ measurements of this parameter (Fig. 3).

The in-situ measurements were performed in the fields

cultivated by three farmers (Farmer A, Farmer B, and Farmer

C). They might be therefore cultivated differently, and the

farmers might have followed a (slightly) different soil sam-

pling procedure—albeit “standardized” across all farmers. In

Fig. 9, we present the Bland-Altman plots rendering the

EagleEyes’s prediction errors for all parameters split across

Farmers A–C. We can appreciate that the distribution of such

errors significantly differs across those farmers, indicating the

potential importance of developing specialized models not

only for specific parameters, but also for land characteristics or

cultivation approaches. This real-life data heterogeneity shows

the difficulty of developing fully data-driven algorithms that

are not benefiting from such additional “expert knowledge”

that could be easily incorporated into the processing pipeline.

IV. FIRST PLACE: EAGLEEYES

1) Data Preparation: Each hyperspectral patch correspond-

ing to an agricultural field has a dimension of w×h×B, where

the width (w) and height (h) are variable, but the number of

bands (B) remains constant (150) for all patches. Thus, the

data corresponds to the reflectance per pixel and wavelength.

The distribution of patch sizes is skewed—approximately one-

third of them have a size of 11 × 11 pixels, and 60% of

the patches have a width or height of fewer than 50 pixels

(Fig. 10). Patches with a spatial size of 11 × 11 or smaller

are referred to as small patches, and the rest as large patches
in our experiments. Based on this distinction, different feature

extraction and machine learning techniques are used.
2) Feature Extraction and Augmentation for Classical ML:

When extracting features for classical ML (Fig. 12a), the aim

is to include attributes from the whole patch while keeping

as much of the physical relations in the patch as possible.

The presence of certain chemical elements can be determined

through their distinct spectra, and it is therefore assumed that

the concentration of soil parameters K2O, P2O5, and Mg
could be inferred from the spectra. Furthermore, the spectra
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Fig. 9: Bland-Altman plots for the EagleEyes team obtained over three subsets of Ψ (the fields cultivated by Farmer A, Farmer

B, and Farmer C) show the agreement between the predictions and ground truth.

Fig. 10: EagleEyes: Distribution of patch sizes.

of other compounds can be dependent on the local pH value.

To account for the varying patch size, the average reflectance is

calculated for all pixels in the patch per wavelength (Fig. 11).

Note that the spectra vary visually for different targets, which

would hopefully be leveraged during the ML process.

From the average reflectance, further features are derived:

• The gradient of the average reflectance up to the 3rd order,

• The wavelet transform of the average reflectance up to

the 4th level of approximation and detail coefficients,

• The real and imaginary parts of the Fast Fourier Trans-

form (FFT) extracted from the average reflectance.

Features are also extracted through Singular Value Decom-

position (SVD) of each band (b) in a patch (P), such that

P(w×h×bi) = UiΣiV
T
i , where i ∈ {1, 2, . . . , 150} is the index

of band (b). Therefore, we extract:

• The first 5 diagonal values, σj , where j ∈ {1, 2, . . . , 5},

for each Σi matrix of size [r×r], where r ≤ min{w, h},

• The ratio of the two diagonal values σ1/σ2 of each Σi,

• The real and imaginary parts of the FFT extracted from

the ratio array (σ1/σ2 of each Σi).

With all features combined, an 1×2400 dimensional array for

each patch is retrieved. Since the HYPERVIEW dataset size

is limited, data augmentation is applied by randomly cropping

the large patches into small patches, as well as by adding 1%
Gaussian noise to the patches.

3) Data Handling and Augmentation for Deep Learning:
When using deep learning (DL) models, the patches with the

dimensions of w×h×150 are directly fed into the prediction

process. However, since the model requires a fixed width and

height for each input, they are resized to 224×224 patches. To

avoid over-fitting, training-time data augmentation techniques,

Page 17 of 43

http://mc.manuscriptcentral.com/grsm

IEEE Geoscience and Remote Sensing Magazine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Fig. 11: EagleEyes: Average reflectance for different fields

having the extreme target values for soil parameters.

such as adding Gaussian noise, random rotations, resizing and

cropping, flipping, shifting, and scaling are applied in sequence

with a 50% probability to the patches.

4) Classical and Deep Machine Learning Models: During

the development process, various classical ML and DL meth-

ods were investigated [88]. We focus on two approaches:

1) The hybrid ML model based on the Random Forest (RF)

and the K-nearest Neighbors (KNN) regressors, which

produced the final winning score in HYPERVIEW,

2) The ViT-L/14 Vision Transformer deep learning archi-

tecture [89], where L stands for “large”, and 14 refers

to the number of layers in the network. In the ViT-

L/14 architecture, an image is split into smaller patches,

which are then flattened and treated as individual tokens

(Fig. 12b). They are then passed through a sequence of

self-attention and feed-forward layers. In our implementa-

tion, the evaluation metrics of ViT-L/14 were only slightly

worse than those of the hybrid ML model.

The combined RF+KNN model is a more lightweight

solution than ViT-L/14, which is beneficial in the context

of this competition (i.e., the algorithm should be possible to

run on board Intuition-1). However, ViT-L/14 has a greater

potential for further improvement with larger datasets [90].

5) Code Availability: The implementation is available at:

https://github.com/ridvansalihkuzu/hyperview eagleeyes.

V. SECOND PLACE: MOAH

1) Data Preparation: The HYPERVIEW patches contain

the spectral signature of soil which is influenced by prop-

erties such as mineral concentration, nutrition, and organic

content [91]. To identify nutrient-sensitive wavelengths where

reflectance is more correlated with a nutrient level, Pearson’s

correlation coefficients were used [92]. Linear correlation

analysis was performed to assess the relationship between

hyperspectral data and soil parameters. It helped determine the

bands that are strongly correlated with specific parameters.

The results of linear correlation analysis between spectral

reflectance and soil parameters indicate a sudden change in

the correlation coefficient when moving from the visible to the

near-infrared regions (Fig. 13a). There is a negative change for

P2O5 and K2O, while pH and Mg show a positive change.

However, all parameters display a stable pattern of correlation

in the near-infrared region. The analysis demonstrated that the

parameters are correlated differently with spectral reflectance,

with Mg exhibiting the highest correlation throughout the

entire spectral range. Conversely, K2O displays the lowest

correlation across the spectrum, with the correlation close to

0. On the other hand, P2O5 has the highest inverse relation

with spectral reflectance. This finding suggests that spectral

reflectance responds differently to soil parameters, and mod-

eling each parameter separately is more effective than using a

single multi-task model for all four parameters.

The availability of nutrients in the soil can have an impact

on the concentration of other parameters. Soil pH influences

the availability of other nutrients [93]. The level of nitrogen

can impact the pH and P2O5 levels based on various fac-

tors [94]. As a result, it is important to examine the relationship

between the parameters in the study area to determine how

they are correlated, and to analyze their distribution.

Not all target soil parameters are normally distributed, as

shown in Fig. 13b, where P2O5 and K2O exhibit a high skew-

ness of 2.08 and 1.57, respectively. This makes it challenging

for the model to make accurate predictions at the extreme

ends of the distribution, and random sampling for cross-

validation would result in unreliable evaluation. While the

log or Box-Cox transformations are often employed to obtain

normally distributed data, they can make the results harder

to interpret, and this property is not desirable. Thus, the raw

values of each soil parameter were discretized individually into

10 bins, and a stratified 10-fold technique was used to divide

each bin. This approach is crucial to reliably evaluate the

model’s performance on a representative dataset with similar

distribution while building a ML model.

The correlation matrix in Table VII was used to examine

the relationship between the soil parameters. As expected, the

parameters displayed varying degrees of correlation with each

other. Notably, K2O showed a positive correlation with P2O5,

Mg, and pH , with correlation coefficients of 0.38, 0.25, and

0.13, respectively. On the other hand, the negative correlation

coefficient of −0.15 between P2O5 and Mg indicates an

inverse relationship between them. To improve the prediction

results, a post-processing step was carried out on the model’s

outcomes, and this will be explained in the modeling section.

TABLE VII: MOAH: Correlation between the soil parameters.

K2O Mg pH
P2O5 0.38 −0.15 0.14
K2O 0.25 0.13
Mg −0.01

In the previous studies, researchers used specific wave-

lengths highly correlated with nutrient concentration to de-

velop new vegetation indices to predict their concentration in
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a)

b)

Fig. 12: EagleEyes: The a) detailed view of the feature extractor (left), and the prediction pipeline based on the classical ML

(right), together with b) the ViT-L/14 prediction pipeline—the Image Encoder and its pre-trained weights were taken from [87].

soil [92]. Similarly, narrow-band indices (NBIs) were com-

puted by exploring all possible band combinations to predict

the vegetation cover [95]. However, in our case, we have a

wide spectrum with a high spectral resolution, and using all

possible indices in addition to different statistics like mean,

median, minimum, maximum, and standard deviation for each

band can lead to issues such as feature redundancy and over-

fitting, especially given a limited number of training sam-

ples. To address this challenge, Recursive Feature Elimination

(RFE) was applied to Random Forests (RFs) with 100 trees, to

select the top 500 features, with feature importance computed

based on mean decrease impurity. RF was chosen as it does

not require any prior steps to be performed on the data and is

computationally efficient and faster than other models [95].

To help the models capture the highly nonlinear interactions,

new features were added to the picked ones. The interactions

between the top 10 selected features were computed and added

to the feature set. As suggested by [96], pre-processing of the

spectrum can improve results. Therefore, the second derivative

of the spectral curve was supplemented to the best hand-

crafted features of K2O and P2O5 to create the final feature

set. Fig. 14a gives an overview of generating the feature set.

2) Machine Learning Models: Ensemble tree-based mod-

els were used to predict soil parameters. Random Forests,

CatBoost [97], Light Gradient Boosting Machine (Light-

GBM) [98], Extreme Gradient Boosting (XGB), and Extra

Trees (all with default parameterization) were selected due

to their interpretability, computational efficiency, and ability

to handle unnormalized data [99]. Ensemble techniques are

widely used to improve model performance and yield stable

results. However, finding the optimal way to combine models

remains an open challenge. In [100], forward stepwise selec-

Page 19 of 43

http://mc.manuscriptcentral.com/grsm

IEEE Geoscience and Remote Sensing Magazine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

a)

b)

Fig. 13: MOAH: The a) linear correlation analysis (Pearson’s

correlation) between spectral reflectance and soil parameters,

and b) distribution of soil parameters in the training set. Note
that the soil parameter values are binned differently than in
Fig. 5, thus the minor differences in those histograms.

tion was used from a large library of models, starting with

an empty ensemble and adding the model that improved the

performance, according to a selected metric, on a validation

set. This approach assumes that the best ML models for the

validation set will also be well generalizing over the test set.

Under the assumption that the best model on the validation

set would also perform best on the test set, different weights

were assigned to the models based on their performance on

the validation set for each fold. The following steps were

performed to select the best weights for each model (Fig. 14b):

• Step 1: Trained ML models were used to obtain the pre-

dictions over the validation set, resulting in five prediction

sets for each soil parameter (obtained using five models).

• Step 2: Random weights, summed to 1, were initialized.

• Step 3: The weights were assigned to the prediction re-

sults randomly, and a weighted sum was used to produce

the final weighted prediction result.

a)

b)

Fig. 14: MOAH: The a) workflow of generating the final

feature set, and b) selecting the best model’s weights.

• Step 4: The evaluation score was computed on the

weighted prediction result, providing the first score to

serve as a reference.

• Step 5: Steps 2–4 were repeated for a specified number of

iterations (in this case, 5000), and the score was checked

each time to see if it had improved compared to the

previously computed score.

• Step 6: The best weights that achieved the maximum

performance on the validation set were returned.

The trained ML models and the best-selected weights were

used to adjust the predicted soil parameters. This process was

repeated for each of the 10 folds, resulting in 10 weighted

predictions. To smooth out fluctuations in the predictions, the

geometric mean was used to ensemble the predictions.

Post-processing was applied to improve the predictions by

exploiting the correlations between the soil parameters. As

discussed earlier, the parameters are interdependent and affect

each other. To account for this, the predicted soil parameters

were used as input data to predict themselves using Gener-

alized Additive Models (GAMs) [101]. The following steps

outline the post-processing method used for K2O predictions

(which was applied analogously to the other parameters):

• Step 1: The trained ML models were used to predict the

soil parameters on the training set.

• Step 2: Predictions were adjusted using the best weights.

• Step 3: A GAM was trained using the predicted values

of Mg, P2O5, and pH , with the goal of predicting the

original K2O values more accurately.

• Step 4: The trained GAM was used to predict K2O, using

the ensemble test predictions of Mg, P2O5, and pH .

• Step 5: Steps 2–4 were repeated for the 10-fold cross-

validation to generate ten sets of predictions.

• Step 6: The final prediction was obtained by taking the
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geometric mean of ten prediction results.

3) Code Availability: The implementation is available at:

https://github.com/masawdah/HYPERVIEW MOAH.

VI. THIRD PLACE: CAP2AISCIENCE

1) Data Preparation: In the exploratory analysis, Pearson’s

correlation coefficients between the four soil parameters with

each wavelength were analyzed to verify if these parameters

have specific absorption bands. We observed that the corre-

lations were all close to zero for each parameter, hence we

inferred that there is no correlation between the soil parameters

and specific bands. Since there is only one value of each soil

parameter per patch P , but sometimes more than 10,000 pixels

per patch and the number of training patches is limited, we

need to tackle the challenges inherently related to such highly-

dimensional data. To keep a single hyperspectral value per

patch, the mean and the median of all pixels in each patch

were calculated (the better performing transformation was later

selected based on the model’s performance).

a)

b)

Fig. 15: Cap2AIScience: The a) derivatives of the spectral

curves, and b) the continuum removal technique.

When using ML models over a hyperspectral spectrum,

the information about its shape can be lost as the models

can exploit each wavelength separately. To retain the shape

information of the spectrum, the 1st and the 2nd derivative

over the mean and median spectral curves were added to

the input [70], [102], [103] (Fig. 15a). We considered two

methods to normalize the HSI: (i) a global normalization

by the full spectrum, and (ii) a normalization by a spectral

band. The continuum removal technique was also used to

normalize the spectra. A convex envelope, created using the

convex hull, is fitted to the spectrum, and then the spectrum

is divided by the convex envelope (Fig. 15b) [103]. Wavelet

transformation and FFT were applied on the spectrum to

extract the signal information [102]. Finally, the normalization

and spectral transformation techniques offering the best soil

parameters’ estimation (according to our experiments) were

retained. Also, we calculate NDVI to capture the details about

the vegetation condition. An NDVI value close to one indicates

a patch with vegetation, whereas when it is close to zero, the

patch is “dry”. It was used to verify if our models are sensitive

to the vegetation. To reduce the feature vectors, potentially

containing redundant features, we exploit Principal Compo-

nent Analysis (PCA) and Independent Component Analysis

on the spectrum and on each of its transformations.

2) Machine Learning Models: In Fig. 16, we render a

flowchart of our ML pipeline for estimating the soil pa-

rameters. According to [102], and [70], Random Forests,

Lasso Regression and Gradient Boosting Decision Trees can

effectively retrieve soil parameters. The recent advances in

deep learning might be used in this context as well [104], but

we believe that deploying them on the satellite could be more

challenging, hence we focused on the former techniques.

Spectrum 
Mean of All

Patches

Normalization

1st Derivative

2nd Derivative

Continuum 
Removal

Normalization

Normalization

Normalization

PCA

PCA

PCA

PCA

Dataset

Fig. 16: Cap2AIScience: Flowchart of our ML pipeline.

VII. FOURTH PLACE: U3S LAB

A. Method

1) Data Preparation: The patch size in the HYPERVIEW

dataset is not uniform and varies in both height and width, with

dimensions ranging from a minimum of 11 to a maximum of

284 pixels. Once the pixel values outside the region of interest

(annotated by the available masks) are set to 0, a series of pre-

processing and augmentation steps are implemented (Fig. 17):

• Normalization. The patches are normalized by dividing

them by the maximum pixel value of the entire dataset.

The same normalization is applied to the ground truth

data, except for the pH parameter which is divided by

14, being the highest physically attainable value.

• Tiling. To match the input size of the Deep Neural

Network (DNN) used in our study, small patches are

replicated and stitched together in both directions. Any

remaining size difference is addressed either through

resizing or zero padding. In case the patch size exceeds

the DNN input shape in both height and width, the patch

is accordingly downsampled via bilinear interpolation.

This method allows to train and test the network on

consistent input shapes, despite the large variability in

the dataset. Although some of the pre-processed images
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consist of repeated patches, the ground truth labels are

not impacted since they refer to the concentration values.

• Flipping. Tiling is coupled with random flips of the

patches and the resulting image, to diversify the dataset.

• Noise. Gaussian noise with zero mean and 0.05 standard

deviation is added to all hyperspectral bands.

Fig. 17: u3s lab: Image pre-processing: a) a single patch,

b) tiled patch with random flips, c) addition of Gaussian noise.

2) Machine Learning Model: The model used to estimate

the soil parameters is built upon the EfficientNet-LiteB0 net-

work [105], which is a lightweight version of the EfficientNet

architecture [106]. This choice was motivated by the need for

the model to be energy and resource efficient. In this regard,

the effortless scalability of the EfficientNet family and its

reliance on 2D convolutions made it a good compromise for

this application. Although 3D convolutions are more effective

in extracting spectral-spatial features [107], they entail a higher

computational cost. To adapt the network to the specific task,

the input size is set to 32 × 32 × 150 and a single layer

dense regression head is attached to the latest feature map.

Given the reduced input size, the original network is also

scaled by half in both its width and depth, further reducing the

computational burden, resulting in only about 734 thousand

parameters. A visualization of the architecture obtained by

using the Visualkeras [108] Python package is presented in

Fig. 18. The model was trained for 300 epochs with a batch

size of 32. An initial learning rate of 5·10−3 was progressively

reduced with a cosine decay law after a warm-up epoch

starting at 10−3. The Adam optimizer was employed along

with MSE as a loss function.

Fig. 18: u3s lab: EfficientNetLiteB0mod: The DNN architec-

ture of the regression model obtained by scaling and adapting

the lite version of the EfficientNetB0 architecture.

3) Code Availability: The implementation is available at:

https://github.com/Microsatellites-and-Space-Microsystems/

hyperspectral-cnn-soil-estimation.

VIII. CONCLUDING REMARKS AND AFTERMATH

Maintaining the sustainability of farms by enhancing agri-

cultural management practices through the integration of re-

cent advancements in Earth observation and artificial intelli-

gence has emerged as a critical concern in contemporary agri-

culture. This approach serves a dual purpose: enabling farm-

ers to tackle the challenge of cost-effective food production

while promoting environmentally friendly agricultural prac-

tices. Farmers require timely access to information regarding

soil parameters to optimize their fertilization processes. This

optimization can lead to the selection of more suitable fertilizer

blends and a reduction in overall fertilizer consumption.

The conventional method for quantifying soil parameters

is labor-intensive and time-consuming. It involves collecting

soil samples in the field, combining them, and sending them

to specialized laboratories for chemical analysis. Moreover,

the limited number of sampling points compromises the ac-

curacy of the test results. In essence, this in-situ analysis is

neither scalable nor efficient. However, there are alternative

approaches that aim to automate the estimation of various soil

parameters using hyperspectral imagery, offering non-invasive

and scalable solutions. These algorithms are often validated

across different datasets and training-test dataset splits, making

direct comparisons difficult or even impossible.

We have addressed the existing research gaps related to the

absence of standardized procedures that would enable unbi-

ased validation of AI-driven algorithms designed to estimate

soil parameters from real-life HSIs. Our approach involved

the collection of airborne HSIs alongside ground-truth in-situ

measurements. Then, we organized the HYPERVIEW chal-

lenge, which introduced a validation procedure for evaluating

algorithms in this context. The HYPERVIEW challenge com-

menced on February 9, 2022, and concluded on July 1, 2022.

This event garnered significant interest, with 159 registered

teams, 46 of which actively participated by submitting their

solutions to the evaluation server. Following an extensive final

validation stage, where we meticulously replicated the top-

performing approaches, we derived quality metrics for these

algorithms. The outcomes (Table VIII) now represent the

current state of the art of estimating key parameters such

as phosphorus pentoxide (P2O5), potassium oxide (K2O),

magnesium (Mg), and soil pH over the HYPERVIEW dataset.

We encourage researchers to consistently exploit the met-

rics reported in Table VIII in their forthcoming studies

that employ this dataset, as this practice will ensure a fair

and objective basis for comparing different methodologies.

To encourage widespread adoption of this approach within

the scientific community, we have re-opened the HYPER-

VIEW challenge which is now permanently-open, and es-

tablished an evaluation server at https://platform.ai4eo.eu/

seeing-beyond-the-visible-permanent. Here, interested parties

can freely access the HYPERVIEW data, along with a minimal

example illustrating how to construct a model. Participants

can then submit their predictions and track their quantitative

metrics. We believe that our efforts represent a significant

step toward the establishment of unbiased and objective val-

idation procedures for evaluating emerging techniques aimed
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TABLE VIII: The current state of the art of estimating soil parameters from HSIs over the HYPERVIEW test set (Ψ). For

each metric, we indicate if it should be minimized (↓) or maximized (↑). We also report the metrics obtained by the baseline

algorithm, returning the average value for each soil parameter calculated for the training set T . The best results are boldfaced.

Parameter Algorithm MSE (↓) MAE (↓) rMAE (↓) MAPE (↓) sMAPE (↓) R2 (↑)

P2O5 EagleEyes 805.374 19.064 0.881 31.305 26.542 0.151
P2O5 MOAH 823.559 19.478 0.900 32.205 27.103 0.132
P2O5 Cap2AIScience 849.408 19.928 0.921 33.062 27.568 0.104
P2O5 u3s lab 872.519 20.072 0.927 32.437 27.860 0.080
P2O5 rdeggau 885.430 20.667 0.955 34.192 28.622 0.066
P2O5 Baseline 948.452 21.649 1.000 36.053 30.070 0.000

K2O EagleEyes 2694.217 37.829 0.841 16.889 16.220 0.271
K2O MOAH 2790.577 38.633 0.858 17.416 16.579 0.245
K2O Cap2AIScience 2943.895 39.855 0.885 17.732 17.064 0.203
K2O u3s lab 3081.704 39.035 0.867 17.092 16.514 0.166
K2O rdeggau 3275.961 42.517 0.944 19.130 18.190 0.113
K2O Baseline 3694.691 45.017 1.000 20.011 19.272 0.000

Mg EagleEyes 1413.191 25.949 0.851 17.539 16.156 0.153
Mg MOAH 1431.236 26.032 0.854 17.578 16.179 0.142
Mg Cap2AIScience 1436.909 26.354 0.864 17.893 16.417 0.139
Mg u3s lab 1529.418 28.007 0.918 18.723 17.494 0.083
Mg rdeggau 1526.539 28.058 0.920 18.882 17.489 0.085
Mg Baseline 1668.651 30.500 1.000 20.570 19.034 0.000

pH EagleEyes 0.053 0.174 0.864 2.568 2.561 0.246
pH MOAH 0.053 0.174 0.866 2.571 2.564 0.248
pH Cap2AIScience 0.053 0.175 0.873 2.591 2.586 0.241
pH u3s lab 0.059 0.184 0.916 2.724 2.715 0.156
pH rdeggau 0.059 0.185 0.922 2.736 2.731 0.152
pH Baseline 0.070 0.201 1.000 2.973 2.963 0.000

at estimating various parameters, including soil properties,

from remotely-sensed data. It is of note, however, that the

HYPERVIEW dataset can be further expanded to include

additional soil properties [109]–[113] which can influence the

agricultural management processes. We hope that our efforts

will be a step toward building a wider set of well-established

soil analysis benchmarks, coupling in-situ measurements with

image data (and potentially other data modalities) that will be

used to verify data-driven algorithms, with the ultimate goal

of enhancing the current agricultural procedures.

Satellite imaging coupled with on-board data processing

presents intriguing opportunities in the field of Earth obser-

vation, offering extensive scalability across vast geographical

regions. Nevertheless, the transmission of large quantities of

hyperspectral imagery from a satellite to Earth is impractical

due to its time and cost inefficiency. The introduction of on-

board AI holds the potential to significantly reduce the volume

of data that needs to be transmitted. This, in turn, allows the

global community to access valuable insights extracted from

raw images more rapidly compared to conventional ground-

based analysis methods. Ultimately, this approach paves the

way for groundbreaking advancements in AI-powered Earth

observation [114]. Therefore, one of our current objectives

is to implement AI directly on board such edge devices.

Our research was centered on a comprehensive evaluation of

machine learning algorithms intended for deployment on board

Intuition-1 [115], [116], with the bare soil detection and soil

analysis built upon the results of the HYPERVIEW challenge

being its first real-world downstream application.

After concluding the challenge, we have been observing

various papers referring to the HYPERVIEW challenge and

dataset, further underpinning their importance. We can split

the emerging works into two groups (as of March 17, 2024):

• Referring to the HYPERVIEW challenge and dataset
to show the advancements in the field of soil parameters’

estimation, discuss the available datasets, and to show the

importance of this research area: [114], [117]–[124].

• Using the HYPERVIEW dataset in the emerging re-

search activities (to build new algorithms): [125]–[129].

The HYPERVIEW adoption is also reflected in the projects

which exploit the HYPERVIEW dataset, such as those sup-

ported by the European Space Agency: “Explainable AI for
hyperspectral image analysis” (PINEAPPLE) implemented

by KP Labs (Poland) and Warsaw University of Technol-

ogy (Poland) (years of implementation: 2023–2025), “Fos-
tering Advancements in Foundation Models via Unsuper-
vised and Self-supervised Learning for Downstream Tasks in
Earth Observation” (FAST-EO) by German Aerospace Center

(Germany), IBM Research (Switzerland), Forschungszentrum

Jülich (Germany), and KP Labs (Poland) (2024–2025), and

“Weakly Supervised Learning for Hyperspectral Image Analy-
sis” by KP Labs (Poland) (2023–2024). Based on the current

research interest, we believe that HYPERVIEW may pave the

way to developing large-scale and thoroughly validated soil

analysis solutions built upon Earth observation technologies.
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