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Abstract 

Nowadays, the increasing integration of artificial intelligence (AI) technologies in manufacturing processes is raising the need of 
users to understand and interpret the decision-making processes of complex AI systems. Traditional black-box AI models often 
lack transparency, making it challenging for users to comprehend the reasoning behind their outputs. In contrast, Explainable 
Artificial Intelligence (XAI) techniques provide interpretability by revealing the internal mechanisms of AI models, making them 
more trustworthy and facilitating human-AI collaboration. In order to promote XAI models’ dissemination, this paper proposes a 
matrix-based methodology to design XAI-driven user interfaces in manufacturing contexts. It helps in mapping the users’ needs 
and identifying the “explainability visualization types” that best fits the end users’ requirements for the specific context of use. The 
proposed methodology was applied in the XMANAI European Project (https://ai4manufacturing.eu), aimed at creating a novel AI 
platform to support XAI-supported decision making in manufacturing plants. Results showed that the proposed methodology is 
able to guide companies in the correct implementation of XAI models, realizing the full potential of AI while ensuring human 
oversight and control. 
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1. Introduction 

Explainable Artificial Intelligence (XAI) refers to the development and implementation of AI systems that can 
provide understandable and transparent explanations for their decisions or outputs. Traditional AI models, such as 
deep neural networks, often operate as "black boxes," making it challenging for humans to comprehend the reasoning 
behind their predictions or actions. XAI techniques aim to address this limitation by providing interpretable 
explanations, enabling users to understand the internal workings of AI models and the factors influencing their outputs. 
The goal of XAI is to bridge the gap between the complex nature of AI algorithms and the need for human 
comprehensibility, especially in critical domains where decisions impact human lives, such as healthcare, finance, and 
autonomous vehicles. XAI techniques strive to enhance transparency, trustworthiness, and accountability in AI 
systems by enabling users to understand how and why a particular decision was reached.  

Considering the industrial context, XAI finds valuable applications in the manufacturing industry, providing 
transparency and interpretability to AI systems. By employing XAI techniques, manufacturers can gain insights into 
the decision-making processes of AI models. This understanding allows them to identify and rectify issues promptly, 
optimize operational efficiency, and improve overall system performance. XAI also assists in meeting regulatory 
compliance requirements by providing explanations for AI-driven decisions, ensuring ethical and accountable 
practices. Moreover, XAI fosters user acceptance and trust in AI systems, facilitating better collaboration between 
human operators and AI technologies on the shop floor.  

Despite this great surge in innovation, the implementation of XAI in the manufacturing context can be challenging 
due to several barriers and complexities, such as difficulties to understand which XAI explainability visualization 
types (EVTs) can support the operators during their work at the shop floor in various contexts. EVTs refer to various 
techniques and visual representations used to enhance the interpretability and understanding of AI models and their 
decision-making processes. These visualization types aim to provide insights into how AI models arrive at their 
predictions or classifications, making the decision-making process more transparent and explainable. 

 
Nomenclature 

AI          artificial intelligence 
XAI explainable artificial intelligence  
EVTs  explainability visualization types  
DRs demonstrator requirements 
QFD      quality functional deployment 
DRRI     demonstrator requirement relative importance 
CM        correlation matrix  
EVTI     explainability visualization type importance  
EVTRI  explainability visualization types relative importance  

 
To overcome this issue, this work aims at presenting a methodology to find which EVTs identified from literature 

best fit the Demonstrator Requirements (DRs) for a specific use case. This method is inspired by the Quality Functional 
Deployment (QFD) approach, originally introduced to match technical requirements of a generic product with 
customer requirements. Similarly, the proposed method helps designers and engineers to move from the operators’ 
needs to technical requirements, thought the selection of the proper EVTs to fully exploit the potential of AI in 
manufacturing context. This method has been defined within the H2020 project called XMANAI (G.A. 957362). 

2. Material and methods  

2.1. Research background 

XAI is a potential bridge between the user and the AI models adopted, making them transparent about their working 
to human users. In fact, XAI techniques help make AI system decisions transparent and interpretable [1]. This allows 
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human operators to understand why a particular decision or recommendation was made by the AI system, enabling 
them to trust and effectively work with the technology, moving from the black box concept to a transparent glass box 
[2]. Moreover, XAI allows human operators to monitor the performance of manufacturing systems and identify areas 
for improvement [3]. By visualizing feature importance, decision rules, or model architecture, operators can gain 
insights into system behaviours and suggest modifications or enhancements for better alignment with human 
requirements and preferences [4]. These features helps in the achievement of the Operator 5.0 concept, focusing on 
bolstering the resilience of manufacturing systems by empowering individuals to collaborate with automated 
solutions, facilitating swift resolution of production system disruptions [5]. In particular, maintenance practices 
heavily rely on human skills and experience for the successful execution of the majority of tasks so is crucial to support 
operators in the interpretation of AI algorithms. The capacity to interpret complex data, often numerically based, and 
transform it into suitable context-aware narratives and graphical representations is fundamental for the upcoming 
generation of operator-centric maintenance systems [6].  

From a technical point of view there are tools and techniques to make completely black box algorithms explainable, 
there is a gap in making them usable and understandable by the end-user [7]. All the XAI tools such as SHAP (Shapley 
Additive Explanations, [8]) and LIME (Local Interpretable Model-Agnostic Explanations, [9]) have specific data 
representation types for reporting the results of the XAI explanation, but the complexity of the results produced can 
be too high without specific technical knowledge as demonstrated for LIME [10]. Also, different EVTs could be 
combined by the users to reach a meaningful explanation for their goals [11], considering at first users’ goals and 
needs and making the implementation of XAI a human-centred concept [12]. By prioritizing human-centeredness in 
explainability AI, the technology becomes a supportive tool that enhances human decision-making, empowers 
operators, and aligns AI systems with human values and ethical considerations. This approach recognizes the 
importance of human agency, responsibility, and well-being in the development and adoption of AI technologies [13]. 

Matching the technical XAI solutions with the users' requirements is the starting point for this research work to 
identify the most suitable EVTs addressing industrial manufacturing use case. To achieve this goal, it was considered 
the extensive review made by Vilone and Longo [14] that mapped the different EVTs categories. From this research 
work, seven categories of EVTs have been identified: image, heatmap, flowchart, bar plot or line plot, text, scatterplot 
and mixed. Thereafter, other two categories (i.e., time series and confusion matrix) were added to complete the 
overview of EVTs, based on a most recent literature analysis of XAI specific application in manufacturing [15,16]. 
Table 1 describes the various EVTs identified in literature.  

          Table 1. Explainability visualization types (EVTs) description. 

EVTs Description 

Text involves representing textual data, highlighting important keywords to aid in understanding the 
model's decision-making process 

Bar plot / line plot used to present quantitative data, displaying categorical data using rectangular bars, where the 
length of each bar represents the magnitude of a specific attribute 

Heatmap provides a graphical representation of data where different colors or shades indicate the intensity 
or values of certain features or attributes 

Scatterplot used to visualize the relationship between two or more variables, identifying patterns or 
correlations between variables. Each data point is represented as a dot on the plot, with the 
position of the dot determined by the values of the variables 

Image involves displaying visual representations of data, such as images or visual patterns, allowing 
users to understand how the model processes and classifies images 

Flowchart visual diagrams that represent a series of steps or processes, showcasing the sequence of rules or 
conditions followed by the model to arrive at a particular outcome 

Mixed combine different types of visual representations to provide a comprehensive understanding of AI 
model behavior, involving the integration of multiple EVTs 

Confusion matrix is a square matrix with cells representing the counts or percentages of correct and incorrect 
predictions for each class 
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Time series specifically designed to analyze and interpret data that changes over time, displaying patterns, 
trends, and anomalies in sequential data. 

 
Each EVTs type has been mapped according to different properties: scope (global or local), stage (ante-hoc or post-

hoc), applicability (model specific or model agnostic), approach (neural, data-driven or rule-based), type 
(classification, regression), input data and output data. Overall, the mapping presented a first view on how different 
kinds of EVTs can address different problems in manufacturing industrial context. These results were used to reflect 
on the identified explainability requirements that were collected from the manufacturing companies. It was then clear 
the need for a more specific methodology to support the design of explainable interfaces combining the collected 
explainability requirements with the EVTs. 

2.2. Methodology 

The presented methodology proposes a matrix-based approach to combine the EVTs as identified in literature with 
the Demonstrators Requirements (DRs) in order to support operators in industrial contexts using XAI and drive 
companies in selecting the best supporting tools. This method follows a systematic approach and starts from the 
definition of a set of operators’ requirements and needs and maps the correlations with the EVTs using a correlation 
matrix, similarly to the quality function deployment (QFD) house of quality approach [17,18]. In the same way, the 
proposed method helps to identify the best EVTs for each industrial scenario starting from the analysis of the 
operators’ needs on the field, moving from a user-centred view to a more technical and functional view.  

The proposed methodology consists of five main phases: 
• Definition of various scenarios: a set of different scenarios are defined to contextualize the study; 
• Definition of DRs: according to the main tasks carried out by the operators in different scenarios, a set of DRs are 

defined and listed using interviews to various operators; 
• Definition weights for each DR: evaluated through the use of focus group (in which are involved a sample of 

operators) where for each DR is discussed the importance, called Demonstrator Requirement Importance (DRI), 
and weighted according to a 5-point scale (1 = no importance, 5 = high importance), answering the question: “From 
1 to 5, how much important is this requirement for this use case?”. The Demonstrator Requirement Relative 
Importance (DRRI) score (Eq. 1) is then calculated using the formula (with m as the number of the DRs, i as the 
number of the generic DR in row from 1 to m):  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖 =  𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖
∑ 𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚

1
  * 100    (1) 

• Evaluation of the strength of the relationship between the defined DRs and the EVTs categories identified in 
literature according to a 1-3-9 scale (1 = weak correlation, 3 = medium correlation, 9 = strong correlation). The 
correlation scores are discussed during the focus group with the operators. As a result of this step, a m x n matrix 
called Correlation Matrix (CM), is created and composed as following (Eq. 2): 

𝐶𝐶𝐶𝐶 = [𝐶𝐶𝐶𝐶11, … , 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚]    (2) 

    with n as the number of the EVTs. These values serve as input of the calculation of the Explainability Visualization 
Type Importance (EVTI), calculated for each EVTs as (Eq. 3): 

𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑗𝑗 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷1 ∗ 𝐶𝐶𝐶𝐶1𝑗𝑗 + ⋯ + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ∗ 𝐶𝐶𝐶𝐶𝑖𝑖𝑗𝑗 + ⋯ + 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚 ∗ 𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚                                 (3)  

with j as the number of the generic EVT from 1 to n.  
 
• Results analysis: the result of this methodology is reported as the Explainability Visualization Types Relative 

Importance (EVTRI), expressed in percentage as follow (Eq. 4):  



3116 Fabio Grandi  et al. / Procedia Computer Science 232 (2024) 3112–3120
 Author name / Procedia Computer Science 00 (2023) 000–000  5 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑗𝑗 =  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑗𝑗
∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑛𝑛

1
  * 100    (4) 

The EVTs that have the highest scores are the most suitable for the demonstrator in the case study considered. 
 

 

Fig. 1. The proposed methodology. 

 

3. Results and Discussion 

3.1. Use case description 

The use case has been developed in collaboration with CNH Industrial, a global leader in design and manufacturing 
agricultural machines, buses, and trucks. In particular, the collaboration was developed within the Modena plant, 
located in Italy, in which the main tractors’ components are built and where medium-sized tractor transmissions are 
produced. The case study stems from a real problem frequently occurring in the Modena production plant. Indeed, the 
production plant faces frequent unexpected failures of the production machine, causing prolonged stoppages in the 
production line. Downtimes are typically due to defective parts or maintenance. Operators need to quickly restore the 
machine operation to minimize production losses. However, machine interfaces are complex and not fully manageable 
from plant operators, so that usually expert technicians are required, prolonging the downtime. XAI can serve as a 
bridge between machines and operators, enabling faster understanding of machine status and improving productivity 
through prompt interventions. XAI models can provide simplified suggestions to plant operators, optimizing the 
production line as well as reducing time and cost. To implement XAI within the CNHi plant, the developed platform 
will take data from the current systems, carrying information about the status of a specific CNC machine selected for 
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production line. Downtimes are typically due to defective parts or maintenance. Operators need to quickly restore the 
machine operation to minimize production losses. However, machine interfaces are complex and not fully manageable 
from plant operators, so that usually expert technicians are required, prolonging the downtime. XAI can serve as a 
bridge between machines and operators, enabling faster understanding of machine status and improving productivity 
through prompt interventions. XAI models can provide simplified suggestions to plant operators, optimizing the 
production line as well as reducing time and cost. To implement XAI within the CNHi plant, the developed platform 
will take data from the current systems, carrying information about the status of a specific CNC machine selected for 
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the use case (i.e., Heller MCS-H400). More specifically, in the use case XAI is crucial to provide the worker with the 
necessary explanations and clarity to understand which part of the machine may have caused the failure. 

3.2. Methodology application to the considered case study  

From the analysis of the real industrial context, a set of different scenarios were defined with a focus group, 
involving four operators with at least 10-years expertise in this field. For this specific use case, operators highlighted 
three main scenarios: alarms and event handling, production restoring and production monitoring. For each scenario 
a set of DRs were discussed, as reported in Table 2. For each DRs, the Demonstrator Requirement importance from 1 
to 5 were defined.  

  Table 2. Demonstrator Requirements (DRs) and Demonstrator Requirements Importance (DRIs) for the use case. 

Scenarios Demonstrator Requirements (DRs) Demonstrator Requirements 
Importance (DRIs, from 1 to 
5) 

1. Alarms and event handling To show the status of the machine 

To display the features with related trends 

To rank the most critical features  

5 

3 

4 

2. Production restoring To suggest and rank possible troubleshooting procedures 

To display a detailed step-by-step guide in AR 

4 

4 

3. Production monitoring To optimize the production based on operator feedback 5 

 
Then, according to the proposed methodology, the correlation matrix was filled discussing each correlation between 

DRs and EVTs in the focus group. In order to calculate the scores in a quicker way, an Excel worksheet was developed 
for this scope.  

3.3. Results of the proposed approach  

Figure 2 shows the results of the proposed approach for the considered case study. The higher score of EVTI is 
reached by text visualization type (20,4%), followed by other four EVTs such as bar/line plot, heatmap and time series 
with the same score (15,4%). In the next section these results are critically discussed to evaluate how the EVTs 
suggestions are in line with the case study expectations.  

Fig. 2. Combination between DRs and EVTs according to the proposed methodology. 
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3.4. Preliminary validation and discussion  

Considering the results obtained from the previous steps, the text plot collected the higher score. Textual 
instructions allowed the explanation of the output of the AI algorithm in the simplest and clearest way, allowing the 
operator to understand the model's decision-making process. In the considered use case, textual representation is the 
best solution in order to rank the most critical features and to suggest the possible troubleshooting procedures,           
meeting two of the more significant DRs described above. 

Bar/line plots were used in XAI to present quantitative data: in particular, bar plots showed the individual 
contribution of each sensor in the specific selected anomaly (Figure 3a). The values were arranged in descending order 
based on their impact, with empty values placed at the bottom. Red bars represented the algorithm's confidence in a 
sensor's contribution to a specific anomaly, while blue bars indicate non-contribution. The width of the bar indicates 
the level of algorithm confidence. If data is missing, it meant either the model is uncertain about the sensor's 
contribution, or no data was available for that sensor regarding the considered anomaly. This enabled maintainers to 
initiate suitable maintenance procedures, prioritizing the most likely components first and excluding those for which 
the algorithm strongly believes they are not involved.  

 

Fig. 3. Examples of EVTs for the use case: (a) bar plot; (b) heatmaps 

Unlike the previous plot that focused on a single anomaly, heatmaps can correlate all possible anomalies with various 
sensors to provide a comprehensive overview (Figure 3b). In this direction, each anomaly was compared to every 
sensor's value, and a relationship score was assigned to each pair. A lower score (indicated by a red colour) suggested 
a higher correlation, while a higher score (indicated by a blue colour) indicated a lower correlation. This visualization 
was intended to be used in later stages to identify patterns in the correlations between sensors and the occurrences of 
anomalies. It enabled experienced maintainers to plan periodic checks and proactively order replacement parts based 
on the identified patterns. Bar plots and heatmaps are particularly effective to show the operator the status of the 
machine: the first graph is more suitable to analyse the single anomaly while the second one allows a holist evaluation 
of the entire system.  

To conclude, the time series was a plot that allows operators to understand the trend over time of the various sensors 
by highlighting when the value deviates from the standard value and when it approaches the limit threshold, 
understanding which sensors is the most critical one. In Figure 4 is shown the implementation in the considered use 
case so it addresses the need to visualize the various features with related trends.  
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Fig. 4. Example of EVTs for the use case: time series. 

 

4. Conclusions 

The paper investigated the application of XAI in manufacturing context, trying to support the operators at the shop 
floor introducing a set of EVTs to increase trustworthiness in AI algorithm, moving from a black box concept to a 
glass one. Incorporating XAI into systems is vital for enhancing user interaction and comprehension of algorithm-
derived data. Equally important is the selection of appropriate EVTs, as they profoundly impact how users perceive 
and interpret the AI-generated insights. Thus, it becomes crucial to develop tools and frameworks that actively 
encourage the utilization of suitable XAI visualizations, enabling users to harness the full potential of the information 
provided. To achieve this goal, this research work proposed a methodology to guide companies in the selection of the 
best EVTs for different manufacturing context scenarios in which operators can be directly involved, using an 
approach similar to the QFD house of quality. The methodology was applied to a real industrial case, within the H2020 
project called XMANAI (G.A. 957362), concerning the use of CNC machines in manufacturing plant, involving four 
operators in the selection of the EVTs using a matrix-based approach. Using a focus group were defined some 
scenarios and demonstrator requirements (DRs) and these are correlated with the different categories of EVTs 
identified in literature. The results of this methodology drove the company involved in the project in the selection of 
the EVTs that best fits the operators’ requirements, promoting a user-centred approach in the use of XAI in 
manufacturing. Future works will focus on the application of the proposed methodology to other case study in different 
manufacturing sectors.  
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