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Abstract: Neurogenesis is the process by which new brain cells are formed. This crucial event emerges
during embryonic life and proceeds in adulthood, and it could be influenced by environmental
pollution. Non-combustion-derived magnetite represents a portion of the coarse particulate matter
(PM) contributing to air and water pollution in urban settings. Studies on humans have reported
that magnetite and other iron oxides have significant damaging effects at a central level, where these
particles accumulate and promote oxidative stress. Similarly, magnetite nanoparticles can cross the
placenta and damage the embryo brain during development, but the impact on neurogenesis is still
unknown. Furthermore, an abnormal Fe cation concentration in cells and tissues might promote
reactive oxygen species (ROS) generation and has been associated with multiple neurodegenerative
conditions. In the present study, we used zebrafish as an in vivo system to analyze the specific effects
of magnetite on embryonic neurogenesis. First, we characterized magnetite using mineralogical
and spectroscopic analyses. Embryos treated with magnetite at sub-lethal concentrations showed
a dose-response increase in ROS in the brain, which was accompanied by a massive decrease in
antioxidant genes (sod2, cat, gsr, and nrf2). In addition, a higher number of apoptotic cells was
observed in embryos treated with magnetite. Next, interestingly, embryos exposed to magnetite
displayed a decrease in neural staminal progenitors (nestin, sox2, and pcna markers) and a neuronal
marker (elavl3). Finally, we observed significative increases in apoeb (specific microglia marker)
and interleukin-1b (il1b), confirming a status of inflammation in the brain embryos treated with
magnetite. Our study represents the very first in vivo evidence concerning the effects of magnetite
on brain development.
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1. Introduction

Neurogenesis represents a complex process, which occurs during embryogenesis and
throughout a person’s lifetime, through which neural stem cells can originate multiple
mature cell types—neurons, astrocytes, and oligodendrocytes [1]. During development,
once the neural tube is formed within the lumen, and it is possible to observe a high number
of asymmetrically dividing neuronal progenitors, which express molecular markers of
stemness. The neurogl (neurogeninl) gene is one of the first pro-neural genes to produce
transcription factors together with ascl (achaete-scutel) [2,3]. These transcription factors
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are known as the basic Helix-Loop-Helix (/HLH). Under the strict spatio-temporal control
of “neurogenetic gradients”, progenitors give rise to the formation of differentiated cells.
Shh has a key signal inducer role and is needed for the concentration-dependent activation
of neurog1 and asc1, which causes the formation of thalamic nuclei in the vertebrates [4].
The balance between the differentiation and self-renewal of progenitors is related to the
downregulation of stemness markers and the upregulation of specificity markers [5,6]. All
neurogenetic processes are perfectly orchestrated from several regulating pathways, which
act in different brain regions and involve multiple factors, including genetic, physiologic,
and environmental ones [7,8]. Pollution represents one of the major environmental factors
impacting brain physiology, both in adulthood and during development [9]. Exposure
to metal-bearing particulate matter (PM), indeed, has been widely associated with neu-
rodevelopmental and neurodegenerative disorders and cognitive dysfunctions [10,11].
Both fine (PM2.5) and coarse (PM10) particles can enter the body through the respira-
tory and gastrointestinal tracts, so they can gain access to multiple organs, including the
brain, depending on their physical and chemical properties (e.g., morphometry or sur-
face charge) [12]. While the European Union’s zero-pollution action plan is successfully
reducing the number of premature deaths caused by PM2.5 [13], association studies across
different countries/regions have highlighted an increased risk in daily all-cause mortality
due to coarse PM inhalation [14]. Magnetite (Fe?*Fe®*,0,) represents the main PM10
component of the underground transportation system. In addition, in urbanized areas,
the water distribution system can act as an effective sink for atmospheric PM [15,16]. Fe
accumulation in organisms is associated with increased reactive oxygen species (ROS)
production and oxidative stress driven by Fenton reactions, which can induce neurotox-
icity [17]. Indeed, several neurodegenerative diseases such as Parkinson’s disease (PD)
and Alzheimer’s disease (AD) are associated with abnormal concentrations of iron [18].
Studies on humans, as highlighted by Gieré, magnetite nanoparticles and other nanosized
Fe oxides can easily enter through the olfactory system [19], cross the blood—brain barrier,
and reach the brain tissues, contributing to oxidative-stress-based brain damage [20]. The
toxic effects of magnetite on neuronal function seem to be related to magnetite’s ability
to trigger oxidative stress and promote neuronal inflammation [21]. In particular, several
studies have shown that the presence of magnetite nanoparticles in brain samples from AD
subjects is strictly associated with beta-amyloid plaques [18,22,23]. A similar association has
been reported in brain-degenerative features associated with PD [24]. In addition, in vitro
studies have suggested that iron oxide nanoparticles, including magnetite, can cross the
placental barrier, reaching the embryo and inevitably affecting its development [25,26].
One study performed in chicken revealed that maternal exposure to magnetite allowed
these particles to reach the embryo, causing damaging cerebral effects [27]. Neverthe-
less, at the present time, no evidence has shown whether cleavage fragments detaching
from coarse magnetite particles or elemental Fe released by coarse magnetite particles can
affect brain cell formation processes during development. One in vitro study on mouse
pluripotent stem cells showed that immoderate magnetite stimulation can impact neuronal
differentiation and can affect the function of more susceptible neurons, such as dopamin-
ergic ones [28]. Nevertheless, no similar report in vivo is available. In the present study,
therefore, we aim to investigate the potential toxicity of non-combustion-derived magnetite
particles on embryonic brain cell formation by using one of the most advantageous animal
models in the field of neurobiology research: zebrafish (Danio rerio) [29,30]. The zebrafish
is a teleost fish, belonging to the family of Cyprinidae, presenting different characteristics
(e.g. small size, high fecundity, ex utero and transparent offspring, rapidity of embryonic
development, etc.) that make it a formidable animal model for conducting toxicology
studies related to both embryogenesis and adulthood [31]. In the last 20 years, this small
fish also became an excellent model for the in vivo investigation of neural regeneration
and neurogenesis, as it has nervous system cellular physiology that is sufficiently analo-
gous to that of mammals [32,33]. Here, we firstly characterized magnetite nanoparticles
by mineralogical and spectroscopic analyses, and then we exposed zebrafish larvae at
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different sub-lethal concentrations of magnetite to analyze oxidative stress patterns and
the expression of marker genes of neuronal precursors, as well as of more differentiated
brain cells.

2. Results
2.1. Mineralogical Characterization of Magnetite

The characterization of commercial magnetite was performed to confirm the com-
mercial sample mineralogical identity and the semi-quantitative chemical composition.
The characterization of commercial samples is routinely performed by our laboratory for
each use of any inorganic compounds to assure the repeatability of the experiments, since
variation between different batches of the same product might occur.

The PXRD spectrum and the peaks within match with the expected ones for magnetite
crystals (JCPDS record 00-019-0629) described in the literature (Figure 1). The SEM-EDXS
spot semi-quantitative standardless chemical analyses confirmed the presence of only
Fe-based mineral phases.

1100 3
1000
900
800
700
600
500
400
300
200
100

0 ||II\Tl\I|I|]I|I||III|I|]I|I[I1|I\II|I|II|\I|\|I\I]|IIII|\II\|]II\

10 20 30 40 50 60 70
20

Figure 1. PXRD spectrum collected on the non-combustion-derived magnetite sample. The significa-
tive dpy spacings are indicated above each peak and are inversely proportional to the detected 20
values indicated in the x-axis. Counts per second are indicated as “Cps”.
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2.2. Morphometric Evaluation of Magnetite

Next, we performed a morphometric evaluation of commercial magnetite particles by
means of SEM secondary electron imaging.

The particles have a homogeneous massive morphology, with smooth facets and
well-defined edges (Figure 2a). Some of the particles are collected in aggregates. These
aggregates achieve a dimension of over 200 um. The presence of aggregates is a consequence
of the ethanol droplet drying when transferred onto the carbon tape. The dimensional
distribution of the particles’ Feret diameter has a Gaussian right skewed shape (Figure 2b).
The dimensional distribution has a range that goes from a Feret diameter of 2.904 um to
99.890 um (mean Feret diameter 24.702 um; o(,_1y = 16.979; n = 791). Most of the particles
in this distribution are assigned to the bin that has a centroid located at 8.828 pm (having a
minimum at 7.570 um and a maximum at 10.090 um), while the mean diameter is 24.702 pm.
Following the bin with the higher number of particles (centroid located at 8.828 um), the
more populated bins were the ones with the centroids at 11.350 pm, 13.872, and 16.395 um.
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Figure 2. (a) Magnetite particles and agglomerates in a secondary electron image acquired by SEM at
1000 x magnification; (b) dimensional distribution of the Feret diameters (SEM data). The relative
frequency of the number of particles (1 = 791) distributed in each bin is indicated on the y-axis, while
the centroids of each bin in which the particles of the related dimensional range are assigned are
indicated on the x-axis.

2.3. Atomic Resolution Microscopy and Dual-EELS on Magnetite Nanoparticles and
Cleavage Fragments

The presence of a small amount of magnetite nanoparticles or cleavage fragments in
the particle population given to the zebrafish larvae was confirmed by ARM observations
(Figure 3a). All nanoparticles and cleavage fragments were crystalline and compatible with
the magnetite crystal lattice (Figure 3b). The EDXS signal related to Si-based compounds
was detected in some of the observed particles. The Dual-EELS analyses allowed us to
determine an average valence state of 2.48 (0,1 = 0.11) at the boundary of the magnetite
particles (n = 15).
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Figure 3. (a) Agglomerate of magnetite nanoparticles or cleavage fragments observed in Medium-
Angle Annular Dark Field (MAADF); (b) atomic resolution detail of a region of interest (orange arrow
origin). The image was filtered using an Inverse Fast Fourier Transform (IFFT) function to improve
the visibility. Red arrow indicates the crystallographic direction of the ROL.

2.4. Toxicological Monitoring of Zebrafish Embryos

To define sub-lethal concentrations of magnetite (M), at 2 hpf 180 embryos (30 for
each condition) were collected and treated with water-suspended magnetite at different
concentrations (0; 100; 200; 400; 600; 800 pg/mL).

Survival was monitored every 24 h. The survival rate was described as the percentage
of dead fishes after 96 h as compared with the control group. As shown in the figure
(Figure 4a—d), we observed a significant decrease in survival of the embryos treated with
high concentrations of magnetite (600 and 800 pg/mL). A morphological evaluation of the
dead embryos underlined the presence of multiple tissue defects, such as heart edema and
impaired blood circulation coat or tail damaged (Supplementary Figure S1). Differently, no
significant differences in survival rates and morphology were observed among the groups

M100, M200, and M400. Thus, we decided to use these sub-lethal concentrations for the
further experiments.

a b
24 hpf 48 hpf
100 100
o=0=9 P= =11
80 80
X X
< 60 E < 60
s s -
5 40 =] 40
1) w
20 20
0 T T T 0 T T T
NT M100 M200 M400 M600  M800 NT M100 M200 M400 M600  MB800
c d
72 hpf 96 hpf
oo 100 :lj
80
X X
© = 60
2 2
: T R
=1 =
(5] 2]
20
T T T 0 T - T T
NT M100 M200 M400 M600  M800 NT M100 M200 M400 M600  M800

Figure 4. Percentage of survival of non-treated zebrafish embryos and those treated with magnetite
(M) at different concentrations at 24 hpf (a); 48 hpf (b); 72 hpf (c); and 96 hpf (d).
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2.5. Magnetite Exposure Increases Oxidative Stress and Apoptosis in Zebrafish Embryo Brain

Previous in vitro studies showed that cells treated with magnetite present a significant
induction of ROS and increased apoptosis [34]. In detail, the authors showed that magnetite
selectively releases Fe cations inside cells which, due to Fenton reactions, promotes the
formation of ROS and apoptosis. To verify this hypothesis in our in vivo system, we
treated zebrafish embryos with different sub-lethal concentrations of magnetite, and then
we detected the level of oxidative stress by the CellROX Deep Red assay. As shown in
Figure 5a, we observed a significant increase in ROS levels in the brain from embryos
treated with magnetite at concentrations of 200 and 400 pg/mL.

a
Cell-Rox Deep Red
Non-treated + Magnetite 100 pg/mL
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b
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Figure 5. (a) Oxidative stress detection (ROS are indicated with red arrow) in brain from embryos
treated with different concentrations of magnetite (100; 200; 400 pug/mL) (lateral view of the head);
microscope’s magnification 20x (b) gRT-PCR gene expression analysis of sod2, cat, gsr, and nrf2 in
dissected heads from control and magnetite-treated (M) embryos at 96 hpf (for each group, n = 10
heads were pooled). Each experiment was repeated independently three times. Statistical significance
was calculated by one-way ANOVA (multiple comparison Tukey—Kramer post hoc test) (* p < 0.01;
** p < 0.001; *** p < 0.0001; ns = not significant). Center values denote the mean =+ SD.
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Differently, no significant levels were detected in embryos treated with 100 ug/mL
magnetite or controls (Figure 5a). Consistently, zebrafish embryos treated with magnetite
displayed a significant decrease in brain expression levels of key antioxidant genes: super-
oxide dismutase (sod2), catalase (cat), and glutathione reductase (gsr) and the transcription
factor (nrf2) (Figure 5b). Next, we also evaluated the apoptosis at 96 hpf by using the
TUNEL assay kit. We found a significant dose-dependent increase in the number of
TUNEL-positive cells in the brain from magnetite-treated embryos than un-treated controls
(Figure 6a,b).
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Figure 6. (a) TUNEL staining of brain apoptotic cells (see white rectangle) from controls and embryos
treated with different concentrations of magnetite (100; 200; 400 pug/mL) at 96 hpf (lateral view of the
head); microscope’s magnification 20x; (b) counting of TUNEL-positive cell number. Each experi-
ment was repeated independently three times (1 = 15 animals for each condition). (M = magnetite)
Statistical significance was calculated by one-way ANOVA (multiple comparison Tukey—Kramer post
hoc test) (* p < 0.01; ** p < 0.001; *** p < 0.0001). Center values denote the mean =+ SD.
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2.6. Magnetite Treatment Decreases Neural Progenitors in Zebrafish Embryo

To evaluate the impact of magnetite during embryonic neurogenesis, as mentioned
before, we treated embryos with magnetite (MT) (100, 200, and 400 ug/mL) and then
fixed them at 96 hpf. To evaluate the effects of magnetite on neural progenitor cells, we
analyzed the expression levels of the nestin gene, described as the main marker of these
precursors [35]. Embryos treated with magnetite showed a significant dose-dependent
reduction in nestin-expressing cells in the ventricular forebrain (FV) and the post-midbrain
(PM) compared to non-treated embryos (Figure 7a). Consistently, the qRT-PCR analysis
showed that total brain nestin transcript levels were lower in the magnetite-treated (200 and
400 pg/mL) group than in the un-treated group (Figure 7b).
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Figure 7. (a) WISH for nestin in controls and magnetite-treated (MT) embryos (100, 200, and
400 ug/mL) at 96 hpf (dorsal view). White line highlights two specific regions: FV (ventricular
forebrain) and PM (post-midbrain); microscope’s magnification 20x (b) qRT-PCR data examining
nestin expression levels (fold change relative to expression in un-treated embryos) in dissected heads
from embryos at 96 hpf (for each group, n = 30 heads were pooled). Each experiment was repeated
independently three times. Statistical significance was calculated by one-way ANOVA (multiple
comparison Tukey—Kramer post hoc test) (** p < 0.001; *** p < 0.0001; ns = not significant). Center
values denote the mean + SD.
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In parallel, we also evaluated the expression levels of the transcription factor sox2
(marker of stem cell progenitor) by using fluorescence in situ hybridization. We found a
significant lowering of the sox2-expressing cell number in the ventricular forebrain region
of magnetite-treated embryos compared to controls (Figure 8a—c).
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Figure 8. (a) Schematic region (dorsal view) of the ventricular forebrain (FV). (b) Fluorescence in situ
hybridization for sox2 in FV of control and treated embryos (100, 200, and 400 ng/mL of magnetite
MT) at 96 hpf (dorsal view). Each experiment was repeated independently three times. (c) Statistical
significance was calculated by one-way ANOVA (multiple comparison Tukey—Kramer post hoc test)
(* p <0.01; ** p < 0.001; ns = not significant). Center values denote the mean + SD.

2.7. Magnetite Treatment Affects Neural Cell Proliferation in Embryo Zebrafish Brain

To evaluate whether the proliferative potential of neural precursors could be affected
by magnetite treatment, we analyzed the expression of the proliferating cell nuclear antigen
gene (pcna), a marker of cell proliferation, which is highly expressed during neurogene-
sis [36]. As shown, we found a significative reduction in pcna-expressing cells in the FV
and PM brain regions in treated embryos (200 and 400 pg/mL) compared to non-treated
ones (Figure 9a). Consistently, a significant reduction in the total brain pcna transcript was
found in treated embryos, a result found via the qRT-PCR analysis (Figure 9b).
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Figure 9. (a) WISH for pcna in magnetite (MT)-treated and non-treated embryos at 96 hpf (dorsal
view). White line highlights FV (ventricular forebrain) and PM (post-midbrain) regions; microscope’s
magnification 20x; (b) qRT-PCR data examining pcna expression (fold change relative to expression
in non-treated embryos) in dissected heads from embryos at 96 hpf (for each group, n = 30 heads
were pooled). Each experiment was repeated independently three times. Statistical significance
was calculated by one-way ANOVA (multiple comparison Tukey—Kramer post hoc test) (* p < 0.01;
** p < 0.001; ns = not significant). Center values denote the mean + SD.

2.8. Magnetite Exposure Increases Inflammation and Microglia Cells in Embryo Zebrafish Brain

Based on our results, we found that magnetite increased oxidative stress and apoptosis;
thus, we also investigated the impact of magnetite on microglia cells. These cells represent
a specific macrophage population resident in the brain, which plays a crucial role during
embryonic development. We performed in situ hybridization for the apoeb gene (specific
maker of zebrafish microglial cells) in dissected heads from control and magnetite-treated
embryos (Figure 10a,b). We observed a significant boost in the microglial cell number
in the brains from treated embryos. In addition, by qRT-PCR analysis, we also found an
increase of the interleukin-1b (il1b) gene, described as the main mediator of inflammation
(Figure 10c). These data strongly support the hypothesis that magnetite induces brain
inflammation during embryonic development.
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Figure 10. (a) WISH for apoeb (microglia marker) in non-treated and treated embryos at 96 hpf (dorsal
view of the brain), microscope’s magnification 20 x; (b) Counting of apoeb-expressing cells. Statistical
significance was calculated by one-way ANOVA (multiple comparison Tukey-Kramer post hoc test)
(* p <0.01; ** p < 0.001; ns = not significant). (c¢) qRT-PCR data examining i/1b expression (fold
change relative to expression in non-treated embryos) in dissected heads from embryos at 96 hpf (for
each group, n = 30 heads were pooled). Statistical significance was calculated by one-way ANOVA
(multiple comparison Tukey—Kramer post hoc test) (* p < 0.01; *** p < 0.0001; ns = not significant).
Each experiment was repeated independently three times. Center values denote the mean =+ SD.

Next, we verified the effects of magnetite exposure on the glial cell population by
measuring the expression of the glial fibrillary acidic protein (gfap), a main marker [37].
As shown in Figure 11, we found a significative increase in gfap in the ventricular zone
of the forebrain and posterior midbrain (Figure 11a) in embryos treated with magnetite
(200 and 400 pug/mL) compared to un-treated embryos. We confirmed this observation
by a qRT-PCR analysis of gfap transcript levels in the total brain. The results showed a
significant increase in this marker in embryos exposed to magnetite (200 and 400 pug/mL)
(Figure 11b).



Int. J. Mol. Sci. 2024, 25, 6459

12 of 20

MNondreated + MT 100 pg/mL + MT 200 pg/mL + MT 400 pg/mL

gfap at 96 hpf

24124

X

Fold change
- - il
= o (=]
] 1 ]
*

=
o
1

MT r100 M200 h400

Figure 11. (a) WISH for gfap in (dorsal view) non-treated and MT-treated embryos at 96 hpf. FV
(ventricular forebrain); PM (post-midbrain) microscope’s magnification 20x; (b) qPCR data examin-
ing gfap expression (fold change relative to expression in non-treated embryos) in dissected heads
from embryos at 96 hpf (for each group, n = 30 heads were pooled). Each experiment was repeated
independently three times. Statistical significance was calculated by one-way ANOVA (multiple
comparison Tukey-Kramer post hoc test) (* p < 0.01; ** p < 0.001; ns = not significant). Center values
denote the mean + SD.

2.9. Impact of Magnetite Exposure on Embryo Neuron Specification

Lastly, we tested the effect of magnetite on neuronal cells. Thus, we examined the
expression of the elavl3 gene, also known as huc, the earliest marker of pan-neuronal cells
in zebrafish embryos [38]. Embryos treated with magnetite (200 and 400 ng/mL) presented
a significant decrease in elavi3-expressing cells in the midbrain and hindbrain regions
compared to controls (Figure 12a). This evidence was also confirmed by a total brain elavi3
gene expression evaluation (Figure 12b).
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Figure 12. (a) WISH for elavl3 gene in un-treated and MT-treated embryos at 96 hpf (dorsal view).
Mb (midbrain); Hb (hindbrain) microscope’s magnification 20x;(b) qPCR data examining elavl3
gene expression (fold change relative to expression in un-treated embryos) in dissected heads from
embryos at 96 hpf (for each group, n = 30 heads were pooled). Each experiment was repeated
independently three times. Statistical significance was calculated by one-way ANOVA (multiple
comparison Tukey—Kramer post hoc test) (* p < 0.01; ** p < 0.001; ns = not significant). Center values
denote the mean + SD.

3. Discussion

In the present study, we investigated the effects of magnetite on embryonic neurogen-
esis using one of the most suitable in vivo models in neurobiology research: the zebrafish
model. Firstly, we confirmed the mineral phase of the starting commercial magnetite
powder by defining the particles” morphometry and the dimensional distribution by PXRD
and SEM-EDXS analyses. Additionally, to verify the presence of a nanosized component
in the particle population, we performed an ARM analysis that highlighted the presence
of a small portion of nanosized magnetite agglomerates in the sample that would have
been administered to zebrafish embryos. Subsequently, in agreement with previous stud-
ies [27,39], we established that the exposure of fish embryos to magnetite concentrations
up to 400 ug/mL does not affect embryo viability, as it does not induce morphological
defects in key tissues/organs. With the great advantage of embryo transparency presented
by the zebrafish model, we were able to measure in vivo the redox state within the brain of
magnetite-treated fishes, confirming a dose-dependent increase in ROS levels. The increase
in ROS levels might be associated with magnetite coarse particles, with the small portion
of nanoparticles, or with the nanosized cleavage fragments following different pathways:
(i) the particles or cleavage fragments are acting as Fe reservoirs, but are not directly par-
ticipating in the ROS generation; (ii) the generation of ROS is promoted at the surface of
the particles or of the cleavage fragments by surface-bound Fe; (iii) mineral surface defects
can react with the surrounding media to generate ROS [40]. The detection of an average
valence state of 2.48 (0,1 = 0.11) on the nanosized component of our sample confirmed the
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possibility of a Fenton reaction to happen, generating ROS. Consistently, after magnetite
exposure, brain antioxidant genes (including the transcription factor nrf2) were observed
to be decreased, while the apoptotic cells increased significantly. Our data reinforced the
results obtained by other research groups on in vitro cell models, showing that magnetite
treatment promotes oxidative stress and cell death [31]. During embryonic life in humans,
maternal exposure to air pollutants was observed to affect neurodevelopment as well as
brain postnatal maturation [41,42]. Several human studies described a positive correlation
between the accumulation in the brain of elemental Fe, magnetic Fe oxides (including
magnetite), and magnetite nanosized cleavage fragments and the development of neurode-
generative features and cognitive dysfunction [43-45]. However, to date, no previous study
has investigated whether brain magnetite accumulation might have an impact on neuroge-
nesis events. Here, we evaluated key cell markers of embryonic neurogenesis. Specifically,
developmental neurogenesis in zebrafish relies on stem cells producing zones, such as
in midbrain and forebrain, that contain neuronal precursors with distinct fates. Within
these areas, after magnetite treatment, we observed a significant reduction in multiple
neurogenesis genes, described as key markers of neural and proliferative progenitors. A
summary of the marker genes analyzed is shown in Table 1.

Table 1. Summary of cell marker analysis.

Non-Treated Magnetite 100 ug ~ Magnetite 200 ug Magnetite 400 ug

Nestin +++ +++ ++ +
sox2 +++ +++ ++ +
Pcna +++ +++ ++ +
elavl3 +++ +++ ++ +
Gfap +++ +++ ++++ +++++
Apoeb +++ +++ ++++ +++++
il1b +++ +++ ++++ +++++

The reduced expression of neurogenesis markers in fish embryos exposed to magnetite
let us also hypothesize a potential impairment in the downstream neuronal and glial proge-
nies. Magnetite-exposed embryos, indeed, showed lower elavi3-expressing cell number,
identifiable as “new born” neurons, while apoeb (microglia cell marker), i[1b, and gfap (glial
cell marker) increased, confirming a status of neuroinflammation.

4. Material and Methods
4.1. Powder X-ray Diffraction (PXRD)

Commercial magnetite particles (Inoxia, Ltd., Cranleigh, UK, no. 0029882792582)
were first characterized by PXRD. The PXRD data were collected on the sample using a
Miniflex 600 diffractometer (Rigaku, Tokyo, Japan) equipped with a Cu-Kal radiation
source (A = 1.54055 A, 40 mA, 45 kV), fixed divergence slits, and a multistrip D/TEX Ultra
detector with a resolution of <200 eV. A divergent slit width of 2 mm and a scatter-slit
width of 4 mm were used for the incoming beam, whereas a receiving slit width of 0.5 mm
and scatter-slit width of 0.2 mm were used for the diffracted beam. Data were collected
in step-scan mode in the 3°-70° 26 range, with a step size of 0.02° 20 and a counting time
of 2 s per step. Samples bearing metals have problems of background. To eliminate the
elevated background and fluorescence phenomenon, the detector multistrip D/tex was
added with the function “XRF Reduction”. The sample was put in a holder made of Al
using the “side loading” technique to avoid a preferred orientation of the particles [46].

4.2. Scanning Electron Microscopy

The SEM investigation was performed using a SEM (Tescan Vega 3®, Brno, Czech
Republic) operating at high vacuum and at a voltage of 30 KeV. The SEM was equipped
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with an Energy-Dispersion X-Ray Detector (EDXS) (Oxford, Abingdon, UK) managed by
AztecONE software version 6.0 (Oxford, Abingdon, UK). The magnetite particles were
briefly suspended in ethanol and transferred onto an Al SEM stub covered by carbon tape
(Media System Technologies®, Macherio, MB, Italy). Pictures were acquired at 1000 x
magnification then edited and measured with Image] software (https://imagej.net) FIJI
distribution, NIH, Bethesda, MD, USA), [47]. After drawing the perimeter of each particle,
multiple dimensional parameters were automatically calculated by the software. Among
these parameters, we selected the Feret diameter to generate the dimensional distribution
of the investigated population using the XLSTAT plugin for Excel 2021 (Addinosoft, NY,
USA). Furthermore, we collected several EDXS spectra on different particles to confirm
the identity of the material by means of a semi-quantitative standardless analysis. Each
spectrum was collected with a live time of 20 s and elaborated using the AztecOne software.

4.3. Atomic Resolution Scanning Electron Microscopy (ARM) and Dual-Electron Energy-Loss
Spectroscopy (Dual-EELS)

The commercial magnetite sample was suspended in 2-propanol and thoroughly
shacked. A droplet of the magnetite sample suspended in 2-propanol was transferred with
a pipette on a 200 mesh TEM lacey carbon copper grid (SPI Supplies, West Chester, PA,
USA) positioned within inverted tweezers to allow for the collection of all the suspended
material. After the transfer, the droplet was left drying before mounting the grid onto the
TEM holder. The goal of this analysis was to determine the possible presence of a small
amount of magnetite nanoparticles or nanosized cleavage fragments in the coarse magnetite
commercial sample. This study allowed to further confirm the identity of the minerals used
to treat the zebrafish embryos and determine the average Fe valence state of the magnetite
nanoparticles and cleavage fragments. These investigations were performed using an
aberration-corrected Scanning/Transmission Electron Microscope (acSTEM), model ARM
200 CF, equipped with a high-brightness cold-field emission gun (CFEG) operating at
80 kV, an energy-dispersive X-ray spectroscopy (EDXS) system (Centurio 100 mm?, JEOL,
Tokyo, Japan), and an energy filter (Quantum GIF, Gatan—Warrendale, PA, USA). The
recording of the Dual-range EELS spectra was performed with a collection semi-angle of
60.39 mrad, with a convergence semi-angle of 24.00 mrad, and using an aperture of 5 mm.
The collection of the EELS spectra on the region of interest (ROI) was performed in dual
mode with a dispersion of 0.25 eV /channel. Both the low-loss region (used for centering the
beam only) and the core-loss regions (located at the Fe L; 3-edge) were recorded summing
up three frames, allowing for an early screening on the ELNES for the possible presence of
artefacts due to the exposition of the sample to the electron beam [48]. Each frame of the
low-loss region was recorded over a period of 0.001 s, whereas each frame of the core-loss
regions was recorded over a period of 30 s for the Fe L, 3-edge. The HQ dark correction
was applied to reduce the noise originated when working with summed spectra. The Fe
valence state in the selected region of interest (ROI) on the magnetite particle boundaries
was determined by using the Fe-L, 3 white-line intensity ratio by using the universal curve
as already applied in similar experimental conditions to guarantee the repeatability of the
results [31].

4.4. Zebrafish Embryos

Fishes were raised according to FELASA and European guidelines. No authorization
was required since all experiments were performed before 5 days post-fertilization. All
efforts were made to comply to the 3R guidelines. Embryos were obtained as described
previously [49,50]. Zebrafish embryos were treated from 4 h post-fertilization (hpf) up to
96 hpf with different magnetite concentrations (100; 200; 400; 600; 800 pug/mL) to define
the survival rate and morphology defects. The magnetite concentrations were established
based on a previous toxicology analysis performed by Jurewicz and colleagues [51]. Only
fertilized eggs with a normal developmental phase were used for the experiments. Every
experiment was performed in triplicate.
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4.5. Reactive Oxygen Species (ROS) Detection and TUNEL Assay

The detection of oxidative stress was performed on living zebrafish embryos at 96 hpf
by using CellROX Deep Red (Invitrogen, Waltham, MA, USA). Magnetite-treated and con-
trol embryos were exposed to 5 uM of the CellROX solution for 30 min at 28 °C, followed
by analysis using fluorescence microscopy, as previously described [52]. Apoptotic cells
were examined by the TUNEL assay. Embryos were fixed with 2% paraformaldehyde
overnight at 4 °C. After gradual rehydration, embryos were permeabilized with 25 ug/mL
of proteinase K for 10 min at 28 °C followed by treatment with 4% paraformaldehyde and in-
cubated with 90 pL labeling solution plus 10 uL enzyme solution (In Situ Cell Death TUNEL
Detection Kit, Roche Diagnostic, Chicago, IL, USA) at 37 °C for 2 h. Embryos were washed
three times with PBT for 5 min, and the images were examined by confocal microscopy.

4.6. Whole-Mount In Situ Hybridization (WISH)

The digoxigenin-labeled probes nestin, pcna, elavl3, gfap, sox2, and apoeb were generated
as previously described [53]. Whole-mount in situ hybridization was performed on 4%
paraformaldehyde-fixed embryos at 96 hpf following the protocol previously described [54].
Embryos were imaged in 100% glycerol using a Compact Multi-Lens Stereo Microscope
(AM-Scope) with a Digital Eyepiece Camera (Swift company, Swiss, Bern). For fluores-
cence revelation, all embryos were immersed in anti-DIG POD antibody (Roche Diagnostic,
Chicago, IL, USA) (1:200) in the above-described blocking solution for 24 h at room temper-
ature. Next, embryos were washed 4 times in PBS (5 min each). Afterwards, embryos were
visualized using the Red Fluorescent Detection set (Roche Diagnostic, Chicago, IL, USA)
according to the kit’s instructions using a Leica (Leica Microsystems, Wetzlar, Germany)
SP2 confocal microscope. The synthesis of riboprobes was carried out by using the primer
sequences listed in Table 2.

Table 2. Primers sequences for synthesis of WISH probes.

Nestin F: 5-GCAGCCAACAACTATCAGAAAC-3 R: 5-CATCGAGGTACTGCTTGGT-3
Pcna F: 5-CCTTAAGAAGGTCCTGGAG-3' R: 5-CCACACAACTGTATTCCTGCTC-3
elavl3 F: 5-CCATGGAAACTCAGGTGTC-3 R: 5-GTCAGCTGCTCCTAGT-3
gfap F: 5-CATCTATCAGGAGGAGCTG-3/ R: 5-CTCAGCTGGCGCTCCA-3'
50x2 F: 5-CCCTGATGAAGAAGGACAAGT-3' R: 5-GTTGTGCGCGTTCAAACTC-3'
apoeb F: 5-CACAAACTGACGGCATGGT-3/ R: 5-CGGTTCTTCACGTCATCTG-3'

4.7. RNA Extraction and Reverse Transcription

To extract the total RNA, 120 embryo heads (30 heads for each condition) at 4 days post-
fertilization (dpf) were dissected, pooled, and dissociated by using an RN Aeasy minikit
(Qiagen, Frankfurt, Germany). To obtain purified RNA, we followed the manufacturer’s
protocol. This procedure was repeated in three independent experiments (90 embryos in
total for each condition). For reverse transcription into cDNA, 0.5 ug of total RNA was
incubated with a buffer mix and enzyme using the Superscript III First-Strand Synthesis
System kit (Invitrogen, Boston, MA, USA). In detail, 10 pL of the total volume was incubated
for 10 min at 25 °C, 30 min at 50 °C, and 5 min at 85 °C. Next, the samples were treated
with RNase-H (ThermoFisher Scientific, Waltham, MA, USA) for 30 min at 37 °C.

4.8. Quantitative Real-Time Polymerase Chain Reaction (qQRT-PCR)

Quantitative RT-PCR experimental procedures were performed by using a thermocy-
cler with a MyiQ detector (Bio-Rad, Hercules, Dallas, TX, USA). Briefly, we mixed cDNA,
specific forward and reverse primers, SYBR-Green (Bio-Rad, Hercules, Dallas, TX, USA),
and RNase-free water according to the manufacturer’s protocol. The previous mix was
incubated for 15 min at 95 °C, for 15 s at 95 °C for 40 cycles, for 30 s at 60 °C for 40 cycles,
and for 30 s at 72 °C for 40 cycles. The primer sequences for the PCR gene amplification
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are listed in Table 3. Data are represented as the fold change of mRNA levels in magnetite-
treated embryos on mRNA levels in un-treated controls using efla to normalize the absolute
quantification, calculated using 244, To confirm the correct amplification, we performed
a melting curve analysis and verified the PCR’s efficiency. Each qRT-PCR experiment was
performed using biological triplicates. In the QRT-PCR analyses, each n represents the
average of biological triplicates from a single experiment. All experiments were repeated at
least three times.

Table 3. Primer sequences for qPCR gene amplification.

nestin

F: 5-CTTCAACATCTTCAGGCCCAAG-3’ R:5-GTGTTGGTCTGTCGATTCTCAG-3’

pcna

F: 5-CAAGGAGGATGAAGCGGTAACA-3'

R: 5-CTGCGGACATGCTAAGTGTG-3

elavl3

F: 5-GCCAGCTACGGAGTCAAGAG-3'

R: 5'-CATGGTGACGAAGCCAAAGC-3'

gfap

F: 5-ACCCGTGACGGAGAGATCAT-3

R: 5-GCCAGTGTCTGAGCCTCATT-3'

sod2

F: 5-CAGCAAGCACCATGCAACAT-3

R: 5-CAGCTCACCCTGTGGTTCTC-3'

cat

F: 5'-TGAGGCTGGGTCATCAGATA-3'

R: 5-AAAGACGGAAACAGAAGCGT-3'

gsr

F: 5-CTCCTTGGTCGCAGCATGGCT-3'

R: 5-GGCAGTGGTGGCACCGAGTTC-3

nrf2

F: 5-TGTTGGTTCGGAGGCTCTTAA-3’

R: 5-AGGCCATGTCCACACGTACA-3’

il1b

F: 5-ATGGCGAACGTCATCCAAGA-3'

R: 5-GAGACCCGCTGATCTCCTTG-3

efla

F: 5-CCTGGGAGTGAAACAGCTG-3'

R: 5-GCCTCCAGCATGTTGTCAC-3'

4.9. Statistical Procedures

Data were analyzed with GraphPad Prism 9.4.1 software (GraphPad Inc., San Diego,
CA, USA). Statistical comparisons were performed using a one-way ANOVA Tukey’s
multiple comparison test; p values equal to or less than 0.05 were considered statisti-
cally significant.

5. Conclusions

Taken together, our findings represent the first evidence in vivo of the effects of
magnetite on developing brain cells during embryogenesis. Despite more extensive stud-
ies being needed to clarify whether elemental Fe or magnetite cleavage fragments exert
the damaging increase of ROS and promote cell death, this study represents possible
insight into the specific mechanism connecting magnetite pollutant exposure and morpho-
functional brain defects during development.
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