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Introduction: We assessed the in vitro anti-chlamydial activity of fresh vaginal

secretions, deciphering the microbial and metabolic components able to

counteract Chlamydia trachomatis viability.

Methods: Forty vaginal samples were collected from a group of reproductive-

aged women and their anti-chlamydial activity was evaluated by inhibition

experiments. Each sample underwent 16S rRNA metabarcoding sequencing to

determine the bacterial composition, as well as 1H-NMR spectroscopy to detect

and quantify the presence of vaginal metabolites.

Results: Samples characterized by a high anti-chlamydial activity were enriched in

Lactobacillus, especially Lactobacillus crispatus and Lactobacillus iners, while not-

active samples exhibited a significant reduction of lactobacilli, along with higher

relative abundances of Streptococcus and Olegusella. Lactobacillus gasseri

showed an opposite behavior compared to L. crispatus, being more prevalent in

not-active vaginal samples. Higher concentrations of several amino acids (i.e.,

isoleucine, leucine, and aspartate; positively correlated to the abundance of L.

crispatus and L. jensenii) lactate, and 4-aminobutyrate were the most significant

metabolic fingerprints of highly active samples. Acetate and formate

concentrations, on the other hand, were related to the abundances of a group

of anaerobic opportunistic bacteria (including Prevotella, Dialister, Olegusella,

Peptostreptococcus, Peptoniphilus, Finegoldia and Anaerococcus). Finally,

glucose, correlated to Streptococcus, Lachnospira and Alloscardovia genera,

emerged as a key molecule of the vaginal environment: indeed, the anti-

chlamydial effect of vaginal fluids decreased as glucose concentrations increased.

Discussion: These findings could pave the way for novel strategies in the

prevention and treatment of chlamydial urogenital infections, such as

lactobacilli probiotic formulations or lactobacilli-derived postbiotics.
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1 Introduction

Chlamydia trachomatis (CT), an obligate intracellular

pathogen, represents the most common bacterial sexually

transmitted infection (STI) worldwide, with a significant clinic,

economic and public health impact (ECDC, 2024; World Health

Organization (WHO), 2015). In women, urogenital CT infections

(i.e., cervicitis, urethritis) are often characterized by the absence of

symptoms, potentially resulting in a range of serious sequelae and

complications including pelvic inflammatory disease, ectopic

pregnancy, and infertility (Haggerty et al., 2010; Menon et al., 2015).

In recent years, the correlation between CT presence and the

microbial/metabolic composition of the vaginal environment has

garnered particular attention, elucidating mechanisms involved in

the protection from chlamydial infection (Parolin et al., 2018a;

Ceccarani et al., 2019; Tamarelle et al., 2019; Raimondi et al., 2021).

Indeed, it has been shown that a vaginal microbiome dominated

by certain species of Lactobacillus is crucial for preventing CT

infections (Nardini et al., 2016; Di Pietro et al., 2022). The protective

role of lactobacilli against CT is exerted through different

mechanisms that act on both extracellular and intracellular steps

of the chlamydial cycle. These include the production of various

antibacterial compounds (e.g., lactic acid, hydrogen peroxide,

bacteriocins, and biosurfactants), competitive exclusion for

epithelial adhesion, and immunomodulation (Younes et al., 2018;

Parolin et al., 2018b; Zalambani et al., 2023).

The protective role of lactobacilli is strengthened by the

demonstration that a higher risk of CT transmission and

acquisition is reported in cases of bacterial vaginosis (BV), a

clinical condition characterized by the depletion of Lactobacillus

and an overgrowth of anaerobic genera such as Gardnerella,

Prevotella, Megasphaera, and Atopobium, has been reported

(Wiesenfeld et al., 2003; Abbai et al., 2016). Changes in bacterial

communities during BV conditions are accompanied by significant

alterations in vaginal metabolite composition, characterized by a

decrease in lactate concentration and higher levels of biogenic

amines and short-chain organic acids (Ceccarani et al., 2019).

To date, only a few studies have focused on the in vitro interaction

between vaginal fluids/secretions and CT, and many aspects of the
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mechanisms involved in the activity against chlamydial infectivity

remain to be fully elucidated (Mastromarino et al., 2014; Nardini

et al., 2016; Zalambani et al., 2023). Therefore, the aim of the present

work was to assess the in vitro anti-chlamydial activity of fresh vaginal

secretions collected from reproductive-aged women, deciphering the

microbial composition (microbiome analysis by 16S rRNA

metabarcoding sequencing) and the metabolic components

(metabolome analysis by 1H-NMR) of the vaginal fluids associated

with protection from CT infection. Understanding the microbial/

metabolic fingerprints of vaginal fluids related to their activity

against CT could pave the way for the development of novel

antimicrobial-free strategies for the prevention and treatment of

chlamydial urogenital infections.
2 Materials and methods

2.1 Study cohort and sample collection

Between September and November 2022, 10 women were

enclosed in the study. The women were volunteers and were

selected from those who had expressed interest in participating in

this study. All of them were attending degree courses at the

University of Bologna, Italy. At the enrollment, exclusion criteria

were: (i) antibiotic use in the month prior to sampling; (ii)

menstruating at the time of sampling; (iii) HIV infection; (iv)

presence of chronic conditions (e.g., diabetes, autoimmune

diseases, malignancies); (v) pregnancy; (vi) age<18 years.

Demographic, clinical, and behavioral data were recorded from

each participant. Each woman underwent four self-collected vaginal

samplings within 40 days, at four different time points (starting

from the first day of menstrual cycle, volunteers were asked to

submit their samples at the following time points: 5-7 days, 12-16

days, 21-25 days, 32-40 days). As summarized in Figure 1, two

vaginal swabs were collected at each time point. At first, the

secretions were collected with a sterile cotton bud, and it was

immediately re-suspended in 1.8 mL of sterile saline, while, as a

second step, secretions were collected with a flocked swab (E-swab

Copan, Brescia, Italy). Both swabs were processed within 10 min of
FIGURE 1

Workflow of the experiments performed in this study. For each woman, the vaginal sampling was performed 4 times during a period of 40 days.
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collection. The swab suspended in saline was vortexed, and 300 µL

of the suspension were sampled to test the anti-chlamydia activity

(‘whole fraction’). Subsequently, the remaining suspension was

centrifuged at 10,000 × g for 15 min: 300 µL of the supernatant

were used to test the anti-chlamydia activity (‘cell-free supernatant

fraction’), while 700 µL were preserved at -80°C until the

metabolomic analysis by means of 1H-NMR spectroscopy (see

specific paragraph below). Finally, the residual supernatant

portion was discarded, and the pellet was resuspended in 1.5 mL

of sterile saline: 300 µL of this pellet solution were used to test anti-

chlamydia activity (‘pellet fraction’), while the remaining 1200 µL

were used to extract nucleic acids for microbiome analysis (see

specific paragraph below).

The E-swab, after being vortexed, was used for both microscopic

evaluation and microbiological tests, using, at first, the Nugent score

for a preliminary assessment of the vaginal flora composition (Nugent

et al., 1991). According to this score, women were grouped as follows:

“H” group (normal lactobacilli-dominated microbiota, score 0-3), “I”

group (intermediate microbiota/flora, score 4-6), “BV” group

(bacterial vaginosis, score 7-10) (Zozaya-Hinchliffe et al., 2010).

Moreover, Seeplex STI Master Panels 1 and 3 (Seegene, Seoul, KR)

were performed following the manufacturer’s instructions, to

investigate the potential presence of the most common urogenital

STIs agents (i.e., Chlamydia trachomatis, Neisseria gonorrhoeae,

Trichomonas vaginalis and Mycoplasma genitalium), and Candida

spp. A positive result would have led to exclusion from the study.

A written informed consent was obtained from all participants

and the Bioethics Committee of the University of Bologna (protocol

number 0122421) approved the protocol of the study.
2.2 Cell line and Chlamydia
trachomatis strain

HeLa cells (ATCC® CCL-2) were used as an in vitro model for

experiments. Cells were grown in individual tubes containing sterile

coverslips (Thermo Fisher Scientific, Waltham, MA, USA) in 5%

CO2 at 37°C. Cells were cultivated in DMEM medium (EuroClone,

Pero, Italy), supplemented with 10% fetal bovine serum and 1% L-

glutamine, without antibiotics.

Chlamydia trachomatis strain GO/86, serovar D, was used for

the present study (Marangoni et al., 2015a). This strain was

clinically isolated in 1986 from a urethral swab sent to the

Microbiology Laboratory of IRCSS Azienda Ospedaliero-

Universitaria of Bologna, Italy, for routine diagnostic procedures

and it belongs to the laboratory collection. The purification of

elementary bodies (EBs) and the evaluation of the infectivity titer

(expressed as inclusion forming units IFU/mL) have been described

in detail elsewhere (Foschi et al., 2019).
2.3 Evaluation of the anti-chlamydial
activity of vaginal fluids

To study the ability of the whole vaginal fluids and their

fractions (i.e., bacterial pellets and supernatants) to directly
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counteract CT viability, ‘inhibition experiments’ were performed

in triplicate for each woman at each time point, as follows. HeLa

cells were seeded in individual tubes and allowed to reach a total cell

number of approximately 5 × 105. Afterwards, for each single

experiment, 5 × 104 CT EBs were re-suspended for 30 min at 37°

C with 5% CO2 in four separate solutions containing (i) 100 µL of

the whole vaginal fluid, (ii) 100 µL of the vaginal cell-free

supernatant, (iii) 100 µL of the vaginal pellet (re-suspended in

sterile saline) and (iv) 100 µL of sterile saline (used as controls). At

the end of the incubation, the samples were inoculated into HeLa

cells, grown in DMEM medium in individual tubes containing

sterile coverslips, and centrifuged at 530 × g for 1h. At the end of the

centrifugation, culture medium was replaced with fresh DMEM,

and HeLa cells were incubated at 37°C with 5% CO2 for 48h.

CT infection was estimated by counting the number of IFUs by

direct immunofluorescence, using a fluorescein-conjugated anti-

chlamydial LPS monoclonal antibody (Meridian, Cincinnati, OH,

USA). Slides were observed under an epi-fluorescence microscope

(Eclipse E600, Nikon, Tokyo, Japan). The number of IFUs was

counted in 30 randomly chosen 200× microscopic fields.

Results were expressed as the percentage (average percentage ±

standard deviation) of CT infectivity, comparing the number of

IFUs from the individual experiments to the control tubes (number

of IFU/field of the controls ranged between 60 and 85). Tested

fractions were arbitrarily divided into three groups based on their

anti-chlamydial activity: ‘High activity’ (infectivity reduction of 61-

100% compared to control), ‘Intermediate activity’ (infectivity

reduction of 41-60% compared to control), and ‘No activity’

(infectivity reduction of 0-40% compared to control).
2.4 Microbiome analysis

DNA extraction from vaginal swabs was carried out by means of

the Versant molecular system (Siemens Healthcare Diagnostics,

Tarrytown, NY, USA) (Marangoni et al., 2015b). Afterwards, the

V3-V4 hypervariable regions of the bacterial 16S rRNA gene were

amplified, according to the 16S metagenomic sequencing library

preparation protocol (Illumina, San Diego, CA). Final indexed

libraries were prepared in a equimolar (4 nmol/L) pool, then

denaturation and dilution to 6 pmol/L were performed, before

loading onto the MiSeq flow cell (Illumina) (Severgnini et al., 2021).

Sequencing was performed by a paired 2 × 300 bp run.

Amplicon sequence variants (ASVs) were identified from 16S

paired-end sequencing using the Divisive Amplicon Denoising

Algorithm (DADA2, version 1.18.0; Callahan et al., 2016)

pipeline, including filtering and trimming of the reads. Reads per

sample were trimmed to 6,800 reads in order to compensate for the

sequencing unevenness of the samples and to provide a consistent

minimum amount for the downstream analysis, carried out through

the “phyloseq” package (version 1.34.0) (McMurdie and Holmes,

2013). Alpha-diversity evaluation was performed according to

several microbial diversity metrics (i.e., Chao1, Shannon Index,

Observed Species); the Faith’s phylogenetic tree diversity metric

(“PD whole tree”) was elaborated through the “btools” package

(https://github.com/twbattaglia/btools). Beta-diversity analysis was
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conducted using the unweighted Unifrac distance and the principal

coordinates analysis (PCoA).

Taxonomy was assigned to the ASVs using the 8-mer-based

classifier from the 11.5 release of the RDP database and using the

GTDB 16S rRNA database (release r207) (Parks et al., 2022).

Lactobacillus species-level characterization was performed as in

Severgnini et al. (2022), by BLAST-aligning all reads belonging to

the Lactobacillaceae family to a custom reference database made up

collecting all available reference sequences in NIH-NCBI database

(ftp://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/

prokaryotes.txt) of 17 species commonly found in the vaginal

environment. The dataset included 2,403 sequences belonging to

17 species and 6 genera (i.e., Lacticaseibacillus, Lactiplantibacillus,

Lactobaci l lus , Levi lactobaci l lus , Ligi lactobaci l lus , and

Limosilactobacillus). Potential matches were filtered in order to

retrieve an unequivocal classification for each read.
2.5 Metabolome analysis

Metabolomic analysis was performed by means of a 1H-NMR

spectroscopy: 100 mL of a D2O solution of 3-(trimethylsilyl)-

propionic-2,2,3,3-d4 acid sodium salt (TSP) 10 mM set to pH 7.0

were added to 700 µL of the cell-free supernatants of the vaginal

swabs. 1H-NMR spectra were recorded at 298 K with an AVANCE III

spectrometer (Bruker, Milan, Italy), operating at a frequency of

600.13 MHz, equipped with Topspin software (Ver. 3.5) (Foschi

et al., 2018). The signals originating from large molecules were

suppressed by a CPMG filter of 400 spin-echo periods, generated

by 180° pulses of 24 ms separated by 400 ms (Ventrella et al., 2016). To
each spectrum, line broadening (0.3 Hz) and phase adjustment were

applied by Topspin software, while any further spectra processing,

molecules quantification and data mining step were performed in R

computational language (version 4.0.5) by means of in house-

developed scripts. The spectra were aligned towards the TSP signal,

set at −0.017 ppm in agreement with Chenomx software data bank

(version 8.3, Chenomx Inc., Edmonton, Alberta, Canada). The

spectra were then baseline-adjusted by means of peak detection

according to the “rolling ball” principle implemented in the

“baseline” R package (Kneen and Annegarn, 1996; Liland et al.,

2010). The signals were assigned by comparing their chemical shift

and multiplicity with Chenomx software data bank. Molecules were

quantified in the first sample acquired by employing the added TSP as

an internal standard. To compensate for differences in sample

amount, any other sample was then normalized to such sample by

means of probabilistic quotient normalization (Dieterle et al., 2006).

Integration of the signals was performed for each molecule by means

of rectangular integration.
2.6 Statistical analysis

The Fisher-Freeman-Halton test, an extension to Fisher’s exact

test, was employed to determine the association between the

classification of the samples based on the anti-chlamydial activity

and that on the Nugent score (Freeman and Halton, 1951).
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For microbiome analysis, statistical evaluation of the alpha-

diversity indices was performed by a two-sample Mann-Whitney

U-test, whereas beta-diversity differences were assessed by a

permutation test with pseudo F-ratios (“adonis” test) (http://

CRAN.Rproject.org/package=vegan). Comparisons of microbial

relative abundance and metabolite quantities were performed

using the Dunn’s test for multiple comparisons (Kruskal-Wallis

test), with the Bonferroni or Benjamini-Hochberg corrections for

multiple testing. An adjusted p-value <0.05 was considered as

statistically significant.

Metabolite concentrations were correlated to bacterial

composition by calculating Spearman’s correlation coefficient

between metabolites and bacterial genera present ≥1% in at least

1 sample. We performed a Spearman’s rank-based correlation

between genus relative abundances and metabolite quantities,

selecting only those with p-value<0.05 (i.e., correlation

significantly different from 0). To better visualize patterns of

positively correlated bacteria and metabolites, a heatmap was

drawn, clustering correlation coefficients for metabolites and

bacteria (using Pearson’s correlation as clustering metric and

average linkage).
2.7 Data availability

Raw sequencing data of 16S rRNA gene are available at NCBI

Short-reads Archive (SRA) with BioProject accession number

PR JNA1062308 (h t t p s : / /www .ncb i . n lm .n ih . gov / s r a /

PRJNA1062308). Raw metabolomic data are available as a

Supplementary Material (Data Sheet S1).
3 Results

3.1 Study population and anti-chlamydial
activity of vaginal secretions

Ten reproductive-aged (mean age of 27.5 ± 2.6 years) normal-

weight (mean BMI of 20.0 ± 1.3) women were included in the study.

All the participants denied the use of hormonal contraceptives, and

only one reported a smoking habit of approximately five cigarettes/

day. Detailed information for each participant is reported in

Supplementary Table 1.

The 40 vaginal samples (i.e., 4 samples per subject), collected

throughout the study period, were categorized based on

microscopic Nugent score, as follows: 30 (75%) showed a

lactobacilli-dominated composition (‘H’ group), 3 (7.5%) were

characterized by an intermediate flora (‘I’ group), while the

remaining 7 (17.5%) harbored a BV-associated microbial

composition (‘BV’ group). Two participants in the latter group

reported burning sensations and white-grey discharges throughout

the entire study period.

The anti-chlamydial activity of each vaginal specimen was

tested in an in vitro model. At first, to mimic what happens in

the natural course of chlamydial infection, we assessed the ability of

the whole vaginal sample to counteract CT viability. Subsequently,
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in order to understand the components associated to the activity

against CT, for each sample, we also tested (i) the cellular fraction

(i.e., bacterial pellet), and (ii) the supernatant (i.e., cell-

free component).

By means of preliminary experiments, we excluded a toxic/

cytolytic effect of vaginal pellets on Hela cells (data not shown).

Samples were categorized into three groups based on the extent

of the reduction in CT viability. Overall, 11/40 vaginal supernatants

were highly active against CT, 15/40 showed intermediate activity,

whereas 14/40 were not active. Regarding pellet fractions, 19/40

were classified as highly active, 15/40 as intermediate active, and 6

as not active. The detailed results are reported in Supplementary

Table 2. Classification of the pellets according to their anti-

chlamydial activity was not independent of the vaginal status of

the women, as determined by the Nugent score. In fact, all 19 pellets

with high anti-CT activity and the majority (10 out of 15) with

intermediate activity belonged to the ‘H’ group (lactobacilli-

dominated women), whereas not-active pellets were, in 5 out of 6

cases, from BV women. These differences were highly significant

(p<0.001, Fisher-Freeman-Halton test); as a matter of fact, the two

variables could not be considered independent and disentangled.
3.2 Microbiome composition: association
with the anti-CT activity

The cellular fraction (i.e., pellet) of each vaginal sample was

subjected to 16S rRNA metabarcoding sequencing to determine the

bacterial composition. High-throughput sequencing generated

1,861,458 read pairs (average: 46,536 ± 26,151) over the 40

samples. After filtering, denoising, and chimera removal, 858,455

reads (average: 21,461 ± 9,329; range: 7,967 - 44,830) were obtained,

forming a total of 1,130 amplicon sequence variants (ASVs).

The average bacterial composition across all the samples at the

phylum level was dominated by Firmicutes (85.7% ± 18.1%),

Actinobacteria (9.3% ± 13.0%), Bacteroidetes (3.4% ± 5.2%), and

Proteobacteria (1.0% ± 1.7%), which accounted for >99% of the

overall average relative abundance. At the genus level, as expected,

Lactobacillus, which accounted for up to 78.5% on average,

comprised most of the composition, with minor contributions

from Bifidobacterium, Prevotella, and Olegusella (average rel. ab.

in the range 3.0% - 3.5%), Streptococcus, Finegoldia and

Anaerococcus (average rel. ab. in the range of 1.0% -

1.2%) (Figure 2A).

The bacterial community from highly and intermediately active

pellets was consistently characterized by fewer species than that from

not-active pellets (p ≤ 0.01 for both high and intermediate vs. not-active

for Chao1, Observed species, Shannon, and PD whole tree metrics).

Similarly, the bacterial profiles resulted clearly separated in the PCoA

plots (p=0.043, intermediate vs. not active, unweighted UniFrac

distance; p=0.012, high vs. not active, unweighted UniFrac distance;

p=0.005, high vs. not active, weighted UniFrac distance)

(Figures 2B, C).

The composition of highly and intermediately active pellets was

quite comparable, with a non-significant tendency in the latter

group towards a reduction in members of the genus Lactobacillus
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(mean rel. ab.: 89.3% vs. 75.1%, in high and intermediate,

respectively) and an increase in the genera Olegusella (<0.1% vs.

2.6%, respectively) and Streptococcus (0.3% vs. 2.1%). On the other

hand, deep changes in the microbial signatures were evident in not-

active pellets, which, compared to the highly active ones, showed a

significant reduction in Lactobacillus (mean rel. ab: 89.3% vs. 52.9%,

in the high and not-active groups, respectively, p=0.006), a

significant increase in Streptococcus (mean rel.ab: 0.3% vs. 2.1%,

in the high and not-active groups, respectively, p=0.002) and

Olegusella (mean rel. ab: <0.1% vs. 14.5% in the high and not-

active groups, respectively; p=0.010). The same differences were

highlighted in the comparison between the microbial profiles of

intermediately- and not-active pellets, together with an increase in

Bifidobacterium (p=0.030), Finegoldia (p=0.049), and Anaerococcus

(p=0.020) in not-active pellets. Among Bifidobacterium, a robust

share (corresponding to 1.3%-2.4% of the average abundance) was

due to B. vaginalis, a recently proposed reclassification of

Gardnerella vaginalis (unpublished data, presented by Barisic

et al, 2019; Using Whole-Genome Sequencing to Revise the

Classification of Bifidobacterium and Gardnerella Genera;

available at: https://delivery-files.atcc.org/api/public/content/

255989-Using-WholeGenome-Sequencing-to-Revise-the-

Classification-of-the-Bifidobacterium-and-Gardnerella-Gen) as

contained in the 16S rRNA database (i.e., GTDB) used for the

taxonomic classification of our samples (Figure 2D).

Interestingly, a notable difference in the bacterial species

belonging to the Lactobacillus genus could be observed, since L.

crispatus was significantly more abundant in highly- and

intermediately active pellets (mean rel. ab. >50.0%) than in not-

active ones (mean rel. ab. 2.8%), whereas the opposite was observed

for L. gasseri (mean rel. ab. <12.0% vs 40.8% in high/intermediate

and not-active pellets, respectively). L. jensenii (mean rel. ab. 5.0 vs

<=0.1% in high and intermediate/not-active pellets, respectively)

represented a hallmark of highly active pellets (Figure 2E;

Supplementary Table 3). As expected, the microbiome profiles of

samples stratified on the basis of the Nugent score largely resembled

those based on the anti-chlamydial activity. Samples from women

with BV were characterized by higher biodiversity (p<0.02 for all

the tested alpha-diversity metrics) and a different microbial profile

(p=0.018 and p=0.006 for the unweighted and weighted Unifrac

distances, respectively) than those from healthy women (H). A

difference was somehow evident also for the women classified as

having an “intermediate” vaginal community, which resulted

statistically separated from both H and BV women for both the

unweighted and the weighted UniFrac distance-based profiles

(p=0.033 and p=0.012 for I vs H and I vs BV, respectively). As

reported above, the Lactobacillus abundance was a hallmark of the

H group, as well as Olegusella and Streptococcus abundances were

fingerprints of BV condition (Supplementary Figure 1).
3.3 Association between anti-chlamydial
activity and vaginal metabolites

Fifty-seven metabolites were detected and quantified by 1H-

NMR spectroscopy on the vaginal fluid supernatants. These
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molecules mainly belong to groups of short-chain fatty acids

(SCFAs), organic acids, amino acids, and biogenic amines

(Supplementary Data Sheet S1). Table 1 lists the metabolites

whose concentrations differed significantly between samples,

stratified by anti-chlamydial activity.

Except for aspartate, there were no discernible changes in the

metabolic profiles of the highly active and intermediately active

samples overall. We noticed that a high anti-CT activity was

associated with significantly higher levels of 4-aminobutyrate,

aspartate, isoleucine, lactate, leucine, sarcosine, tyrosine, and valine,

compared to not-active samples. The concentration of glucose tended
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to increase from the highly active (lowest levels) to the not-active

samples (highest levels).
3.4 Correlation between vaginal
microbiome and metabolome

We performed a correlation analysis aimed at relating the

vaginal microbial composition to the metabolite concentrations

using Spearman’s rank correlation to determine monotonically

increasing or decreasing relationships (Figure 3).
B C

D E

A

FIGURE 2

Microbiome analysis. (A) Overall composition of the dataset. Stacked bars show the genus-level relative abundance for each patient, subdivided by
the different sampling time-points, labelled by their pellet activity classification (yellow = high; red = intermediate; blue = not active). (B) Alpha-
diversity analysis of the fluid activity evaluation according to the Observed species, Chao1, Shannon index, PD whole tree metrics. (C) Principal
coordinates analysis reporting the dataset’s beta-diversity for each fluid activity group. (D) Genus-level mean relative abundance for high,
intermediate, and not active groups. (E) Species-level characterization of the Lactobacillus genus abundance according to the fluid anti-CT
activity subgroups.
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A group of bacteria, primarily lactobacilli plus Ureaplasma and

Clostridium, showed a positive correlation with several amino acids

(leucine, isoleucine, asparagine, valine, tyrosine, tryptophan,

phenylalanine, and aspartate), their degradation products

(sarcosine and 5-aminopentanoate), lactate, and 4-aminobutyrate.

In particular, the highly abundant metabolite lactate (lactic acid)

was significantly correlated to L. crispatus (r=0.432), L. jensenii

(r=0.431), and other unclassified members of Lactobacillus genus

(r=0.502); moreover, leucine (r between 0.345 and 0.568) and

isoleucine (r comprised between 0.333 and 0.470) were positively

correlated to L. crispatus, L. iners, L. jensenii, unclassified members

of Lactobacillus, and Ureaplasma.

On the other hand, a further Lactobacillus species, L. gasseri

showed a correlation pattern more similar to that of bacteria from

Streptococcus, Lachnospira and Alloscardovia genera, with a high

positive correlation to sugars (maltose, r=0.427; fructose, r= 0.608;

glucose, r=0.709), glycerol (r=0.459), taurine (r=0.389), glutamine

(r=0.435), uridine (r=0.351), creatinine (r=0.399), and o-

acetylcarnitine (r=0.465). In general, all the interactions between

L. gasseri and the metabolites were inversely correlated with those of

L. crispatus and L. jensenii.

Finally, a third group of bacterial taxa (i.e., Prevotella, Dialister,

Olegusella, Peptostreptococcus, Peptoniphilus, Finegoldia and

Anaerococcus) showed a moderate positive correlation to alanine (r

between 0.236 and 0.455), acetate (r between 0.138 and 0.353), formate

(r between 0.345 and 0.568), and 2,3-butanediol (r between 0.120 and

0.466). A non-significant trend towards a positive correlation was also

observed for dimethylamine (DMA), cadaverine, and phthalate.
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4 Discussion

In healthy reproductive-aged women, the vaginal microbiome,

generally, shows a predominance of members of the Lactobacillus

genus and most women display the prevalence of one species

among L. crispatus, L. iners, L. jensenii, and L. gasseri (Ravel

et al., 2011). Vaginal resident lactobacilli act as a line of defense

against both exogenous and endogenous pathogens, through

different mechanisms, including the use of nutrients,

establishment and maintenance of low pH levels, and production

of antimicrobial compounds, as bacteriocins, peroxides, and organic

acids (Valore et al., 2002; Parolin et al., 2018a).

In the case of BV, the abundance of vaginal Lactobacillus may

decrease significantly, causing an increase in pH levels and the

proliferation of different anaerobes, such as Gardnerella and

Prevotella (Coudray and Madhivanan, 2020). This dysbiotic

condition is usually accompanied by a peculiar metabolic

fingerprint associated with a higher risk of STI acquisition,

including CT infection (Coudray and Madhivanan, 2020).

Thus, the evaluation of the microbial and metabolic

components of the vaginal fluids capable of either protecting or

favoring CT infection is particularly intriguing.

To the best of our knowledge, this is the first study assessing the

anti-chlamydial activity of fresh vaginal fluids, investigating the

vaginal bacterial taxa and molecules associated with a significant

reduction/abolishment of CT viability. Firstly, we found that a

vaginal microbiome enriched in Lactobacillus, especially L.

crispatus and L. iners, was associated with a significant anti-
TABLE 1 Concentration (mM) of vaginal metabolites determined by 1H-NMR spectroscopy, stratified by the anti-chlamydial activity.

Metabolites High
activity (n=11)

Intermediate
activity (n=15)

No
activity (n=14)

p value High activity
vs

Intermediate

High activity
vs

No activity

Intermediate
vs

No activity

4-
Aminobutyrate

0.17 ± 0.19 0.091 ± 0.13 0.0074 ± 0.01 0.0092 **

Aspartate 0.098 ± 0.026 0.072 ± 0.023 0.055 ± 0.018 0.0001 ****

0.0147 *

Glucose 0.038 ± 0.042 0.071 ± 0.062 0.37 ± 0.40 0.0044 **

0.0055 **

Glutamine 0.12 ± 0.055 0.15 ± 0.044 0.20 ± 0.090 0.0221 *

Isoleucine 0.13 ± 0.030 0.11 ± 0.037 0.079 ± 0.037 0.0045 **

Lactate 8.46 ± 1.79 7.45 ± 2.22 4.57 ± 1.47 0.0001 ****

0.0005 ***

Leucine 0.32 ± 0.060 0.26 ± 0.086 0.19 ± 0.090 0.0009 ***

Sarcosine 0.030 ± 0.014 0.022 ± 0.015 0.008 ± 0.0045 0.0002 ***

0.014 *

Taurine 0.39 ± 0.10 0.44 ± 0.088 0.55 ± 0.16 0.008 **

Tyrosine 0.107 ± 0.021 0.090 ± 0.027 0.071 ± 0,030 0.0073 **

Valine 0.15 ± 0.032 0.13 ± 0.032 0.11 ± 0.038 0.038 *
Results are reported indicating mean ± standard deviation. Asterisks indicate significant variations (p<0.05, after Benjamini-Hochberg correction) in metabolites concentration between groups.
Differences were evaluated by Kruskal-Wallis test followed by Dunn’s Multiple Comparison test. *p<0.05 **p<0.01 ***p<0.001 ****p<0.0001.
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chlamydial activity. This microbial fingerprint was accompanied by

high levels of lactate, leucine, and isoleucine; these metabolites are

typically found in lactobacilli-dominated vaginal environments

(Foschi et al., 2022).

It is well known that L. crispatus represents the hallmark of

vaginal health and eubiosis, being indicated as one of the most

active species against several urogenital pathogens, including CT

(Nardini et al., 2016; Parolin et al., 2018a; Chen et al., 2022). This

Lactobacillus species is able to produce significant levels of lactate,

which is believed to play a central role in host defense against CT,

acting on both the extracellular and intracellular phase of chlamydia

developmental cycle (Edwards et al., 2019; Zalambani et al., 2023).

On the other hand, L. iners has been usually considered as a

‘transitional’ species, characterized by poor activity against urogenital

pathogens (Petrova et al., 2015). Although a L. iners-dominated vaginal

microbiota may be suboptimal compared with a L. crispatus-one for CT

infection, it has been recently shown that L. iners is the most common

species in a large subset of women worldwide, being its presence

associated with unprotected sex practices and younger age (France

et al., 2020; Novak et al., 2022; Carter et al., 2023). Thus, the relatively

young age of our cohort could explain the findings of the present study.

Nevertheless, further investigations are needed to better understand the

impact of L. iners on common cervicovaginal infections.

Interestingly, we observed that L. gasseri displayed an opposite

behavior compared to L. crispatus, being more present in not-active

samples and correlated to glucose, taurine, and glutamine, three

metabolites more abundant in vaginal secretions with no activity

against CT.

Several works underline that, even in presence of a strain-

specific activity, L. gasseri exerts a reduced and more heterogenous

spectrum of activity against CT, compared to L. crispatus (Nardini

et al., 2016; Argentini et al., 2022).
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Other interesting data emerged when looking at microbial/

metabolic features of vaginal fluids associated with a poor

protection from CT infection.

Not-active vaginal samples presented a significant reduction in

Lactobacillus, along with a significant increase in Streptococcus and

Olegusella. This latter Gram-positive bacterium was recently

described as a new member of the Coriobacteriaceae family and

was isolated from the vaginal flora of a patient with vaginal

dysbiosis (Diop et al., 2016). Olegusella, along with other

anaerobes such as Gardnerella, Finegoldia, and Anaerococcus,

takes part to the polymicrobial environment typically found

during BV, characterized by high levels of SCFAs (e.g., acetate,

formate) and biogenic amines (i.e., DMA, cadaverine) (Ceccarani

et al., 2019; Laghi et al., 2021).

In our experimental model, glucose represented a key

metabolite, with vaginal samples with the highest levels of glucose

showing the poorest anti-CT activity, whereas highly active samples

were characterized by the lowest levels of glucose. This finding

could be ascribed to several aspects: (i) the increased glucose

consumption by some vaginal Lactobacillus strains is associated

with a significant reduction in chlamydial elementary bodies

infectivity (Nardini et al., 2016), (ii) sugars, as glucose, can

increase CT infectivity and virulence, by modulating the

expression/exposure of chlamydial membrane ligands (Marziali

et al., 2020).

We are aware of some limitations in the present study. Firstly,

information about the hormonal levels of participants and their

sexual practices was not available. Therefore, larger studies with

more detailed data are necessary to elucidate the impact of clinical

and behavioral factors on the vaginal inhabitants.

Moreover, examining additional components of the vaginal

environment, such as the presence of antibacterial peptides,

enzymes, pro/anti-inflammatory cytokines, and microbial

biosurfactants, will be crucial to better understand the factors

associated with the anti-chlamydial effect.

In conclusion, we have highlighted the microbial and metabolic

components of fresh vaginal fluids capable of counteracting CT

viability in an in vitromodel. These findings could pave the way for

novel strategies to prevent or counteract chlamydial infection.

Among them, we can hypothesize the development of new

probiotic formulations based on L. crispatus species, the use

lactobacilli-derived postbiotics, or the application of vaginal gels

containing lactic acid (Pendharkar et al., 2023; Shen et al., 2023;

Spaggiari et al., 2023). Finally, we can speculate that the practice of

vaginal microbiome transplantation (VMT) from a donor with a

flora dominated by L. crispatus could be of aid in preventing CT

infections, by the restoration of a vaginal healthy state (Ma

et al., 2019).
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FIGURE 3

Heatmap showing the Spearman correlation between the main
microbial taxa and metabolites. Only taxa present at >1% in at least
10% of the samples are displayed. Statistically significant correlations
(p<0.05) are indicated by a star. Both taxa and metabolites are
clustered according to Pearson’s correlation and average linkage.
For representation purposes, taxa abundance is shown in a log2
scale, whereas lactate abundance scale is split.
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