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Abstract
Several business cycle models exhibit a recursive timing structure, which enforces 
delayed propagation of exogenous shocks driving short-run dynamics. We propose a 
bootstrap-based empirical strategy to test for the relevance of timing restrictions and 
ensuing shock transmission delays in DSGE environments. In the presence of strong 
identification, we document how likelihood-based tests in bootstrap-resamples 
can be used to empirically assess short-run restrictions placed by informational 
structures on a given model’s equilibrium representation, thereby enhancing 
coherence between theory and measurement. We evaluate the size properties of our 
procedure in short time series by conducting a number of numerical experiments 
on a popular New Keynesian model of the monetary transmission mechanism. 
An empirical application to U.S. data from the Great Moderation period allows 
us to revisit and qualify previous findings in the field by lending support to the 
conventional (unrestricted) timing protocol, whereby inflation and output gap do 
respond on impact to monetary policy innovations.
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1  Introduction

Recently developed business cycle models feature a recursive timing structure, 
according to which decision rules of forward-looking, rationally optimizing agents 
reflect the presence of delayed information dissemination across the economy. Two 
main examples in the policy domain stand out: first, models where government 
spending entails planning lags and thus cannot respond to current economic 
developments—see e.g. Kormilitsina and Zubairy (2018), Schmitt-Grohé and Uribe 
(2012); secondly, monetary frameworks where slow-moving variables, such as 
consumption and wages, are bound not to respond on impact to unexpected changes 
in the policy rate, which only gradually propagate in the private sector—see e.g. 
Altig et al. (2011), Christiano et al. (2005).1

Model-wise, timing restrictions in structural modeling are micro-founded via 
informational constraints that relate agents’ expectation formation and the ensuing 
decision rules to increasing sequences of nested and temporarily asymmetric 
information sets—see Kormilitsina (2013). The timing mismatch between optimal 
decisions and the evolution of the state of the economy generates propagation delays 
for a subset of the exogenous forces (i.e. the structural shocks) driving short-run 
dynamics, with potentially significant implications for the model’s predictions about 
the time series properties of endogenous variables—see Angelini and Sorge (2021).

On a positive side, a burgeoning number of studies in modern macroeconomic 
writing has underscored the role of informational frictions in reconciling theoretical 
predictions of otherwise standard rational expectations frameworks with observed 
features of the data, e.g. the persistent and hump-shaped responses of inflation 
and output measures to unanticipated monetary shocks (Mankiw and Reis 2002), 
the relationship between inflation illusion and asset prices (Piazzesi and Schneider 
2008), or the excess return predictability in financial markets (Bacchetta et al. 2009). 
While empirical work exploiting survey data has been supportive of imperfect 
information models in general, e.g. Branch (2007), Mankiw et  al. (2003), the 
question whether macroeconomic data favor the adoption of the recursive timing 
assumption as opposed to the common (unrestricted) timing protocol, conditional on 
a given DSGE structure, still remains open to debate. We believe this modeling issue 
qualifies as a key concern for the specification of macroeconomic models and their 
empirical validation: failure to control for the informational transmission channel 
in estimated models can in principle distort inference on the relative contribution 
of aggregate shocks to business cycle fluctuations, and/or the assessment of 
competing policy measures whose effects are shaped, among other things, by agents’ 
expectations.

To tackle these issues, we provide a handy frequentist procedure, based 
on a bootstrap variant of the likelihood ratio (LR) test in state-space systems, 
to empirically assess the relevance of timing restrictions and ensuing shock 

1  Further instances in the DSGE literature include, but are not limited to, models of factor hoarding, 
where employment decisions predate the full realization of aggregate uncertainty (e.g. Burnside and 
Eichenbaum 1996), and limited participation settings in which households might engage in financial   
ecision-making prior to observing the whole set of current period shocks (e.g. Fuerst 1992).
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transmission delays in small-scale dynamic stochastic general equilibrium (DSGE) 
environments. Specifically, we submit to formal testing the null hypothesis that a 
subset of endogenous model variables of interests (e.g. the inflation rate) fail to 
simultaneously and/or fully respond to the state of the economy (e.g. movements 
in the nominal interest rate), thus providing evidence against the alternative of 
contemporaneous timing. Upon estimating the model-implied set of endogenous 
responses across timing structures (restricted versus unrestricted) along with 
estimates of a given model’s structural parameters, information stemming from 
likelihood-based tests for the rational expectations cross-equation restrictions 
(CERs) placed by the model’s structure on its equilibrium (reduced form) 
representation can be exploited to evaluate the empirical plausibility of the recursive 
timing assumption in the DSGE context.

Operationally, we build on recent contributions by Angelini et al. (2022), Bårdsen 
and Fanelli (2015), Stoffer and Wall (1991) on estimation and hypothesis testing 
in state-space models. Stoffer and Wall (1991) propose a nonparametric Monte 
Carlo bootstrap that abstracts from distributional assumptions that are hardly valid 
in small to moderate samples. Bårdsen and Fanelli (2015) develop a frequentist 
approach to testing sequentially cointegration/common-trend restrictions along 
with conventional rational expectations CERs in DSGE models, arguing in favor 
of classical likelihood-based tests to handle both long- and short-run restrictions 
placed by the model on its reduced form representation. Angelini et  al. (2022) 
emphasize the role of bootstrap resampling as a conceptually simple diagnostic 
tool for asymptotic inference in estimated state-space models. Among other things, 
these authors show that, in the case of strong identification the bootstrap maximum 
likelihood (ML) estimator of the structural parameters replicates the asymptotic 
distribution of the ML estimator, and prove formally that the restricted bootstrap 
(i.e. with the null hypothesis under investigation being imposed in estimation) is 
consistent. Under these circumstances, not only the (either standard or bootstrap) LR 
test is asymptotically pivotal and chi-square distributed, but the bootstrap tends to 
reduce the discrepancy between actual and nominal probabilities of type-I error. In 
fact, the bootstrap in DSGE models (and, more generally, in frameworks that admit 
a conventional state space representation) has the potential to mitigate the over-
rejection phenomenon that characterizes tests of non-linear hypothesis that rely on 
first-order asymptotic approximations vis-à-vis short time series, as those usually 
employed for business cycle analysis. We indeed find our resampling method to 
improve upon the asymptotic LR test, for the empirical size of the bootstrap-based 
LR test tends to approach the chosen nominal level.

The computation of our bootstrap-based LR test for the timing-specific CERs 
associated with the DSGE model entails the estimation of the structural parameters, 
which in our setup is accomplished by maximizing the likelihood function of the 
(locally unique) reduced form equilibrium subject to the CERs. Model estimation 
via classical ML is not very common in the DSGE literature, and Bayesian methods 
are typically preferred given their inherent ability to deal with misspecification 
issues and small-sample inference—see Del Negro et  al. (2007), Del Negro and 
Schorfheide (2009) among others. Bårdsen and Fanelli (2015) emphasize that 
classical statistical methods can also be useful for empirically evaluating small 
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DSGE models, insofar as they offer a number of indications about the qualitative 
and/or quantitative features of the data that a given framework fails to adequately 
capture, with an explicit measure of adequacy being provided by the pre-fixed 
nominal probability of type-I error associated with the LR test. In a similar vein, the 
outcome of our testing strategy can be thought of as providing information about 
possible directions for enhancing coherence between theory and measurement in the 
class of small-scale DSGE models.

While linear Gaussian state space systems are in widespread use in 
macroeconometrics, e.g. Chan and Strachan (2023), likelihood-based inferential 
analysis in these models still remains relatively scant. A main obstacle to 
establishing the asymptotic properties of conventional likelihood-based tests is 
the well-known lack of identification of these models in the absence of further 
restrictions. In fact, since any similarity transform (or rotation) of the vector of 
latent variables by a non-singular (conformable) arbitrary matrix yields a state-space 
representation of the system with equivalent second-order properties, information 
on the autocovariance patterns for the observables fail to ensure identification of 
the state-space parameters; this in turn violates standard regularity conditions for 
likelihood-based inference, e.g. Komunjer and Ng (2011). Komunjer and Zhu (2020) 
ingeniously address this issue by locally re-parameterizing the state-space system 
in terms of a lower-dimensional canonical parameter which is by construction 
identified, without affecting the likelihood of the model; this in turn allows them 
to derive the asymptotic distribution in conventional chi-squared form (with known 
degrees of freedom) of the LR test under several hypotheses of interest, which can 
therefore be used to assess the validity of DSGE model specifications.2

We fully acknowledge the pervasiveness of weak identification (or lack thereof) 
of structural parameters in richly parameterized DSGE models, e.g. Canova and 
Sala (2009); Consolo et al. (2009); Mavroeidis (2010); Qu and Tkachenko (2012), 
and the fact that any direct test for CERs in dynamic macroeconomic models should 
preferably be set out when parameter (local) identifiability is ensured. Population 
identification of the deep parameters of the DSGE model, i.e. the existence of 
an injective mapping from the reduced-form parameters under the CERs and the 
structural deep ones, can be numerically checked by means of appropriate rank 
conditions, e.g. Iskrev (2010); necessary and sufficient (rank/order) identification 
conditions in terms of equivalent spectral densities, that do not require the numerical 
evaluation of analytical moments, can also be invoked, e.g. Komunjer and Ng 
(2011). In order not to shift the focus on identifiability issues, our investigation 
of the properties of the bootstrap-based LR test is therefore conducted on the 
assumption of strong identification, meaning that all the regularity conditions for 
standard asymptotic inference are at work. An advantage of our approach is that, 
as argued in Angelini et  al. (2022), the asymptotic distribution of the bootstrap 
estimator of the structural parameters reveals possible identification failures. By the 
same token, failure of either version of the DSGE model (one with recursive timing, 

2  Other relevant studies on likelihood-based inference in the presence of identification issues are, among 
others, Andrews and Cheng (2012), Dufour et  al. (2013), Guerron-Quintana et  al. (2013) and Liu and 
Shao (2003).
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the other free of timing restrictions) to pass the LR test for the short-run CERs can 
be interpreted as an indication toward envisioning alternative structural frameworks 
and/or shock transmission mechanisms that possibly allow to capture some of the 
patterns observed in the data.

To showcase the validity of our testing procedure, we adopt the hybrid New 
Keynesian (NK) model popularized by Benati and Surico (2009), and formalize 
timing restrictions as follows: private sector variables (inflation and output gap) 
and expectations cannot respond on impact to monetary policy innovations, yet 
they can fully adjust to other sources of uncertainty and model’s states (e.g. past 
inflation). Since Rotemberg and Woodford (1997), NK structures embodying 
nominal rigidities and recursive timing with respect to the propagation of monetary 
policy surprises have been used to shed light on the origins of aggregate fluctuations 
and the historical evolution of the monetary transmission mechanism in the U.S. 
economy—see e.g. Altig et  al. (2011), Boivin and Giannoni (2006), Christiano 
et al. (2005). Across all of these studies, no formal test for the over-imposed timing 
restrictions is ever performed, meaning that the estimated transmission mechanism 
necessarily reflects the (arbitrary) way timing restrictions are framed and embedded 
into the underlying model specification. Conditional on such restrictions being 
operative, the model’s general equilibrium dynamics is then evaluated in response to 
cyclical variation in the systematic component of the monetary policy rule as well as 
to unexpected changes in the Fed funds rate in the US economy (policy surprises).

We first conduct a battery of Monte Carlo experiments in order to evaluate the 
empirical size properties of the proposed test, explicitly considering two distinct 
scenarios: one where information-based timing restrictions produce non-negligible 
variation in the dynamic adjustment paths of non-policy variables to the non-sys-
tematic component of monetary policy; and the other where (with the exclusion of 
the zero effect on impact) the dynamic properties of the model are almost identical 
across informational structures (restricted vs. unrestricted). In either case, simula-
tion results robustly indicate that the bootstrap-based approach manages to counter-
balance the tendency of the standard LR test to over-reject the hypothesis of struc-
tural timing restrictions in small samples, with rejection frequencies close to the 5% 
nominal level.

We then revisit the evidence on the transmission of monetary policy in the so-
called Great Moderation period of U.S. macroeconomic history, using our likeli-
hood-based testing approach. Characterized by a sharp decline in macroeconomic 
volatility that began in the mid-1980s, the Great Moderation has attracted a great 
deal of attention from macroeconomic analysts, interested in uncovering the deep 
causes of such phenomenon. One main view, supported by both system-based 
and reduced form evidence, has credibly attributed it to an active monetary policy 
behavior that managed to stabilize inflationary expectations via commitment to a 
strong response of the nominal interest rate to deviations of the inflation rate from 
the policy target—see, among others, Clarida et al. (2000); Fanelli (2012); Hirose 
et al. (2020); Lubik and Schorfheide (2004). Our estimation results appear to lend 
support to the conventional (unrestricted) timing protocol, whereby monetary policy 
shocks—i.e. unexpected exogenous changes in the Federal funds rate—have entailed 
contemporaneous effects on both inflation and output gap dynamics for the period 
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running from 1985 to 2008. This finding calls for some caution in interpreting the 
responses of inflation and real economic activity to the conduct of monetary policy 
as estimated in the earlier NK literature that routinely adopted, without testing, tim-
ing restrictions on the observability of policy shocks, e.g. Altig et al. (2011), Boivin 
and Giannoni (2006).

The remainder of the paper is organized as follows. Section (2) reviews the 
general state space representation of first-order approximate solution to general 
DSGE models featuring timing restrictions. Section (3) introduces the testing 
problem and discusses the bootstrap algorithm used to test for the relevance of shock 
propagation delays in DSGE environments. Section (4) reports the outcome of our 
simulation experiments, whereas Sect. (5) presents an empirical application for the 
U.S. economy. Section (6) concludes.

2 � Setup

2.1 � General DSGE Model Representation

DSGE models are generally described by an nf -dimensional stochastic difference 
system

where the random processes 
(
yt
)
 and 

(
xt
)
 are defined on the same filtered probabil-

ity space, and Et is the conditional expectation associated with the underlying prob-
ability measure. The ny-dimensional vector y collects the model’s endogenous jump 
variables, whereas the nx-dimensional vector x contains n1

x
 endogenous predeter-

mined variables as well as n2
x
 exogenous states (where n1

x
+ n2

x
= nx , ny + nx = nf  ). 

Finally, the vector � collects the structural parameters and the scalar � ≥ 0 captures 
surrounding uncertainty, see Schmitt-Grohé and Uribe (2004).

Let the prime superscript denotes one-step ahead variables. Under the common 
timing protocol, decision rules for all variables y depend on the whole set of states x. 
The linearly perturbed solution to (1) then reads as

where the conformable matrix �(�) loads the n2
x
-dimensional vector of structural 

economic shocks � ∼ i.i.d.(0, In2
x
) (e.g. preference shocks, supply-side shocks, policy 

innovations) on the state variables x, and the coefficient matrices gx and hx are evalu-
ated at the non-stochastic steady state (ȳ, x̄) solving (1) when � = 0.

2.2 � DSGE Models Under Timing Restrictions

Following Kormilitsina (2013), Sorge (2020), we are interested in a particular class 
of limited information DSGE models, namely those in which some state variables 
are unobserved in the current period or observed with some lag, and where some 

(1)Etf
(
yt+1, yt, xt+1, xt;�, �

)
= 0

(2)y = gx(�)x, x� = hx(�)x + ��(�)��
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endogenous variables that adjust to observed states can serve as additional states 
forcing variation in other endogenous variables. This approach acknowledges 
the fact that it is not the date at which expectations are formed that matters, but 
rather the date and the structure of the information set upon which expectations are 
framed. In this context, restricted (or limited) information means that, in the face of 
exogenous shocks that do not occur simultaneously, agents’ expectation formation 
and the ensuing decision rules are to be conditioned on different information sets. 
Accordingly, timing restrictions are naturally formalized by means of fictitious 
informational sub-periods characterized by heterogeneous (across rational decision-
makers) information sets and the associated process of expectations formation and 
the timing of decisions.3

Remarkably, being rooted in the theory of perturbation of non-linear systems, this 
approach allows one to embed the assumed set of timing restrictions directly into 
the non-linear equilibrium conditions that fully characterize a given DSGE model; 
approximated (up to second-order) optimal decision rules can then be derived on the 
basis of the imposed informational structure. To this aim, let f = [f y, f x]� denote the 
set of (ny + nx) equations of the model, and Et the collection of (conditional) expec-
tation operators accounting for the heterogeneous information sets, that is

where f (y,x)
k

 ( k ≤ ny + n1
x
 ) is the model’s equation used to pin down the k-th endoge-

nous variable in (y, x1) , conditional on the equilibrium values for the other endoge-
nous variables and the relevant states, for which model-consistent expectations 
(optimal projections) at date t are determined on the basis of the restricted (and in 
principle different across these equations) information set �i,t , i ≤ ny ; and f

(x)

j
 

(3)Et

�
f (yt+1, yt, xt+1, xt;�)

�
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E
�
f
(y,x)

1
(yt+1, yt, xt+1, xt;�)

��� �1,t
�

E
�
f
(y,x)

2
(yt+1, yt, xt+1, xt;�)

��� �2,t
�

⋮

E
�
f
(y,x)

ny+n
1
x

(yt+1, yt, xt+1, xt;�)
��� �ny+n1x ,t

�

f
(x)

1
(x2

t+1
, x2

t
;�)

f
(x)

2
(x2

t+1
, x2

t
;�)

⋮

f
(x)

n2
x

�
x2
t+1

, x2
t
;�
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3  The literature on solving RE models with limited information structure has a long tradition. The study 
of the implications of partial current information (“observability") about endogenous variables traces 
back to the well-known Lucas (1972)’s model of spatially separated markets. Classical contributions in 
this area are, among others, Pearlman et al. (1986); Matthews et al. (1994), and the more recent Baxter 
et  al. (2011). In the case of partial current information, the forecaster is aware of the values of some 
endogenous variables only with a lag but can observe other current endogenous variables at the time the 
forecast is made. Hence, specific tools (like the Kalman filter) are needed to extract information from 
observables regarding current disturbances.
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( j ≤ n2
x
 ), is the possibly nonlinear equation that governs the dynamics of j-th exoge-

nous state variable xj . Apparently, one can make the DSGE model embody informa-
tion-based timing restrictions by simply specifying the information sets �i,t . We 
maintain, as assumed in the aforementioned literature, that all types of agents 
(indexed by the information sets �i,t ) know the actual structure of the model and form 
expectations rationally. Differently from dynamic structures with persistently dis-
persed information, e.g. Kasa et  al. (2014), the specification of information-based 
timing restrictions does not involve an infinite regress of expectations, and the 
underlying model’s representation will generically be finite dimensional, see Ange-
lini and Sorge (2021).

As detailed in the Appendix, structural timing restrictions in the DSGE setting 
can be modeled via system partitions of the form

where yu ∈ y collects endogenous variables which respond to the whole set of 
state variables x, and the nyr-dimensional vector yr ∈ y includes variables that can 
respond to observed states xu ∈ x and the best (minimum mean square error) fore-
cast of unobserved states xu ∈ x , whose dynamics obey

where P is a stable square matrix of autoregressive coefficients, and �xr collects the 
exogenous shocks associated with the states xr.

The non-linear recursive RE solution under timing restrictions is

where the coefficient matrices

are readily constructed via linear transformations of those entering (2)—please 
see the Appendix for full details on the solution method up to first-order of 
approximation, and Kormilitsina (2013) for a complete reference and examples.

We remark that timing restrictions enrich the autocovariance patterns for the 
endogenous variables: matrices ĥxr and ĥxr,−1 (and thereby ĝxr and ĝxr,−1 ) will gener-
ally differ from those implied by the counterpart model with unrestricted tim-
ing—see Angelini and Sorge (2021). Remarkably, dynamic impulse responses and 
other statistics will depend (among other things) on the structure of the matrix ĵxr 
which maps exogenous states xr into partially endogenous variables yr , and that of 
the matrix ĝxr,−1 which governs the dependence of the fully endogenous variables 
yu on the lagged states xr,−1 . Information contained in the likelihood function can 

(4)y =
[
yu; yr

]
, x =

[
xu; xr

]

(5)x�
r
= Pxr + ���

xr
, �xr ∼ i.i.d.N(0, 1)

(6)y = ĝx(𝜃)
⎛⎜⎜⎝

xu
xr

xr,−1

⎞⎟⎟⎠
, x� = ĥx(𝜃)

⎛⎜⎜⎝

xu
xr

xr,−1

⎞⎟⎟⎠
+ 𝜎𝜅(𝜃)𝜖�

(7)ĝx(𝜃) =

(
ĝxu (𝜃) ĝxr (𝜃) ĝxr,−1(𝜃)

ĵxu (𝜃) 0nyr×nxr
ĵxr,−1(𝜃)

)
, ĥx(𝜃) =

(
ĥxu (𝜃) ĥxr (𝜃) ĥxr,−1(𝜃)

0nxr×nxr
P(𝜃) 0nxr×nxr

)
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therefore be exploited to derive (classical or Bayesian) inference about the relevance 
of delayed propagation for the shock(s) of interest.4

To frame our testing procedure, we exploit the structural form in (6) embodying 
timing restrictions against the following state-space counterpart

with the non-zero parameters in h̃x and g̃x collected in the vector � (i.e. g̃x = g̃x(𝜙) 
and h̃x = h̃x(𝜙) ). Notice that, when the P matrix is non-empty, the time series repre-
sentation for the endogenous variables y in (6) is in VARMA-type form, even when 
its unrestricted counterpart (2) admits a finite-order VAR representation. The testing 
strategy discussed below exploits the Kalman filter to evaluate the likelihood func-
tion associated with the minimal state-space representation of the system (6) under 
the implicit non-linear CERs embodied in (7), maintaining that the regularity (iden-
tification) conditions for standard asymptotic inference in the state-space representa-
tion of the DSGE model are valid both under the null and the alternative.5

2.3 � On the Properties of the RE Equilibrium Under Timing Restrictions

As pointed out in Hespeler and Sorge (2019) and acknowledged in Kormilitsina 
(2019), different informational partitions typically generate different CERs in equi-
librium representations of RE models. In the presence of informational constrains, 
solving for endogenous variables requires consistency between optimal projections 
determined on the basis of restricted information sets and conditional expectations 
which by contrast exploit full information. This in turn may over-constrain the RE 
forecast errors associated with the model exhibiting timing restrictions, and thus 
impact on the latter’s dynamic stability properties. Recall that the first-order approx-
imate RE solution can be fully characterized by a sequence of RE forecast errors 
under which the dynamics of the endogenous variables is non-explosive, see e.g. 
Sims (2002). As a consequence, different ways of restricting the informational struc-
ture may produce distinct effects on the ability of RE forecast errors to neutralize the 
model’s unstable behavior. Sorge (2020) provides technical conditions under which, 
on the assumption that the unrestricted (full information) RE model exhibits saddle-
path stability, the model counterpart with timing restrictions admits a locally unique 
RE equilibrium (i.e. under which the determinacy property is preserved across infor-
mational structures). Such conditions hold generically (in the space of the model’s 

(8)y = g̃x(𝜙)
⎛
⎜⎜⎝

xu
xr

xr,−1

⎞
⎟⎟⎠
, x� = h̃x(𝜙)

⎛
⎜⎜⎝

xu
xr

xr,−1

⎞
⎟⎟⎠
+ 𝜎𝜅(𝜙)𝜖�

4  When timing restrictions are operative, ĵxr will necessarily be zero-valued, whereas ĝxr,−1 will not, for yu 
will adjust to movements in yr enforced by the best forecast of xr.
5  Minimality of state space solutions to DSGE models are also important for the existence of a VAR 
representation in the observables, which in turn plays a key role in the estimation/validation of a given 
model that relies on impulse-response matching techniques, e.g. Franchi and Paruolo (2015). State space 
representations can typically be manipulated to deliver a locally identified system in minimal form which 
is also stochastically non-singular, see e.g. Komunjer and Ng (2011).
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parameters) in nearly all cases of interest, and we explicitly check them in the simu-
lation/estimation exercises reported below.

It is also worth emphasizing that, by their very nature, DSGE models with 
timing restrictions do not overlap with linear RE models where two types of agents 
permanently display asymmetric information, as those examined in e.g. Lubik et al. 
(2023). In the presence of timing restrictions, fully informed agents observe histories 
of all exogenous and endogenous variables, while less informed agents observe only 
a strict subset of the full information set and need to solve a simple signal extraction 
problem to gather information about the shocks/states that have not yet materialized 
and endogenous variables that have not yet been decided upon. When, for any 
given unit of time, all the informational sub-periods have occurred, information 
sets are perfectly aligned, and filtering estimates of previously unobserved 
variables replaced by realized shock/states/endogenous outcomes for the current 
optimal decisions (based on the current unfolding of informational sub-periods) to 
be undertaken. One distinctive feature of this setting is that a rank condition—as 
formalized in Klein (2000)—that is necessary for existence of RE equilibria may 
fail to hold, implying non-existence of dynamically stable solutions to the model 
exhibiting timing restrictions; however, when a RE solution exists in the restricted 
information environment, it is certainty equivalent and is generically (in a measure 
theoretic sense) unique provided the full information model admits a determinate 
RE equilibrium, see Sorge (2020).

3 � Testing Procedure

We consider the testing problem

by a LR test. The null �0 incorporates the timing restrictions encoded in the infor-
mational partition (4). Let �T (�) and �T (�) denote the log-likelihoods of the DSGE 
model under �1 and �0 , respectively, and 𝜙̂T = argmax𝜙∈P𝜙

�T (𝜙) and 
𝜃̂T = argmax𝜃∈PD �T (𝜃) be the ML estimators of � and � . Estimation of the model 
under the null ( �0 ) and under the alternative ( �1 ) is a preliminary step to the compu-
tation of the LR test, which reads as

see the Appendix for details on the derivation of the LR statistic. The asymptotic 
properties of the tests statistics LRT are intimately related to the asymptotic proper-
ties of 𝜃̂T and 𝜙̂T and these crucially depend on whether the regularity conditions for 
inference are valid in the estimated DSGE model.

To improve inference in small samples, we employ a nonparametric ‘restricted 
bootstrap’ algorithm, according to which the bootstrap samples are gener-
ated using the parameter estimates 𝜃̂T obtained under �0 . The LR test statistic, 

(9)
�0 ∶ h̃x(𝜙) = ĥx(𝜃) and g̃x(𝜙) = ĝx(𝜃) vs. �1 ∶ h̃x(𝜙) ≠ ĥx(𝜃) or g̃x(𝜙) ≠ ĝx(𝜃)

(10)LRT = −2[�T (𝜃̂T ) − �T (𝜙̂T )].
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LRT (𝜃̂T ) , computed as in Eq. (10) in the main text, is stored along with 𝜃̂T . Our 
procedure is described by the following algorithm. Here, steps 1–4 define the 
bootstrap sample, the bootstrap parameter estimators and related bootstrap LR 
statistic; steps 5–7 describe the numerical computation of the bootstrap p-value 
associated to the bootstrap LR test. 

1.	 Let the superscript ‘0’ denote any item obtained from the application of the 
Kalman filter to the state space representation of the DSGE model under the null 
�0 . Given the innovation residuals 𝜖0

t
= yt − ĝx(𝜃̂T )x̂t∣t−1 and the estimated covari-

ance matrices Σ̂𝜖0,t produced by the estimation of the restricted DSGE model, 
construct the standardized innovations as 

 where Σ̂−1∕2

𝜖0,t
 is the inverse of the square-root matrix of Σ̂𝜖0,t and 𝜖0,ct  , t = 1,… , T  , 

are the centered residuals 𝜖0,ct = 𝜖0
t
− T−1

∑T

t=1
𝜖0
t
;

2.	 Sample, with replacement, T times from ê0
1
, ê0

2
,… , ê0

T
 to obtain the bootstrap 

sample of standardized innovations e∗
1
, e∗

2
,… , e∗

T
;

3.	 Mimicking the innovation form representation of the DSGE model, the bootstrap 
sample y∗

1
, y∗

2
,… , y∗

T
 is generated recursively by solving, for t = 1,… , T , the sys-

tem 

 with initial condition x̂∗
1∣0

= x̂1∣0;
4.	 From the generated pseudo-sample y∗

1
, y∗

2
,… , y∗

T
 , estimate the DSGE model under 

�0 obtaining the bootstrap estimator 𝜃̂∗
T
 and the associated log-likelihood �∗

T
(𝜃̂∗

T
) , 

and estimate the DSGE model under �1 obtaining the bootstrap estimator 𝜙̂∗
T
 and 

the associated log-likelihood �∗
T
(𝜙̂∗

T
) ; the bootstrap LR test for the CERs is 

5.	 Steps 2–4 are repeated B times in order to obtain B bootstrap realizations of 𝜃̂T 
and 𝜙̂T , say {𝜃̂∗

T∶1
, 𝜃̂∗

T∶2
,… , 𝜃̂∗

T∶B
} and {𝜙̂∗

T∶1
, 𝜙̂∗

T∶2
,… , 𝜙̂∗

T∶B
} , and the B bootstrap 

realizations of the associated bootstrap LR test, {LR∗
T∶1

 , LR∗
T∶2

,… , LR∗
T∶B

} , where 
LR∗

T∶b
= LR∗

T
(𝜃̂∗

T∶b
) , b = 1,… ,B;

6.	 The bootstrap p-value of the test of the timing restrictions is computed as 

�{⋅} being the indicator function;
7.	 The bootstrap LR test for the timing restrictions at the 100�% (nominal) signifi-

cance level rejects �0 if p̂∗T ,B ≤ �.

(11)ê0
t
= Σ̂

−1∕2

𝜖0,t
𝜖0,c
t
, t = 1,… , T ,

(12)
(
x̂∗
t+1∣t

y∗
t

)
=

(
ĥx(𝜃̂T ) 0nm×ny
ĝx(𝜃̂T ) 0ny×ny

)(
x̂∗
t∣t−1

y∗
t−1

)
+

(
Kt(𝜃̂T )Σ̂

1∕2

𝜖0,t

Σ̂
1∕2

𝜖0,t

)
e∗
t

(13)LR∗
T
(𝜃̂∗

T
) = −2[�∗

T
(𝜃̂∗

T
) − �

∗
T
(𝜙̂∗

T
)];

(14)�p∗
T ,B

= Ĝ∗
T ,B

(LRT (𝜃̂T )) , Ĝ∗
T ,B

(𝛿) = B−1

B∑
b=1

�{LR∗
T∶b

> 𝛿},
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4 � Simulation Experiments

4.1 � Model

We showcase the usefulness of our testing procedure by running a series of Monte 
Carlo simulation experiments based on the hybrid NK model put forward by Benati 
and Surico (2009) in their exploration of the causes of the so-called Great Moderation.

The canonical NK model with unrestricted timing is fully characterized by the 
following system of equations

where

The variables gt , �t , and it stand for the output gap, inflation, and the nominal inter-
est rate, respectively; � weights the forward-looking component in the dynamic IS 
curve; � is price setters’ extent of indexation to past inflation; � is the intertemporal 
elasticity of substitution in consumption; � is the slope of the Phillips curve; � , �� , 
and �g are the interest rate smoothing coefficient, the long-run coefficient on infla-
tion, and that on the output gap in the monetary policy rule, respectively; finally, 
�
g

t  , ��
t
 and �i

t
 in Eq. (18) are the mutually independent, asymptotically stable AR(1) 

exogenous shock processes and �gt  , ��t  and �i
t
 are the structural innovations.

Exploiting the general DSGE model representation under timing restrictions (3), 
the retricted NK model is rather in the form:

where Ej,t = E(⋅ | �j,t) , j = g,�, i is the rational (model-consistent) expectation opera-
tor conditioned on the information set �j,t , with

(15)gt = �Etgt+1 + (1 − �)gt−1 − �−1(it − Et�t+1) + �
g

t

(16)�t =
�

1 + ��
Et�t+1 +

�

1 + ��
�t−1 + �gt + ��

t

(17)it = �it−1 + (1 − �)(���t + �ggt) + �i
t

(18)𝜔
j

t = 𝜌j𝜔
j

t−1
+ 𝜖

j

t , |𝜌j| < 1, 𝜖
j

t ∼ WN(0, 𝜎2
j
), j = g,𝜋, i

(19)Eg,t

[
gt − �gt+1 − (1 − �)gt−1 + �−1(it − �t+1) − �

g

t

]
= 0

(20)E�,t

[
�t −

�

1 + ��
�t+1 −

�

1 + ��
�t−1 − �gt − ��

t

]
= 0

(21)Ei,t

[
it − �it−1 − (1 − �)(���t + �ggt) − �i

t

]
= 0

�g,t = ��,t =
{
gt−� ,�t−� , it−1−� ,�

g

t−� ,�
�
t−�

,�i
t−1−�

; � = 0, 1, 2,…
}



1 3

Is Time an Illusion? A Bootstrap Likelihood Ratio Test for Shock…

i.e. private agents do not observe the current monetary policy shock �i
t
 and thus can-

not infer the current value of the nominal interest rate it but only project it as a func-
tion of the observables in their information set; and

i.e. the monetary policy authority observes at time t the entire history of all the 
endogenous and exogenous variables up to time t.6

Clearly, the information partition supporting this set of timing restrictions is

where

and

Accordingly, the computation of the RE equilibrium under timing restrictions 
requires the following assignment of variables:

As is known, the model (15)–(18) can admit a continuum of asymptotically stable 
equilibria (equilibrium indeterminacy) depending on the strength of the monetary 
authority’s response to inflation. Under these circumstances, short-run dynamics 
for the endogenous variables can be arbitrarily driven by both structural and non-
structural (sunspot) shocks, e.g. Lubik and Schorfheide (2003). We shall remark 
that the NK model under timing restrictions model displays, generically in the space 
of the admissible parameters, a locally unique (determinate) RE solution insofar as 

�i,t =
{
gt−� ,�t−� , it−1−� ,�

g

t−� ,�
�
t−�

,�i
t−�

; � = 0, 1, 2,…
}

(22)f =
[
f 0; f 1; f xr

]

f 0 =

⎡
⎢⎢⎣

g − �g� − (1 − �)g−1 + �−1(i − ��) − �g

� −
�

1+��
�� −

�

1+��
�−1 − �g − ��

⎤
⎥⎥⎦
,

f 1 =

⎡⎢⎢⎢⎢⎢⎣

i − �i−1 − (1 − �)(��� + �gg) − �i

�g − �g�
g

−1
− �g

�� − ���
�
−1

− ��

⎤⎥⎥⎥⎥⎥⎦

f xr =
[
�i − �i�

i
−1

− �i
]

(23)
yu = i, yr = [g, �]�

xu = [g−1, �−1, i−1, �
g, ��]�, xr = �i

6  The assumption of currently unobservable monetary policy shocks on the part of private sector agents 
(consumers/workers and firms) reproduces the one adopted by seminal studies on the estimation of the 
monetary policy transmission mechanism in NK settings, see Altig et al. (2011), Boivin and Giannoni 
(2006) among others. This assumption, embedded in fully-fledged structural models, echoes the recur-
sive identification schemes based on short-run exclusion restrictions that have traditionally been used to 
identify the macroeconomic effects of monetary policy shocks, with the policy rate placed between slow 
and fast moving variables, e.g. Christiano et al. (1999).
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its unrestricted counterpart does. In our Monte Carlo simulation experiments, we 
explicitly confine attention to the determinate equilibrium version of Benati and 
Surico (2009)’s model, so that variation in the likelihood across the two informa-
tion structures (restricted vs. unrestricted) is to be ascribed to the presence of timing 
restrictions solely, on the assumption that the structural model is correctly specified.7

4.2 � Monte Carlo Simulations

In this section we investigate the empirical performance of the bootstrap test 
using the NK structure (15)–(18) as our data generating process (DGP). More 
specifically, we consider two DSGE-based equilibrium state space representa-
tions, denoted as DGP under timing restrictions and DGP with unrestricted tim-
ing, respectively. In the former, it is assumed that the data are generated by the 
determinate equilibrium representation that emerges in the presence of structural 
timing restrictions embodied in (23); in the latter, artificial series are rather gen-
erated by allowing for contemporaneous effects of policy innovations on the infla-
tion rate and the output gap (i.e. when no informational constraints are at work), 
again imposing equilibrium determinacy. Assuming Gaussian distributions for the 
structural shocks, and for given initial values, the ML estimation of the model’s 
parameters, as a preliminary step to the construction of the bootstrap-based LR 
test, is carried out iteratively by means of a standard BFGS quasi-Newton optimi-
zation method, as described in Bårdsen and Fanelli (2015). For either experiment, 
the nominal significance level is set to 5%.

In a first experiment, we allow timing restrictions to produce quantitatively 
non-negligible differences in the propagation of the monetary policy shock rela-
tive to the unrestricted model. To this aim, we let the structural innovations dis-
play relatively high dispersion ( �j = 2 , j = g,�, i ), and assign a markedly larger 
persistence to the monetary shock process ( 𝜌i = 0.9 > 0.1 = 𝜌j , j = g,� ). We 
then investigate the empirical size of the LR test, using the restricted model as 
the actual DGP (column DGP under timing restrictions), and its power, when 
the unrestricted model serves as the underlying DGP (column DGP with unre-
striced timing). For either DGP we consider K = 500 simulations and a sample 
size T ∈ {100, 500} with a burn-in of 200 observations.

We estimate five key structural parameters on artificial data: � (shaping the 
intertemporal channel of monetary policy transmission to non-policy variables); 
� (governing the output-inflation trade-off faced by central banks); and the iner-
tial parameters � , � (both relevant for stabilization goals) and � (capturing policy 
persistence). Other parameters are calibrated to Benati and Surico (2009)’s poste-
rior median estimates over the Great Moderation—see Table 1.

Results are summarized in Table 2, which reports the estimates for the subset 
of structural parameters �s = (�, � , �, �, �−1)� from the state-space form (6), when 

7  See Dave and Sorge (2021), Fanelli (2012) for an analysis of identification and estimation issues aris-
ing in Benati and Surico (2009)’s model in the presence of equilibrium indeterminacy; Angelini and 
Sorge (2021), Sorge (2020) for a discussion of the implications of the co-existence of timing restrictions 
and equilibrium existence/indeterminacy.
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the DGP complies with either information structure (restricted vs. unrestricted). 
We notice, first, that sample estimates across information structures are roughly 
equal, speaking in favour of identification of the population deep parameters 
(which, by definition, are invariant with respect to the timing of decisions). Sec-
ond, the bootstrap tends to mitigate the discrepancy between actual and nominal 
probabilities of type-I error. Indeed, when asymptotic critical values taken from 
the �2

x
 distribution ( x = dim(�) − dim(�) ) are employed, the rejection frequency 

of the LR test for the timing restrictions is 7.2% and 11.2% for T = 500 and 100 
respectively. Therefore, in finite samples our bootstrap-based approach attenuates 
the tendency of the asymptotic LR test to over-reject the CERs associated with 
the restricted timing protocol, with rejection frequencies close to the 5% level. 
Remarkably, the bootstrap test also shows satisfactory power (column DGP with 
unrestricted timing).

On empirical grounds, a standard deviation �i = 2 for the monetary policy 
shock is implausibly large compared to both the historically observed 0.25 ppt 
increments in central banks’ interest rates, and to estimates from structural VARs 
that tend to be much smaller (at least since the onset of the Great Moderation 
until the upsurge of aggregate prices in recent times). This observation motivates 
our second experiment, where structural disturbances driving short-run dynam-
ics are assumed to exhibit low volatility (standard deviation equal to 0.1), and all 
the structural parameters are calibrated to Benati and Surico (2009)’s posterior 
median estimates over the Great Moderation—see Table 3. In this scenario, with 
the exception of the (mechanically arising) zero on-impact effect of the monetary 
policy innovation on the inflation rate and the output gap when timing restric-
tion are at work, the dynamics of the impulse response functions of the model are 
almost identical across informational structures (restricted vs. unrestricted), mak-
ing it relatively harder to distinguish between the two. This notwithstanding, the 
bootstrap LR test is able to detect the presence of timing restrictions in the under-
lying DGP (column DGP under timing restrictions), with rejection frequencies 
approaching the pre-fixed nominal level—see Table 4.

5 � Empirical Application

In this section we employ our bootstrap-based testing strategy to evaluate the empir-
ical relevance of timing restrictions in a particular historical juncture of the U.S. 
economy, i.e. the so-called Great Moderation. Given their focus on empirically eval-
uating the effectiveness of monetary policy in the US post-WWII macroeconomic 

Table 1   Parameterization of Benati and Surico (2009)’s model in first simulation experiment ( j = g,�, i)

Structural parameters

� �−1 � � � � �� �g �g �� �i �j

0.744 0.124 0.99 0.059 0.044 0.834 1.749 1.146 0.1 0.1 0.9 2
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history, several studies have developed small- to medium-scale frameworks with 
recursive timing, under which the model’s responses to a monetary innovation are 
zero on impact, in keeping with the recursive (Cholesky-type) identification scheme 
in sVAR systems, in order to pave the way for the implementation of a straightfor-
ward impulse response matching procedure—see e.g. Altig et al. (2011), Guerron-
Quintana et al. (2017), Rotemberg and Woodford (1997).

In our application, we closely follow Bårdsen and Fanelli (2015) and perform a 
ML estimation of Benati and Surico (2009)’s NK monetary business cycle model 
on U.S. quarterly data for the 1985Q1 - 2008Q3 window ( T = 95 observations, not 
including initial lags); the observables include the natural rate of output (proxied 
by the official measure from the Congressional Budget Office), the real GDP, the 
inflation rate (quarterly growth rate of the GDP deflator) and the short-term nominal 
interest rate (effective federal funds rate expressed in averages of monthly values). 
We intentionally disregard the zero-lower bound phase, beginning in December 
2008, which entailed non-standard policy measures by the Federal Reserve that are 

Table 2   First Monte Carlo experiment

ML estimation of the parameters �s = (�, � , �, � , �−1)� , average across 500 simulations (bootstrap 
estimates in parentheses). LRT is the likelihood ratio test of the restricted model against the unrestricted 
counterpart (bootstrap p-values in square brackets). Nominal significance level at 5%

DGP under timing restrictions DGP with unrestricted timing

T=500
   � = 0.044 0.042 (0.044) 0.033 (0.032)
   � = 0.744 0.744 (0.747) 0.731 (0.738)
   � = 0.059 0.057 (0.057) 0.195 (0.207)
   � = 0.834 0.834 (0.834) 0.796 (0.789)
   �−1 = 0.124 0.124 (0.124) 0.061 (0.046)
   LRT �2

x
 , Rej Rate = 0.072[0.050] �2

x
 , Rej Rate = 1.000[0.904]

T=100
   � = 0.044 0.044 (0.045) 0.034 (0.033)
   � = 0.744 0.754 (0.763) 0.735 (0.746)
   � = 0.059 0.059 (0.061) 0.187 (0.202)
   � = 0.834 0.833 (0.831) 0.795 (0.784)
   �−1 = 0.124 0.121 (0.118) 0.062 (0.038)
   LRT �2

x
 , Rej Rate = 0.112[0.054] �2

x
 , Rej Rate = 0.942[0.354]

Table 3   Parameterization of Benati and Surico (2009)’s model in second simulation experiment 
( j = g,�, i)

Structural parameters

� �−1 � � � � �� �g �g �� �i �j

0.744 0.124 0.99 0.059 0.044 0.834 1.749 1.146 0.796 0.418 0.404 0.1
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not consistent with the feedback rule embodied in the interest rate equation (17). 
The length of the elected sample also reflects our intention of focusing on a determi-
nate (locally unique) RE equilibrium, see e.g. Castelnuovo and Fanelli (2015); and 
allows us to emphasize the empirical appeal of the bootstrap-based LR test in short 
data samples.

As mentioned, a main disadvantage of classical estimation methods for DSGE 
models compared to Bayesian techniques lies in the difficulty to handle identifica-
tion failure for some of the structural parameters of the model � , and their reduced 
form analogs (ĝx(𝜃), ĥx(𝜃)) , given the non-linear mapping induced by the CERs 
(identification in population); the relationship between the structural parameters and 
the sample objective function (here, the likelihood function) is also problematic, 
for strong identification can be precluded by the nature and size of available data 
(sample identification).8 Besides, given the tight set of (sign and bound) restrictions 
that theory typically imposes on structural parameters (e.g. the slope of the Phillips 
curve), estimation approaches that do not exploit prior information may well fail to 
safeguard against the generation of economically implausible estimates, see e.g. An 
and Schorfheide (2007). To partially address these concerns, the parameter vector 
� is split into two sub-vector: �ng = (� , �, �g, �� , �i)

� , which are directly estimated 
via the ML algorithm, and �g = (�−1, �, �,�g,�� , �j)

� , which are fine-tuned via a 
numerical grid-search method with pre-specified ranges. Operationally, the log-
likelihood function associated with the NK model featuring timing restrictions is 

Table 4   Second Monte Carlo experiment

ML estimation of the parameters �s = (�, � , � , �)’, average across 1000 simulations (bootstrap 
estimates in parentheses). LRT is the likelihood ratio test of the restricted model against the unrestricted 
counterpart (bootstrap p-values in square brackets). Nominal significance level at 5%

DGP under timing restrictions DGP with unrestricted timing

T=500
   � = 0.044 0.044 (0.044) 0.043 (0.043)
   � = 0.744 0.744 (0.746) 0.739 (0.741)
   � = 0.059 0.057 (0.055) 0.052 (0.055)
   � = 0.834 0.834 (0.833) 0.813 (0.811)
   LRT �2

x
 , Rej Rate = 0.066[0.045] �2

x
 , Rej Rate = 0.836[0.690]

T=100
   � = 0.044 0.044 (0.045) 0.043 (0.044)
   � = 0.744 0.748 (0.753) 0.742 (0.755)
   � = 0.059 0.058 (0.059) 0.055 (0.056)
   � = 0.834 0.833 (0.833) 0.813 (0.804)
   LRT �2

x
 , Rej Rate = 0.082[0.052] �2

x
 , Rej Rate = 0.194[0.106]

8  It must be remarked, however, that the lack of point identification of the structural parameters of DSGE 
models can also entail a tight dependence of the Bayesian posterior on the priors specified by the inves-
tigator, possibly causing the posterior mode not to be a consistent estimator of the true parameter vector, 
see e.g. Guerron-Quintana et al. (2013) and references therein.
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maximized over the parameters in �ng conditional on random draws (15,000 points) 
from a uniform distribution for each of the parameters in �g ; optimal estimates for 
the the latter are then selected as those that maximize the log-likelihood evaluated at 
the ML estimate for the free parameters �ng (see the Notes to Table 5). A rank condi-
tion for local identifiability (in population), based on the differentiation of the CERs, 
is then performed along the lines of Iskrev (2010).9

Three differences between the approach of Bårdsen and Fanelli (2015) and ours 
require further discussion. First, full-information ML estimation methods for DSGE 
models are intimately related to the system reduction method employed to derive the 
reduced form representation of the model under scrutiny; while Bårdsen and Fanelli 
(2015) adopt the method put forward in Binder and Pesaran (1999), we follow 
the algorithm outlined in Schmitt-Grohé and Uribe (2004) to compute first-order 
approximate solutions, which in turn exploits Klein (2000)’s package to determine 
the unknown coefficient matrices in the equilibrium dynamics for both the control 
and the state variables. Second, we assume that the exogenous structural innovations 
�
j

t ( j = g,�, i ) are orthogonal white noises, whose variances are determined numeri-
cally via grid search; Bårdsen and Fanelli (2015), instead, do not restrict the covari-
ance matrix of the structural shocks, whose elements are then indirectly recovered 
from inverting the CERs associated with the law of motion for exogenous state 
variables (evaluated at the ML estimates for the other structural parameters). Third, 
since the bootstrap version of the LR test in state-space models is computationally 
intensive, the values for �g in the grid that optimize the log-likelihood function given 
the observed sample are kept fixed in the bootstrap replications; taking advantage 
from the existence of a finite-order VAR representation for the Benati and Surico 
(2009)’s model free of timing restrictions, Bårdsen and Fanelli (2015) compute the 
bootstrap version of their test of the implied CERs by drawing 1500 points from the 
grid for each bootstrap replication.

As argued in Angelini and Sorge (2021), timing restrictions generally induce 
moving average (MA) components in equilibrium reduced form representatins of 
DSGE models. As a result, the model does not generically admit a finite-order VAR 
representation. The estimation of (6) and of its unrestricted analog (8) requires find-
ing the minimal state-space representation associated with the specified NK model 
among the set of equivalent representations, see e.g. Guerron-Quintana et al. (2013). 
Provided this representation is at hand, the Kalman filter can be combined with the 
ML estimation algorithm and the bootstrap procedure to build and evaluate the log-
likelihood function of the NK model under the Gaussian assumption, and then com-
pute the LR test for timing restrictions.

Estimates for the parameters of interest and bootstrap standard errors are both 
reported in the second column of Table 5, along with the point estimates obtained 
by Bårdsen and Fanelli (2015) for exactly the same parameters entering Benati and 
Surico (2009)’s model under the assumption of unrestricted timing (third column). 
We notice that the inertial parameters (�, �j) , j = g,�, i are not precisely estimated 
in the model embodying timing restrictions, and generally exhibit lower magnitudes 

9  We would like to refer the reader to the Technical Supplement to Bårdsen and Fanelli (2015) for fur-
ther details.
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relative to their counterparts in the unrestricted model, for the likelihood tends to 
ascribe a fraction of the persistence in the data to the informational channel (endog-
enous backward dependence). The bootstrap p-value associated with the LR test 
for the CERs associated with the conventional (unrestricted) timing protocol is 0.8, 
while it falls dramatically to 0.005 when recursive timing is imposed instead. Mod-
ulo the previously discussed caveat on the adverse impact of weak identification on 
the asymptotic and bootstrap distributions of estimators, this evidence indicates that 
information-induced timing restrictions played no significant role in shaping busi-
ness cycle dynamics over the period of interest. Accordingly, we view the outcome 
of our test as suggesting that, as far as short-run macroeconomic fluctuations over 
the Great Moderation period are concerned, the recursive timing protocol adopted 
in the aforementioned literature is not favored by aggregate data, thereby calling for 
caution in the interpretation of the estimated responses of inflation and real eco-
nomic activity to monetary policy shocks as reported in those studies.

6 � Conclusion

This paper develops a simple bootstrap-based testing procedure for the relevance 
of timing restrictions and ensuing shock transmission delays in small-scale DSGE 
model environments. Remarkably, the computer code is consistent with standard 
MATLAB packages—such as Sims (2002)’s gensys.m— that are routinely used to 

Table 5   ML estimation 
of the parameters 
�ng =

(
� , �, �g, �� , �i

)
 , bootstrap 

standard error in parentheses

LRT is the likelihood ratio test of the restricted model against the 
unrestricted counterpart (bootstrap p-values in square brackets, 
B = 99 replications). Initial values for parameters in �ng are 0.85 for 
� (inertia of the policy rule), 0.5 for �j , j = g,�, i (autocorrelation 
coefficients of the structural distrubances) and 0.5 for � (weight on 
the fowrard component of the intertemporal Euler equation). Ranges 
for grid search for �g = (�−1, �, �,�g,�� , �j)

� : [0.01,  0.20] for �−1 
(inverse of elasticity of intertemporal substitution), [0.01, 010] for � 
(indexation to past inflation), [0.01, 010] for � (slope of the Phillips 
curve), [0.05,  1.5] for �g (long-run interest rate response to output 
gap), [0.5, 5.5] for �� (long-run interest rate response to inflation), 
[0, 0.5] for �j , j = g,�, i (standard deviations for structural innova-
tions); � = 0.99 is fixed

DGP under timing restrictions DGP with unrestricted timing
Bårdsen and Fanelli (2015)

𝛾̂ 0.051 (0.155) 0.777 (0.025)
𝜌̂ 0.945 (0.314) 0.573 (0.358)
𝜌̂g 0.174 (0.207) 0.935 (0.010)
𝜌̂𝜋 0.411 (0.191) 0.875 (0.011)
𝜌̂i 0.649 (0.476) 0.810 (0.451)
LRT LRT = 121.618[0.005] LRT = 17.940[0.800]
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compute first-order approximate solutions to dynamic macroeconomic models; and 
can be straightforwardly adapted to allow for relatively more sophisticated recursive 
timing structures than those considered herein, e.g. those involving multi-period 
informational partitions (Kormilitsina, 2013).

Appendix

DSGE Models Under Timing Restrictions

In the simple case with two informational sub-periods only, the control vector y and 
state vector x are partitioned as follows

where xu comprises endogenous predetermined as well as exogenous variables 
which materialize in the beginning of the first sub-period, xr contains exogenous 
variables with realizations in the second sub-period, yu is the vector of fully endog-
enous jump variables, i.e. endogenous variables which are conditioned on all the 
state variables x. Finally, the vector yr collects partially endogenous variables, which 
are decided upon in the first sub-period, when realizations of only a subset of state 
variables are known.

Kormilitsina (2013)’s solution approach requires that the RE system (1) be 
partitioned as follows

so that the sub-system f 0 includes nyr equations pinning down endogenous variables 
yr , the sub-system f 1 includes nyu equations that determine endogenous variables yu 
and nxu equations delivering the dynamics of the states xu , and the sub-system f xr 
describes the evolution of exogenous shocks xr , represented as a first-order station-
ary autoregressive process (5).

Letting again E denote the (conditional) expectation operator accounting for tim-
ing restrictions, the RE system with informational sub-periods can be rewritten as

and its non-linear, recursive solution represented in general form as

where endogenous (jump) variables in yr are allowed to only react to the conditional 
forecast of states in xr (a function of previous period variables xr,−1 ), as the latter do 
not belong in the first sub-period information set. Notice the solution to the filter-
ing problem associated with the autoregressive process (5) is already embedded in 
the h function. By the same token, endogenous (jump) variables in yu are a function 

(24)y =
[
yu; yr

]
, x =

[
xu; xr

]

(25)f =
[
f 0; f 1; f xr

]

(26)E
[
f
(
y�, x�, y, x

)]
= 0

(27)
yu = g(xu, xr, xr,−1, 𝜎), yr = j(xu, xr,−1, 𝜎), x� = h(xu, xr, xr,−1, 𝜎) + 𝜎𝜅̂𝜖�

x
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of yr —a state variable in the second informational sub-period—and thus of lagged 
states xr,−1 . Notice that the timing restrictions only involve exogenous variables xr 
which are uncorrelated with other exogenous variables in xu ; also, all the xr vari-
ables are not observed in the first sub-period, hence the filtering problem does not 
require using the variance-covariance matrix of the �xr shocks in order to compute an 
optimal (in the mean-square sense) estimate of unobserved states.10

The linear RE solution under timing restrictions is

where the coefficient matrices can be decomposed as follows

The first-order approximation the DSGE model under timing restrictions then reads 
as

where the dependence of the reduced form matrices on the structural parameters � 
has been made explicit.

Provided the rank condition characterized in Sorge (2020) is fulfilled, the solution to 
the restricted model can be readily constructed via uniquely defined linear transforma-
tions of (2), however computed (e.g. exploiting algorithms put forward in Christiano 
(2002), King and Watson (2002), Klein (2000), Sims (2002)). In fact, upon partitioning 
the equilibrium coefficient matrices (gx(�), hx(�)) in (2) as follows

we can easily map the coefficient matrices under conventional timing into those 
appearing in (28), i.e.

(28)y = ĝx(𝜃)
⎛
⎜⎜⎝

xu
xr

xr,−1

⎞
⎟⎟⎠
, x� = ĥx(𝜃)

⎛
⎜⎜⎝

xu
xr

xr,−1

⎞
⎟⎟⎠
+ 𝜎𝜅(𝜃)𝜖�

(29)

ĝx(𝜃) =

(
ĝxu (𝜃) ĝxr (𝜃) ĝxr,−1(𝜃)

ĵxu (𝜃) 0nyr×nxr
ĵxr,−1(𝜃)

)
, ĥx(𝜃) =

(
ĥxu (𝜃) ĥxr (𝜃) ĥxr,−1(𝜃)

0nxr×nxr
P(𝜃) 0nxr×nxr

)

(30)

yu =ĝxu (𝜃)xu + ĝxr (𝜃)xr + ĝxr,1 (𝜃)xr,−1,

yr =ĵxu (𝜃)xu + ĵxr,−1 (𝜃)xr,−1,

x�
u
=ĥxu (𝜃)xu + ĥxr (𝜃)xr + ĥxr,−1(𝜃)xr,−1 + 𝜎𝜖�

xu

(31)gx(�) =

(
gxu (�) gxr (�)

jxu (�) jxr (�)

)
, hx =

(
hxu(�) hxr (�)

0 P(�)

)

10  Baxter et  al. (2011) emphasize the signal extraction problems arising in the presence of imperfect 
information. They identify problems with instantaneously invertible, asymptotically invertible and non-
invertible information sets. Our analysis deals with a simple signal extraction problem, where the only 
missing signal is the current realization of an exogenous state variable. Therefore, the signal extraction 
problem consists in substituting the missing state variable with its expected value.
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where ∇(f 1) denotes the Jacobian of the sub-system f 1 with respect to the vector 
[x�

u
, yu] , f 1yr is the matrix of partial derivatives of f 1 with respect to the slow moving 

endogenous variables collected in the vector yr , and [M]m is used to denote the selec-
tion of the first (or last) m rows of some matrix M.

Operationally, the first-order approximate solution (and its minimal state space rep-
resentation) to the general DSGE mode under informational constraints can be obtained 
via the following algorithm: 

Step 1.	� Compute the steady state (ȳ, x̄) of the unrestricted RE model (1);
Step 2.	� Arrange variables in y and x in vectors [yu, yr] and [xu, xr] . Sort the equilib-

rium conditions into vectors f 0 , f 1 and f xr , and arrange them into the parti-
tion f =

[
f 0; f 1; f xr

]
 accordingly;

Step 3.	� Obtain matrices gx and hx for the unrestricted RE model, and partition 
them as follows 

 where gxu is (nyu × nxu)-dimensional, gxr is (nyu × nxr )-dimensional, jxu is (nyr × nxu)

-dimensional, jxr is (nyr × nxr )-dimensional, hxu is (nxu × nxu)-dimensional and hxr is 
(nxu × nxr )-dimensional;
Step 4.	� Set 

Step 5.	� Compute the partial derivatives f 1
y′
, f 1
x′
u

, f 1
yu

 , evaluate them at the steady state 
(x̄, ȳ) and check invertibility of the square matrix 

 Then compute 

ĝx(𝜃) =
⎛
⎜⎜⎝
gxu (𝜃) gxr (𝜃) +

�
∇(f 1)−1f 1

yr
jxr (𝜃)

�
nyu

−
�
∇(f 1)−1f 1

yr
jxr (𝜃)P(𝜃)

�
nyu

jxu (𝜃) 0nyr×nxr
jxr (𝜃)P(𝜃)

⎞
⎟⎟⎠
,

ĥx(𝜃) =

�
hxu(𝜃) hxr (𝜃) +

�
∇(f 1)−1f 1

yr
jxr (𝜃)

�
nxu

�
−∇(f 1)−1f 1

yr
jxr (𝜃)P(𝜃)

�
nxu

0 P(𝜃) 0

�

(32)gx =

(
gxu gxr
jxu jxr

)
, hx =

(
hxu hxr
0 P

)

(33)ĝxu = gxu , ĵxu = jxu , ĥxu = hxu ,

(34)ĝ𝜎 = 0, ĵ𝜎 = 0, ĥ𝜎 = 0;

∇(f 1) =
[
f 1
y�
gxu + f 1

x�
u

, f 1
yu

]
.

(35)

(
ĥxr,−1
ĝxr,−1

)
= − ∇(f 1)−1f 1

yr
jxrP
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Step 6.	� Derive the minimal state space representation under timing restrictions as 
follows 

LR Test

We here illustrate the derivation of the LR test upon which our bootstrap procedure 
builds. To this end, let us start with the representation in Eq. (8) in the main text. 
The innovation form representation associated with the latter can be written in the 
form

where Kt = Kt(��) is the Kalman gain and

are the innovation residuals with covariance matrix

and Pt∣t−1 = E((xt − x̂t∣t−1)(xt − x̂t∣t−1)
� ∣ F

y

t−1
) , P1∣0 being given. Imposing the nor-

mality of �t in (42), i.e.

the estimation of � can be accomplished via Gaussian maximum likelihood 
estimation.

(36)
(
ĥxr
ĝxr

)
=

(
hxr
gxr

)
+ ∇(f 1)−1f 1

yr
jxr

(37)ĵxr,−1 =jxrP

(38)
⎛
⎜⎜⎝

x�
u

x�
r

xr

⎞
⎟⎟⎠
=

⎛
⎜⎜⎜⎝

ĥxu ĥxr ĥxr,−1
0nxr×nxu

P 0nxr×nxr
0nxr×nxu

Inxr×nxr
0nxr×nxr

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

xu
xr

xr,−1

⎞
⎟⎟⎠
+ 𝜎

�
𝜖xu
𝜖xr

�

(39)
�
yu
yr

�
=

�
ĝxu ĝxr ĝxr,−1
ĵxu 0nyr×nxr

ĵxr,−1

�⎛
⎜⎜⎝

xu
xr

xr,−1

⎞
⎟⎟⎠

(40)x̂t+1∣t =h̃x(𝜙)x̂t∣t−1 + Kt 𝜖t(𝜙)

(41)yt =g̃x(𝜙)x̂t∣t−1 + 𝜖
t
(𝜙)

(42)𝜖
t
= yt − g̃x(𝜙)x̂t∣t−1

(43)Σ𝜖 ,tg̃x(𝜙)Pt∣t−1
g̃x(𝜙)

� + JΣ𝜔J
�

yt ∣ F
y

t−1
∼ N(g̃x(𝜙)x̂t∣t−1, Σ𝜖,t)
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Let �T (�) be the Gaussian log-likelihood function associated with the state space 
model in (40)–(41). The essential part of the log-likelihood �T (�) , denoted for sim-
plicity by 𝓁◦,T (�) ∶=

∑T

t=1
l(yt ∣ F

y

t−1
;�) , is given by

where �t(�) and Σ�0,t(�) are defined above. Given 𝓁◦,T (�) in (44), the ML estimator 
of � solves

and can be computed by combining the Kalman filter with numerical optimization 
methods. To estimate the structural parameters in � , we can consider analogs of sys-
tems (40)–(41) and replace h̃x(𝜙) and g̃x(𝜙) with ĥx(𝜃) and ĝx(𝜃) . The ML estimator 
of � is therefore obtained from

The LR test for the timing restrictions is then given in Eq. (10) in the main text.
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;�) = {log det(Σ�c,t(�)) + �0

t
(�)�Σ�0,t(�)

−1�0
t
(�)}

(45)𝜙̂T = arg max
𝜙∈PD

𝓁◦,T (𝜙)

(46)𝜃̂T = argmax
𝜃∈P𝜃
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T∑
t=1

{
log det(Σ𝜖0,t + 𝜖0,�

t
Σ−1
𝜖0,t

𝜖0
t

}
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