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A B S T R A C T   

The present paper has investigated the high cycle fatigue behavior of EUROFER97 steel submitted to a novel 
process consisting of cold rolling with reduction ratio of 80 % followed by a heat treatment at 650 ◦C for 1 h. This 
process had already proved to be highly effective under static loads leading to a significant improvement in yield 
stress. The fatigue tests have been performed with 0.2 load ratio at room temperature. Results indicate that the 
fatigue strength of the steel submitted to the novel treatment is comparable to that of the standard EUROFER97. 
Moreover, the fatigued samples underwent a microstructural evolution consisting of grain size increase and 
texture change due to the stress-driven instability of grain boundaries, especially LAGBs. The collapse of some 
boundaries involves partial annihilation and re-arrangement of dislocations, and grain coalescence. As a 
consequence of such microstructural change the material softens with hardness variations up to 8 %.   

1. Introduction 

EUROFER97 is the reference steel for manufacturing structural 
components of the test blanket module of the International Thermonu-
clear Experimental Reactor (ITER) [1–3] and a promising candidate 
material for the first wall and other highly stressed sections as blanket, 
vessel, and divertor in Demonstration Power Plant (DEMO) [4–7]. This 
reduced activation ferritic-martensitic steel exhibits good weldability 
[8] and excellent mechanical properties also at high temperature [9]. 
After neutron irradiation [9,10] and He ion implantation [11,12] 
EUROFER97 has good mechanical performances between 350 and 
550 ◦C, and several studies have been carried out to extend this oper-
ating temperature range. To raise the upper limit to about 600–650 ◦C, a 
possible solution is to reinforce the steel through yttrium oxides (Y2O3) 
of nanometric size, which inhibit grain boundary sliding and retard 
grain growth at high temperature [13,14]. Oxide dispersion- 
strengthened steel (ODS-EUROFER97) is commonly produced by me-
chanical alloying, and hot extrusion followed by a heat treatment at high 
temperature (1100 ◦C). 

The lower temperature limit (350 ◦C) is mainly connected to the 
ductility loss induced by defects produced by neutron irradiation [15]. 
In general, grains of lower size increase strength and promote better 

irradiation strength and reduced He/H susceptibility because grain 
boundaries act as sinks for Frenkel pairs produced by irradiation and 
traps for He and H atoms [16,17]. However, grain refinement often in-
volves a loss of ductility at low temperature due to the increased 
dislocation density. 

EUROFER97 is heat treated through a standard process consisting of: 
austenitization at 980 ◦C for 30 min, air cooling to room temperature, 
tempering at 760 ◦C for 90 min and final air cooling to room tempera-
ture. The resulting microstructure is a tempered lath martensite. 

Recently, an extended experimental campaign has been carried out 
by us for developing a thermo-mechanical process suitable to improve 
mechanical strength without reducing ductility [18,19]. The idea was to 
achieve a population of fine grains with low dislocation density through 
cold rolling and successive recrystallization. Therefore, EUROFER97 in 
standard condition has been submitted to 40 different thermo- 
mechanical treatments by combining five cold rolling reduction (CR) 
ratios (20, 40, 50, 60 and 80 %) and eight heat treatments at tempera-
tures from 400 ◦C to 750 ◦C with steps of 50 ◦C (soaking time of 1 h) and 
the best combination of mechanical properties was obtained by a 
reduction ratio of 80 % followed by a treatment at 650 ◦C. As shown by 
Table 1, the novel treatment improves hardness, Yield Stress (YS) and 
Ultimate Tensile Strength (UTS) with the same total elongation A% of 
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standard EUROFER97. 
Low cycle fatigue (LCF) of standard EUROFER97 has been investi-

gated at temperature up to 550 ◦C [23,24], also assessing the effect of 
different load cycles. The reported experimental results at room tem-
perature, interpolated by the Manson-Coffin model, indicate that a 
strain amplitude of 0.2 %, mainly consisting of elastic strain (along with 
a negligible plastic residual), results in an observed life of about 5 × 104 

cycles. Moreover, it has been found that, from room temperature to 
550 ◦C, the influence of the test temperature on the fatigue endurance is 
not significant [23]. Walter et al. [25] performed LCF tests by changing 
the total strain amplitude during a single experiment and EUROFER97 
response has been assessed when high amplitude cyclic loads precede 
the low amplitude ones or vice versa. The results indicate a not linear 
damage accumulation and that higher initial loads result in shorter life. 

Multiaxial fatigue tests with superimposed tension and torsion at 
room and increased temperature have been carried out by Weick and 
Aktaa [26]. The results revealed the influence of the phase shift for 
different temperatures as well as the influence of the test execution 
method (fixed or rotating principal stress system). 

Petersen et al. [27] investigated the effect of irradiation (fast neutron 

flux of 1.8 × 1015n/cm2s, direct Na cooling at a temperature <340 ◦C, 15 
and 30 dpa) evidencing that LCF shows at total strains below 1 % an 
increase of number of cycles to failure, due to irradiation hardening. LCF 
tests [28], performed at 300 ◦C in the unirradiated and irradiated con-
ditions, highlighted the beneficial or detrimental effects of irradiation 
under low and high strain ranges, respectively. The given explanation is 
that at low strain the fatigue damage is postponed by the strong pinning 
obstacles induced by irradiation whereas at high strain it grows faster 
due to localization of deformation. 

This work aims to investigate the fatigue behavior of EUROFER97 
after the novel process in comparison to the standard one. Fatigue tests 
have been run in the high cycle regime and at room temperature. The 
results have been interpolated via linear, non-linear and probabilistic 
models and discussed by considering the metallurgical characteristics of 
the material and metallographic analyses of fractured surfaces. Points of 
innovation arise from the total absence of previous studies addressing 
the fatigue response of EUROFER97 under the aforementioned novel 
thermo-mechanical treatment. 

2. Materials and methods 

2.1. Material processing and fatigue probes 

The nominal chemical composition of the examined EUROFER97 
steel (batch 2) is reported in Table 2. 

A plate of EUROFER97 steel in standard condition was cold rolled 
with a reduction ratio of 80 %. Afterward, according to the drawing in 
Fig. 1, flat samples for fatigue tests have been cut by electrical discharge 
machining (EDM). 

Each sample has been heat-treated at 650 ◦C for 1 h in argon at-
mosphere and checked by light microscopy observations (LM-Union 
Optical Co., Ltd., Tokyo, Japan) to exclude the presence of significant 
defects that may have detrimental effects on fatigue testing results. As a 
final step before testing, all the samples have undergone dimensional 
and roughness (RT-25, by Alpa Metrology, Brescia, Italy) checks. Since 
EDM cutting may introduce slight deviations from the nominal di-
mensions, each sample was accurately measured to properly correlate 
the applied load to the resulting stress during fatigue testing. The 

Table 1 
Mechanical properties at room temperature of EUROFER97 produced through 
the standard and novel treatment.  

Treatment Hardness 
HV5 

Yield stress 
[MPa] 

Ultimate tensile 
strength [MPa] 

A% 

Standard 206 [20] 550 [21] 657 [21] 22  
[22] 

Novel 235 [19] 650 [19] 690 [19] 22  
[19]  

Table 2 
Nominal chemical composition of EUROFER97 steel (wt.%) (Fe to balance) [29].  

Cr C Mn V W Ta Ti N 

8.93 0.12 0.47 0.2 1.07 0.14 0.009 0.018 
P S B Si Nb Mo Ni Cu 
<0.005 0.004 <0.001 0.006 0.002 0.0015 0.002 0.003  

Fig. 1. Sample cutting from the cold rolled sheet (a); sample drawing with dimensions in mm (b).  
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standard deviations were generally lower than 0.036 mm. Roughness 
has been measured at the gage on both sides of each sample for a total of 
six measurements. The average value Ra = 0.027 ± 0.006 μm is 
consistent with that recommended by many standards dealing with fa-

tigue testing (e.g. see ref. [30]). 

2.2. Fatigue tests 

The fatigue trials have been performed by a resonant machine (20 kN 
capacity, by Rumul Switzerland) under tension–tension with a stress 
ratio R = 0.2 and at the frequency f = 113 Hz. This machine operates 
under load control and, based on the actual cross-section area of each 
sample, the load pattern to be applied has been determined and 
controlled to generate the desired stress cycle. The experimental set-up 
used for fatigue tests (a) and a detail of sample mounting (b) are shown 
in Fig. 2. The failure criterion was crack initiation. Crack onset results in 
specimen axial stiffness abrupt drop that, in turn, entails significant 
reduction of natural frequency (and actual testing frequency), which 
triggers resonant machine stop. The reported lifecycles to failure refer to 
this condition. The complete separation of samples into two pieces has 
been then achieved through the application of a static load. A run-out 
value of 107 cycles has been set, based on previous results under LCF 
[23,24]. 

2.3. Analytical treatment of data from fatigue tests 

The S-N curve has been processed by two methods: by International 
Standards and by a “Maximum Likelihood Estimation (MLE)” approach. 
Regarding the first methodology, the interpolation of data has been 
described in detail in ref. [31]. In particular, both the linear (Eq. (1)) and 
the quadratic (Eq. (2)) models have initially been used: 

Log(N) = b0 + b1 • Log(S) (1)  

Log(N) = b0 + b1 • Log(S)+ b2 • Log2(S) (2)  

where N and S are lifecycles and maximum stress at gage, respectively, 
while b0, b1 and b2 are interpolation constants. 

Finally, the General Linear Test has been applied to determine if the 
improvement yielded by the more sophisticated quadratic model was 
significant. The analysis has been completed by the determination of 
confidence bounds for 10 and 90 % probabilities of failure and 90 % 
confidence level. A possible limitation of this conventional approach is 
that failure data only can be considered for interpolations. Therefore, an 
MLE approach has also been applied. This procedure allowed to work 
out stress-lifecycles curves, accounting for both failure data, tagged as 
complete or “not censored” and run-outs, commonly regarded as 
“censored” or “censoring” data. The application of this method entails 
the proper determination of both the S-N curve in the finite life domain 
(for high-stress levels) and the fatigue limit for infinite life. The curva-
ture at the transition between the sloping part and the constant trend 
corresponding to the fatigue limit is also suitably modelled. This 
method, previously applied by Croccolo et al. [32], is based on the 
maximization of the likelihood function L, expressed by Eq. (3). The 
maximization procedure is usually made in logarithmic scale (see Eq. (4) 

[32–37]. This is made possible by the monotonic trend of the logarithm 
function and by its property of converting products into sums, which 
results in a better computational efficiency and accuracy.  

In Eqs. (3) and (4) Ni are the observed lives for tests with R = 0.2 under 
the maximum stress Si. It is supposed that the 10-base logarithm of the 
fatigue life is normally distributed with standard deviation σLog(N), and 
that the fatigue limit is normally distributed with mean value μS and 
standard deviation σS. Φ indicates the cumulative distribution function 
of the Normal distribution, ϕ is the probability density function of the 
same distribution, δi assumes the values 1 or 0 for failure (complete) and 
run-out (censoring) data, respectively, and n is the overall number of 
tests, including both failure and run-out events. 

First, the fatigue curve for a probability of failure of 50 % has been 
determined. Subsequently, lower and upper bounds corresponding to 
failure probabilities of respectively 10 % and 90 % have been deter-
mined as well. For these purposes, the relationship in Eq. (5) has been 
inverted to work out the predicted life N for a (maximum) stress S, 
considering a probability of failure p. 

p = Φ
(

Log(N) − (b0 + b1 • Log(S) )
σLog(N)

)

⋅Φ
(

S − μS

σS

)

(5)  

2.4. Microstructural examination 

The material before and after fatigue tests has been examined by X- 
ray diffraction (XRD) in Bragg-Brentano configuration to determine 
texture, dislocation density ρ and mean size < D > of coherently dif-
fracting domains. 

The XRD patterns were collected in step-scanning mode in the 2θ 
range 15◦− 60◦ using the Mo-Kα radiation (λ = 0.070926 nm) with 2θ 
steps of 0.05◦ and counting time in steps of 2 s. Preferred grain orien-
tation has been evaluated from the relative peak intensities of the 
strongest reflections. 

Dislocation density and size of crystalline domains were determined 
from precision peak profiles recorded with 2 θ steps of 0.005◦ and 
counting time per step of 4 s. Peak profiles were fitted by Lorentzian 
curves to eliminate the Kα2 component, then the full width at half 
maximum (FWHM) was corrected from the instrumental broadening. 
The total broadening βT is given by the sum of two contributions, βD and 
βε, due to < D > and micro-strains ε, respectively: 

βT = βD + βε =
0.89λ

< D > cosθ
+ 2εtanθ (6)  

The Cauchy procedure was used to determine < D > and ε, then the 
dislocation density ρ was calculated through the Williamson-Smallman 
equation [38]: 

ρ =
Ξε2

Fb2 (7)  

being Ξ = 16.1 a constant, F ≈ 1 a factor depending on the interaction 
of dislocations and b = 0.248 nm the modulus of Burgers vector. 

Electron Back-Scattered Diffraction (EBSD) measurements were 
performed to determine the texture by means of a field emission gun 

L =
∏n

i=1

{

ϕ
(

Log(Ni) − (b0 + b1 • Log(Si) )

σLog(N)

)δi

Φ
(

Si − μS

σS

)δi
[

1 − Φ
(

Log(Ni) − (b0 + b1 • Log(Si) )

σLog(N)

)

Φ
(

Si − μS

σS

)]1− δi
}

(3)  

ln(L) =
∑n

i=1
ln

{

ϕ
(

Log(Ni) − (b0 + b1 • Log(Si) )

σLog(N)

)δi

Φ
(

Si − μS

σS

)δi
[

1 − Φ
(

Log(Ni) − (b0 + b1 • Log(Si) )

σLog(N)

)

Φ
(

Si − μS

σS

)]1− δi
}

(4)   
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scanning electron microscope (FEG-SEM) (Ultra-Plus Carl-Zeiss- Ober-
kochen, Germany) equipped with an EBSD detector (C Nano Oxford 
Instruments, UK) with a step size of 5 μm. The technique was also used to 
determine the average grain size, the grain size distribution and the 
typology of grain boundaries. 

After fatigue tests the fracture surfaces were investigated by stereo-
graphic (SM) and scanning electron microscopy (SEM) observations. 

3. Results and discussion 

3.1. Microstructural examination of the original material 

Fig. 3 displays the XRD pattern of EUROFER97 steel subjected to the 
novel process consisting of cold rolling with 80 % of reduction ratio 

followed by the heat treatment of 1 h at 650 ◦C. 
Table 3 reports the relative intensities of XRD peaks determined from 

the pattern in Fig. 3. The comparison between these data and those of Fe 
with randomly oriented grains taken from the JCPDS database (file 6- 
696) [39] shows that the material has a strong [001] cubic texture. 

From the analysis of high precision peak profiles, the dislocation 
density ρ = 109 cm− 2 and the mean size of coherently diffracting do-
mains < D > = 210 nm were determined. The results of EBSD mea-
surements are displayed in Fig. 4: EBSD map (b) collected on the surface 
of a probe, plane XY (c), inverse polar figures (d), grain size distribution 
(e) and distribution of grain boundary misorientations θ (f). For com-
parison, Fig. 4 (a) shows the EBSD map of standard EUROFER97. 

As shown in Fig. 4 (a), standard EUROFER97 steel exhibits a nearly 
random grain orientation testified by the variety of colors on the map. 
More precisely, there is a slight [110] texture of approximately 1.2 
times higher than the random state. The microstructure of the steel after 
the novel treatment has a more refined structure (Fig. 4 b) consisting of 
fine equiaxed grains with mean size of 600 ± 60 nm and log-normal 
distribution (Fig. 4 e), which is typical of a recrystallized material. It 
is noteworthy that the mean grain size is larger (~3 times) than that of 
coherently diffracting domains determined by XRD. From the literature 
(e.g. see ref. [40]) it is well-known that crystallite size obtained from 
XRD analysis is generally smaller than the average grain size obtained 
with other techniques, especially for metals subjected to high plastic 
deformation. In this case the difference between the values determined 
from XRD and EBSD depends on the capability of XRD to distinguish 
dislocation cells that are misoriented with respect to each other by less 

Fig. 3. XRD pattern of EUROFER97 after the novel process (CR:80 %/650 ◦C 
for 1 h). 

Table 3 
Relative intensities of XRD peaks of EUROFER97 steel after the novel treatment 
and those of Fe with randomly oriented grains (file 6-696 of JCPDS database).  

Peaks 110 200 211 220 310 222 

JCPDS database- file 6-696 100 20 30 10 12 6 
CR:80 % / 650 ◦C, 1 h 100 66 55 6 9 4  

Fig. 2. Experimental set-up used for fatigue tests (a) and detail of sample mounting (b).  
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than 2 degrees. 
Inverse polar figures (Fig. 4 d), indicate a [001] texture in agreement 

with XRD results displayed in Fig. 3. As evident in Fig. 4 b, the grains 
with the dominant [001] orientation (red color) are alternated by bands 

of grains with the [111] orientation (blue color). The distribution of 
grain boundary misorientations (Fig. 4 f) evidences that both high-angle 
grain boundaries (HAGBs, θ > 10◦) and low-angle grain boundaries 
(LAGBs, 2 < θ ≤ 10◦) are present with a slight prevalence of HAGBs (≃
55 %). 

3.2. Fatigue tests 

The results of the fatigue trials are collected in Table 4. 
According to the linear model in the logarithmic scale complying 

with [31] the S-N curve (for 50 % failure probability) is displayed in 
Fig. 5. 

The General Linear Test confirmed that the linear model is the most 
suitable for this data distribution. 90 % and 10 % failure probability 
bounds are also plotted in the same diagram. All the coefficients for the 
S-N curve and related bounds are reported in Table 5, according to Eq. 
(8): 

Log(N) = b0 + b1 • Log(S) ± k • σ (8)  

Bounds are parallel to the S-N curve and shifted by kσ, where k is a 
coefficient reported in [28], which takes into account 90 % confidence 
and the number of degrees of freedom that is, in turn, related to the 

Fig. 4. EBSD map of standard EUROFER97 (a). EUROFER97 after the novel process (CR 80 %/650 ◦C, 1 h): EBSD map (b) collected on the XY plane of the fatigue 
sample (c), inverse polar figures (d), grain size distribution (e) and distribution of grain boundary misorientations (f). The Z direction is along the sample thickness. 

Table 4 
Results of the fatigue tests arranged at increasing σmax.  

ID σmax 
[MPa] 

σmin 
[MPa] 

Δσ 
[MPa] 

Outcome Observed 
life 

2 366 73 293 10,000,000 Run-out 
6 380 76 304 10,000,000 Run-out 
5 400 80 320 2,082,200 Failure 
12 400 80 320 10,000,000 Run-out 
1 422 84 338 472,000 Failure 
14 422 84 338 10,000,000 Run-out 
4 440 88 352 176,200 Failure 
3 449 90 359 224,000 Failure 
8 460 92 364 558,500 Failure 
11 460 92 368 89,900 Failure 
7 480 96 384 70,400 Failure 
9 480 96 384 165,300 Failure 
10 480 96 384 237,900 Failure 
13 500 100 400 48,800 Failure  
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number of failure data points. σ indicates the standard deviation of the 
logarithm of fatigue life that depends on the scattering of the observed 
results and the number of trials. 

The S-N curve determined through the MLE approach is shown in 

Fig. 6. 
It is worth mentioning that the sloping part is well consistent with 

the outcome of the previous interpolation method. As exposed above, a 
remarkable advantage of this method is related to its ability to estimate 
the fatigue limit for infinite life, which is around 410 MPa in terms of 
maximum stress. This outcome can be related and compared to literature 
values and is of fundamental relevance to evaluate the effect on fatigue 
behavior of the novel process [19] in comparison to the standard one. 
Literature data are generally available as fatigue strengths under alter-
nate symmetric load. For instance, a fatigue limit for infinite life may be 
roughly estimated for many metallic materials as 50 % of UTS, e.g. see 

Fig. 5. S-N curve (maximum stress vs. lifespan) according to the linear model.  

Table 5 
Coefficients of the determined S-N curve and related bounds, according to the 
linear model in Eq. (8), complying with [31].  

b0 b1 k⋅σ  

40.982  − 13.403  0.621  

Fig. 6. S-N curve (maximum stress vs. lifespan) according to the MLE approach.  
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ref. [41]. In addition, a fatigue strength in the finite life domain for 
standard EUROFER97 may be worked out from the results in [23,24], 
which makes it possible to compare the effect of the novel treatment 
from the point of view of the fatigue response. However, the fatigue 
strength estimated through the results in [23,24] is again in terms of 
alternate symmetric load. 

Consequently, a conversion is needed through the tool of the Haigh 
diagram. The fatigue strength in terms of maximum stress is given by the 
Goodman relation in Eq. (9): 

S = Smax = (1+R*)⋅
Sn

R* + Sn
UTS

(9)  

where Sn is the fatigue strength for alternate symmetric load and R* is 
the ratio between the stress amplitude and the mean stress (for load ratio 
R = 0.2, R* = 0.67). In order to enable comparisons, the formula in Eq. 
(9) must be rearranged as in Eq. (10), to determine Sn as a function of 
Smax. 

Fig. 7. Wöhler curve: strength for alternate symmetric load plotted vs. lifespan for EUROFER97 following the novel treatment and the conventional one [24].  

Fig. 8. SM image of the fracture surface of sample #5 (see Table 4). Crack nucleation sites are indicated by yellow arrows. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Sn =
R* • UTS • Smax

(1 + R*) • UTS − Smax
(10)  

By introducing Smax = 410MPa in Eq. (10), Sn = 255MPa is obtained. 
This value indicates the estimated fatigue limit (for infinite life) for 
EUROFER97 treated by the novel treatment under alternate symmetric 
load. Sn is indeed lower than half of the material UTS, and around 
0.37⋅UTS. However, this value appears to be well aligned with that of 
many highly alloyed heat-treated steels [41]. 

As highlighted in the Introduction Section, the LCF characterization 
made in [23] and [24] led to an estimated life of 30,000–100,000 cycles 
(i.e., at the boundaries of the commonly accepted lifespan for LCF) for an 
elastic strain amplitude a bit lower than 0.2 % under alternate sym-
metric load. In addition, applying the Hooke’s law for the uniaxial stress 
state, this strain amplitude can be converted into a strength for alternate 
load, namely Sn. Thus, as highlighted above, the availability of this curve 
makes it possible to compare the performance of EUROFER97 with the 
novel treatment to that of the same material after the standard treat-
ment. For this purpose, the curve in Fig. 6 has been rearranged: for the 
number of cycles in the observed lifespan, corresponding values of 
strength in terms of the maximum stress Smax have been introduced in 
Eq. (10), thus determining the estimated strengths for alternate load Sn. 
These values have then been used to determine a new Wöhler curve, 
where the estimated strength for alternate symmetric load is plotted 
versus life cycles. For comparison purposes, the curve in [24] (for the 
available lifespan) and the just mentioned Wöhler curve are plotted 

together in the same diagram in Fig. 7. It is worth mentioning the curve 
taken from [24] is within the boundaries of the here determined curve 
and that the fatigue strengths are very close, with a maximum difference 
in the order of 5 % (350 MPa at 105 cycles for the conventionally heat 
treated EUROFER97 and 335 MPa at the same life extent following the 
novel treatment). Therefore, it can be concluded the novel process 
described in [19] leads to significant enhancements from the point of 
view of the static mechanical behavior of EUROFER97, in particular 
high ductility and yield point, and does not worsen the fatigue response. 

3.3. Microstructural examination of the material after fatigue tests 

The fracture surfaces were at first examined by means of SM obser-
vations. The SM images, like that displayed in Fig. 8, reveal that 
preferred crack nucleation sites, indicated by yellow arrows, are 
generally surface imperfections due to the fabrication process of probes. 
Since the presence of inclusions in EUROFER97 steel is negligible, sub- 
surface crack nucleation were not observed. 

The fracture surfaces were investigated by SEM observations. As well 
known, fatigue consists of three different stages [42]: (stage I), initiation 
of the crack; (stage II), propagation of the crack due to the cyclic load; 
and (stage III), the very fast growth of the fracture up to final failure, 
when the cross section can no longer withstand the load. The micro-
structural features observed in fatigued samples under different stresses 
do not exhibit relevant differences and an example is shown in Fig. 9. 

In all the analyzed surfaces, the stage I zone was insufficiently 
defined to perform a deep characterization. On the contrary, stage II is 
very well defined and fracture surfaces exhibit the typical striation 
marks produced in a ductile material with regular size and spacing of 
about 10 μm (Fig. 9 a). As displayed in Fig. 9 (b) at higher magnification, 
cracks are perpendicular to the striation marks, while no crack nucle-
ation at carbide interfaces or even cleavage in secondary phases were 
observed. 

XRD measurements carried out on the samples after fatigue tests 
show that peak profiles become significantly narrower with respect 
those of original material. This is clearly displayed by the example in 
Fig. 10, where the {110} XRD peak profile of the original material is 
compared with those of samples #4 and #13 (Table 4). The peak in-
tensities have been normalized to favor the comparison. Since no 
monochromator has been used in present XRD experiments each peak is 

Fig. 9. SEM micrographs of the fracture surface of sample #5.  

Fig. 10. {110} XRD peak profiles of the original material (before fatigue tests) 
and of samples #4 and #13. 
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the overlapping of the Kα1 and Kα2 contributions. In the case of sample 
#13 narrowing is so pronounced that the two contributions, Kα1 and 
Kα2, can be clearly distinguished. 

The βT values reported in Table 6 have been determined by sepa-
rating the two contributions and subtracting the instrumental broad-
ening from FWHM of the Kα1 one. βT, expressed in 2θ degrees, of all the 
fatigued samples are always remarkably lower than that of the original 
material (0.125◦). Even if there is some scattering of data, peak nar-
rowing tends to be more pronounced for increasing maximum stress 
upon cycling. 

It is noteworthy that the not broken samples (run-out) also exhibit a 
significant peak narrowing. An example is shown in Fig. 11: the {110} 
peak profile of the original material is quite broader than that of sample 
# 6. 

XRD results indicate that stress in fatigue tests induces instability of 
dislocation structures forming the grain boundaries. Such instability 
leads to the collapse of some grain boundaries with consequent partial 
annihilation and re-arrangement of dislocations, and grain coalescence. 
The effect seems to depend on the applied stress because βT values 
exhibit a tendency to decrease as σmax increases. The problem of the 
instability in dislocation structures has not been completely understood 
yet and different theoretical approaches have been proposed (e.g., see 
refs. [43–45]). Anyway, the processes of partial annihilation and re- 
arrangement of dislocations tend to minimize the internal energy of 
the solid under dynamic conditions; thus, the synergy of dislocations and 
the applied stress plays a decisive role. Since the investigated material is 
fully recrystallized, it is supposed that instability could be triggered by 
grain boundary migration, namely the collective motion of dislocations 
forming the boundary, induced by the applied stress. When two 
boundaries encounter the excess of dislocations, it makes the new 
boundary unstable and leads to its collapse. This tentative explanation 
must be verified in the future through systematic transmission electron 
microscopy (TEM) observations. Anyway, a similar phenomenon has 
been already observed by one of present investigators in Al alloys [46] 
and superalloys [47] during heat treatments. 

To get more information about grain evolution, EBSD data have been 
collected on the fatigued samples by examining the zones near the 
fracture. For example, Fig. 12 displays the EBSD map (a), the analysis of 

grain boundary type (b), the inverse polar figures (c), the distributions of 
grain size (d) and grain boundary misorientations (e) of sample #13. 

By comparing the data in Fig. 4 (original material) and Fig. 12 
(sample #13), the differences are evident. In particular, after fatigue 
testing, the mean grain size is larger (873 ± 53 nm) than the original one 
(600 ± 60 nm) and some texture change occurs. 

Moreover, from the analyses of EBSD maps the relative fraction of 
LAGBs decreases from 0.45 ± 0.01 (original material) to 0.36 ± 0.05 
(sample #13). It is observed that LAGBs are dominant in the areas where 
grains exhibit the larger size (Fig. 12 b). In the original material there is 
a large amount of LAGBs (Fig. 4 e), and EBSD shows that mainly these 
boundaries become unstable under stress in fatigue tests. 

KAM were also collected to reveal local dislocation structures, 
however slight differences were observed in fatigued samples compared 
to the original material. For example, Fig. 13 shows the KAM maps to the 
3rd neighbor with 5◦ threshold angle of the original material (a) and 
fatigued sample #13 (c); the corresponding distributions of misorien-
tation angles are displayed in (b) and (d), respectively. The average KAM 
angle rises from 0.32◦ to 0.37◦ after fatigue testing. 

XRD patterns collected on samples broken in fatigue tests by focusing 
the X-ray beam near the crack (~1 mm) are displayed in Fig. 14 while 
Table 7 reports the relative intensities of the most intense peaks. 

The ratios between the intensities of the strongest XRD reflections, 
I200/I110 and I211/I110, evidence that grain growth induces texture var-
iations: the [100] cubic texture of the original material is still retained, 
however its intensity changes. In large part of the samples, it results to 
be stronger, in some samples (#8, #10, #11) it weakens without a 
specific relation between texture variations and maximum applied stress 
σmax. 

The microstructure evolution also corresponds to a change in hard-
ness. In Fig. 15 hardness values measured in samples after fatigue tests 
are plotted vs. Δσ: even if a certain scattering of data is observed, 
hardness tends to decrease as Δσ increases. Anyway, all data are lower 
than that of the original material with variations up to 8 %. The 
continuous red line is the average value from measures in different sheet 
positions, while the dashed lines represent the maximum data 
scattering. 

The hardness values reported in Fig. 15 were taken near the crack. In 
order to assess whether the observed effects are not local artifacts, 
measurements were carried out along the axis of the samples. The results 
showed that, as the distance from the crack increases, hardness tends to 
decrease. Generally, such decrease is small, in the order of 1–2 % at a 
distance of 3.5 mm, and can be explained as a deformation of the metal 
along the crack path. Therefore, softening is not an artifact but an effect 
of fatigue. 

Grain growth driven by stress below the homologous temperature 
has already been observed in nanocrystalline materials under various 
loading conditions such as tensile [48,49], compression [50], indenta-
tion [51,52], and fatigue tests [53–55]. The homologous temperature of 
EUROFER97, defined as T/TM = 0.5 (solidus temperature TM = 1447 ◦C 
[56]) is 587 ◦C. Grain boundaries, especially LAGBs, can migrate owing 
to the collective motion of dislocations induced by the applied stress. To 
the best of our knowledge, only one case of fatigue-assisted grain growth 
at room temperature in 7075 Al alloy has been reported in the literature 
for metal alloys with an average grain size in the order of hundreds of 
nanometers or micrometers [57]. Therefore, the phenomenon observed 
in the present work represents a novelty of great interest because 
investigating and quantitatively assessing the microstructural stability 
of this steel is of the utmost relevance for nuclear applications. 

Table 6 
Samples broken in fatigue tests: βT (2 θ) of {110} peak after experimental broadening subtraction. The σmax values of the samples are reported too.  

ID # 5 # 1 # 4 # 3 # 8 # 11 # 7 # 9 # 10 # 13 

βT [2θ degrees] 0.050 0.055 0.095 0.105 0.100 0.085 0.100 0.053 0.065 0.050 
σmax [MPa] 400 422 440 449 460 460 474 480 480 500  

Fig. 11. {110} XRD peak profiles of the original material and sample # 6 
(run-out). 
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Fig. 12. Sample #13: EBSD map collected on the plane XY (a), analysis of grain boundary type (LAGBs 2-10◦; HAGBs > 10◦) (b), inverse polar figures (c), grain size 
distribution (d) and distribution of grain boundary misorientations (e). 
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Moreover, present results suggest having a close check on standard 
EUROFER97 steel. Indeed, it also exhibits a large number of LAGBs: 
based on our measurements, the relative amount of LAGBs is ~38 %, 
whereas Barcelo et al. [58] found a little smaller value (32 %). Although 
the microstructure of standard EUROFER97 (laths of tempered 
martensite inside prior austenite grains, PAGs) is different from that 
originated by the novel process developed by us, its fraction of LAGBs is 
significant. It is noteworthy that, in LCF testing, Giordana et al. [59] and 
Kubĕna et al. [60] observed a pronounced softening of EUROFER97 
steel that is also accompanied by microstructural changes, such as the 

decrease of free dislocations inside the sub-grains. Moreover, after LCF 
experiments carried out from room temperature up to 300 ◦C, Marmy 
et al. [23] observed that large grains were fractioned into fatigue cells 
and dislocation density decreases. Dislocations are swept out to the 
grain/subgrain boundaries by the cyclic plastic deformation and may be 
observed mainly in small grains or inside some grains attached and 
pinned by precipitates. On these grounds, previous results of fatigue 
tests carried out on standard EUROFER97 should be reconsidered to 
assess the possible occurrence of grain growth driven by stress in fatigue 
conditions. 

4. Conclusions 

The present paper has investigated the high cycle fatigue behavior of 
EUROFER97 steel submitted to a novel process consisting of cold rolling 
with reduction ratio of 80 % followed by heat treatment at 650 ◦C for 1 
h. The main results can be resumed as follows.  

1. The fatigue strength of the steel submitted to the novel process is 
comparable, within experimental errors, to that of the standard 
EUROFER97.  

2. Fracture surfaces exhibit the typical striation marks produced in a 
ductile material with regular size and spacing of about 10 μm. Cracks 
are perpendicular to the striation marks, while no crack nucleation at 
carbide interfaces or even cleavage in secondary phases were 
observed. 

3. The fatigued samples underwent a microstructural evolution con-
sisting of grain size increase and texture change.  

4. The microstructural transformation is attributed to the stress-driven 
instability of grain boundaries, especially LAGBs, leading to the 

Fig. 13. KAM maps of original material (a) and fatigued sample #13 (c). The corresponding distributions of misorientation angles are displayed in (b) and (d), 
respectively. 

Fig. 14. XRD patterns of EUROFER97 samples broken in fatigue tests.  
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collapse of some boundaries with consequent partial annihilation 
and re-arrangement of dislocations, and grain coalescence.  

5. Softening occurs in fatigued samples with variations up to 8 %; 
hardness generally tends to decrease as Δσ increases. 
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[9] Lindau R, Möslang A, Rieth M, Klimiankou M, Materna-Morris E, Alamo A, et al. 
Present development status of EUROFER and ODS-EUROFER for application in 
blanket concepts. Fusion Eng Des 2005;8:75–9. https://doi.org/10.1016/j. 
fusengdes.2005.06.186. 

[10] Coppola R, Klimenkov M. Dose dependence of micro-voids distributions in low- 
temperature neutron irradiated Eurofer97 steel. Metals 2019;9:552. https://doi. 
org/10.3390/met9050552. 
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