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A B S T R A C T

The human musculoskeletal system is characterized by redundancy in the sense that the number of muscles
exceeds the number of degrees of freedom of the musculoskeletal system. In practice, this means that a given
motor task can be performed by activating the muscles in infinitely many different ways. This redundancy is
important for the functionality of the system under changing external or internal conditions, including different
diseased states. A central problem in biomechanics is how, and based on which principles, the complex of
central nervous system and musculoskeletal system selects the normal activation patterns, and how the patterns
change under various abnormal conditions including neurodegenerative diseases and aging. This work lays the
mathematical foundation for a formalism to address the question, based on Bayesian probabilistic modeling of
the musculoskeletal system. Lagrangian dynamics is used to translate observations of the movement of a subject
performing a task into a time series of equilibria which constitute the likelihood model. Different prior models
corresponding to biologically motivated assumptions about the muscle dynamics and control are introduced.
The posterior distributions of muscle activations are derived and explored by using Markov chain Monte Carlo
(MCMC) sampling techniques. The different priors can be analyzed by comparing the model predictions with
actual observations.
1. Introduction

Understanding the subtle interplay between the human central ner-
vous system (CNS) and the musculoskeletal system (MS) to generate
controlled movements to accomplish specific tasks is one of the central
problems in neurophysiology as well as in biomechanics. The muscu-
loskeletal system is characterized by muscle redundancy, whereby the
number of muscles actuating a desired movement exceeds the number
of degrees of freedom, implying that the desired movement can be
accomplished in multiple alternative ways. While this redundancy is
crucial for the system to work seamlessly under changing external
conditions without being too sensitive to perturbations, it also raises
the question of what strategy, if any, the human body follows to attain
the desired goal. The reductionist approach assumes the existence of
a cost function whose minimizer corresponds to the preferred muscle
activation pattern, while the uncontrolled manifold hypothesis assumes
that the activation pattern is an approximate optimizer among all
possible activations respecting the physiological bounds. The uncon-
trolled manifold approach is more flexible and can account for patterns
effectuating movements in which optimal activation is not possible,
as may be the case for non-healthy, non-adult or aged subjects, or
tasks performed in challenging environments, for example walking on
slippery ground. According to the uncontrolled manifold theory, the
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CNS controls only those movements – hence the muscles – necessary
to perform a given task and achieve a pre-defined goal. The activity
of the other muscles – and degrees-of-freedom – is not controlled as
tightly, allowing the musculoskeletal system to be flexible, to quickly
react to external unpredicted events, e.g., forces or obstacles. This is the
reason why a trained person can repeat a task with the same outcome,
selecting each time a slightly different strategy, resulting in a different
body kinematics. The body segments (e.g., femur, pelvis, tibia) are
actuated by the muscles, and move as the muscles contract in response
to a signal [1–4]. Exploring the continuum of possible solutions to
the muscle redundancy problem can be done by sampling techniques,
including Bayesian Monte Carlo techniques [5–7]. For a comprehensive
review of the different approaches that have been proposed in the
literature, see [8].

As pointed out in the cited review article [8], a shortcoming of most
solutions to the muscle redundancy problem is that the algorithms seek
the solutions considering one time frame at a time. The reasons for this
are twofold: Solving the dynamics of the musculoskeletal system over
multiple time frames (e.g. over the entire duration of a task) is more
computationally demanding albeit more physiologically plausible than
assuming time-independency, as the solution would need to be valid at
all frames simultaneously, and requires the definition of rules to mimic
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the process used by the CNS to select the muscle activation pattern.
The model that we propose in this work assumes that under normal
activation, i.e., when not performing maximal tasks, the body prefers
patterns limiting the total yank [9], defined as the time derivative of
the muscle forces. The present approach continues and extends the
work in [5,6] by putting the formalism in a Bayesian statistical context.
More specifically, the intrinsic objectives and bound constraints are
implemented as a priori information, while the information concerning
equilibrium conditions obtained by motion tracking constitutes the
likelihood: uncertainties in the tracking process as well as in translating
the motion capture data into generalized joint force configurations
contribute to the observation noise. In addition, we discuss previously
proposed optimization strategies with a reinterpretation in the Bayesian
framework providing a uniform framework for the comparison of dif-
ferent objective functions. The remainder of the article is organized as
follows. In the next section we present a concise mathematical formula-
tion of the muscle recruitment problem that is a basis for the likelihood
model. Section 3 provides an outline of the Bayesian formulation. The
full Bayesian model is developed in Section 4, where we introduce
prior densities encoding hypotheses about the physiological muscle
recruitment principles. Section 5 presents the details of the computa-
tional engine, the MCMC sampling algorithm. The performance of the
algorithm is demonstrated with computed examples in section 6.

2. Muscle activation problem

In this section, for completeness, we present a concise derivation
of the forwards model relating the muscle forces and the movement
that those forces generate, and state the related inverse problem whose
solution is the main topic of this paper. The body is modeled as a
link-segment system, and the muscle forces generate torques through
a lever arm model at the joints with given degrees of freedom which
translate into movements of the body. The forward problem consists
of computing the trajectories of the joints from known muscle forces,
while estimating the muscle forces from partial observations of the
movement is the corresponding inverse problem of interest to us.

In biophysics and robotics, the inverse dynamic problem, or inverse
structural dynamic problem seeks to find the generalized forces, or
torques that applied to joints of a link-segment model of a human
or an animal body or a robot effect a desired motion. For the sake
of definiteness, we assume that the task of interest is level walking
by a human, observed through a motion capture system that records
the paths of fiducial markers attached on the surface of the body.
Subsequently, the motion is encoded in terms of the degrees of freedom,
typically a set of angular variables related to the joints of the link-
segment model of the body. This translation is typically based on a
weighted least squares process, fitting the dynamic model prediction
based on the degrees of freedom to the observations, see, e.g., [10],
and the manual of OpenSim for details of the fitting process. In the
following, the dynamics of the link-segment model of the body is
encoded in terms of the vector-valued function 𝜃(𝑡) ∈ R𝑚, 0 ≤ 𝑡 ≤ 𝑇 ,
where the 𝑚 components of the vector represent the angular degrees
of freedom associated to the joints characterizing the model of the
body. It is assumed that the time course of the generalized coordinates,
combined with geometric information including the inertia tensors of
the limb segments and the reaction forces completely characterize the
dynamics of the system.

To solve the inverse dynamic problem of finding the generalized
forces, consider the Lagrangian function of the joint segment system,
given by

𝐿(𝜃, �̇�) = 𝐸kin(𝜃(𝑡), �̇�(𝑡)) − 𝑈 (𝜃(𝑡)),

where 𝐸kin is the kinetic energy of the system, and 𝑈 is the potential
energy [11]. The Lagrange equations

𝑑
(

𝜕𝐿
̇

)

− 𝜕𝐿 = 𝑇𝑗 , 1 ≤ 𝑗 ≤ 𝑚 (1)
2

𝑑𝑡 𝜕𝜃𝑗 𝜕𝜃𝑗 r
relate the generalized forces 𝑇𝑗 and the equations of motion of the
system. Assuming that the generalized coordinates are the joint rotation
angles, the generalized forces represent the corresponding torques. By
writing the kinetic energy as a quadratic form,

𝐸kin(𝜃, �̇�) =
1
2
�̇�𝖳𝖧(𝜃)�̇�,

here 𝖧(𝜃) ∈ R𝑚×𝑚 is the positive semidefinite (multi-body) inertia
atrix of the system, it follows from (1) that the equations of motion

an be expressed as

𝑗 =
𝑚
∑

𝑘=1
𝐻𝑗𝑘(𝜃)�̈�𝑘 +

𝑛
∑

𝑘,𝓁=1
𝐶𝑗𝑘𝓁(𝜃)�̇�𝑘�̇�𝓁 − 𝐺𝑗 (𝜃), (2)

here 𝐶 is the Christoffel symbol,

𝑗𝑘𝓁 =
𝜕𝐻𝑗𝑘

𝜕𝜃𝓁
− 1

2
𝐻𝑘𝓁
𝜕𝜃𝑗

, 𝐺𝑗 =
𝜕𝑈
𝜕𝜃𝑗

.

Here, the second term on the right accounts for centrifugal and Coriolis
forces at the joints. These are the joint torques that the muscles need to
effectuate to produce the observed trajectory. Since the time evolution
of the generalized coordinates is approximately known, Eq. (2) allows
the computation of the torques at times 𝑡𝓁 , 0 ≤ 𝓁 ≤ 𝑁 , denoted here by
𝑇 exp
𝑗 (𝑡𝓁). To express the torques in terms of forces, denote by 𝐹𝑗𝑘(𝑡) the
ectors of forces of the muscles exerting a torque at the joint related
o the 𝑗th generalized coordinate 𝜃𝑗 , and let 𝑟𝑗𝑘(𝑡) be the corresponding
ever arm vectors. If �⃗�𝑗 is the direction of the 𝑗th torque vector, we
ust have

�⃗�𝑗 ⋅
(
∑

𝑘
𝑟𝑗𝑘(𝑡) × 𝐹𝑗𝑘(𝑡)

)

= 𝑇𝑗 (𝑡).

y collecting the scalar amplitudes of the forces of all 𝑛 muscles
nvolved in the system into a vector 𝐹 (𝑡) ∈ R𝑛, the torques in a vector
(𝑡) ∈ R𝑚, and organizing the coefficients of the above equation into a

ever arm matrix 𝖠(𝑡) ∈ R𝑚×𝑛, we arrive at the matrix equation,

(𝑡)𝐹 (𝑡) = 𝑇 (𝑡). (3)

enote the maximal (tetanic) forces of the muscles by 𝐹 ∗
𝑗 , 0 ≤ 𝐹𝑗 ≤ 𝐹 ∗

𝑗 ,
nd define the muscle activations 𝑞𝑗 by the formula

𝑗 (𝑡) = 𝐹 ∗
𝑗 𝑞𝑗 (𝑡), 0 ≤ 𝑞𝑗 (𝑡) ≤ 1.

e express the equilibrium conditions (3) at the discrete times 𝑡 = 𝑡𝓁
n matrix form as

𝓁 = 𝖠𝓁𝑞𝓁 + 𝜀𝓁 , 0 ≤ 𝓁 ≤ 𝐿, (4)

here 𝑏𝓁 ∈ R𝑚 represents the vector of estimated torques 𝑇 exp(𝑡𝓁),
𝓁 = 𝑞(𝑡𝓁) ∈ R𝑛 is the vector of activations at 𝑡 = 𝑡𝓁 ,

𝓁 = 𝖠(𝑡𝓁)𝖥∗ ∈ R𝑚×𝑛, 𝖥∗ = diag(𝐹 ∗
1 ,… , 𝐹 ∗

𝑛 ),

nd 𝜀𝓁 represents the uncertainties due to the estimation process of the
nverse kinematic problem.

Eq. (4) is the forward model describing how the muscle forces yield
he generalized forces acting on joints to effect the observed motion.
he corresponding inverse problem, which is the focus of this article,
an be stated as follows:
Muscle recruitment problem: Given the lever arm matrices 𝖠𝓁

t discrete time instances and the torques 𝑏𝓁 estimated with a given
ccuracy from the motion information, characterize the ensemble of
ossible muscle activations 𝑞𝓁 ∈ R𝑛, 0 ≤ 𝓁 ≤ 𝐿 that are able
o effectuate the observed movement, subject to additional suitable
onstraints.

In the following section, we discuss possible constraining conditions
nd develop a systematic Bayesian methodology to solve the muscle

ecruitment inverse problem.
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3. Bayesian inverse problems: A recap

Before discussing the suitability and implications of different types
of constraints, we provide a brief overview of the Bayesian method-
ology for inverse problems. For further details, we refer to mono-
graphs [12,13].

Consider the problem of estimating an unknown quantity 𝑥 ∈ R𝑛

ased on the observation of a related quantity 𝑏 ∈ R𝑚 as well as on
priori information about 𝑥. For the sake of clarity, we assume that

he unknown and the observation are related to each other through a
odel

= 𝑓 (𝑥) + 𝜀, (5)

where 𝑓 ∶ R𝑛 → R𝑚 is known, and the vector 𝜀 ∈ R𝑚 accounts for
oth observation noise and uncertainties in the model. In the Bayesian
ramework, all unknown quantities are modeled as random variables
egardless of whether the unknown represents a fully deterministic
uantity or not: in other words, randomness in the Bayesian framework
s an expression of lack of certainty about the value, regardless of the
ature of the uncertainty. With that in mind, we interpret Eq. (5) as a
odel relating the three random variables characterized by the respec-

ive probability distributions. We assume here that the variables 𝑥 and
are mutually independent. Assuming that the probability distribution
f 𝜀 is defined through a probability density function 𝜋𝜀, that is

P{𝜀 ∈ 𝐵} = ∫𝐵
𝜋𝜀(𝑒)𝑑𝑒, 𝐵 ⊂ R𝑚,

he probability density of 𝐛 conditional on a known value of 𝑥 is

𝑏∣𝑥(𝑏 ∣ 𝑥) = 𝜋𝜀
(

𝑏 − 𝑓 (𝑥)
)

.

his density, referred to as the likelihood density, expresses the distri-
ution of the observed values of 𝑏 assuming that 𝑥 is known and fixed.
n the other hand, before observing 𝑏, we may have some information
bout the distribution of the unknown 𝑥 which we encode in the prior
ensity 𝜋𝑥,

{𝑥 ∈ 𝐴} = ∫𝐴
𝜋𝑥(𝑥)𝑑𝑥, 𝐴 ⊂ R𝑛.

y the law of total probability, the joint probability density of the pair
𝑥, 𝑏) is then given by the expression

𝑥,𝑏(𝑥, 𝑏) = 𝜋𝑏∣𝑥(𝑏 ∣ 𝑥)𝜋𝑥(𝑥). (6)

eversing the roles of the variables 𝑥 and 𝑏, the joint probability density
f (𝑥, 𝑏) can be expressed also as

𝑥,𝑏(𝑥, 𝑏) = 𝜋𝑥∣𝑏(𝑥 ∣ 𝑏)𝜋𝑏(𝑏), (7)

here 𝜋𝑏 represents the marginal density of the variable 𝑏,

𝑏(𝑏) = ∫R𝑛
𝜋𝑥,𝑏(𝑥, 𝑏)𝑑𝑥 = ∫R𝑛

𝜋𝑏∣𝑥(𝑏 ∣ 𝑥)𝜋𝑥(𝑥)𝑑𝑥.

Equating the two equivalent representations (6) and (7) of the joint
density naturally yields Bayes’ formula, relating the posterior density
𝜋𝑥∣𝑏(𝑥 ∣ 𝑏) to the likelihood and prior densities,

𝑥∣𝑏(𝑥 ∣ 𝑏) =
𝜋𝑏∣𝑥(𝑏 ∣ 𝑥)𝜋𝑥(𝑥)

𝜋𝑏(𝑏)
∝ 𝜋𝑏∣𝑥(𝑏 ∣ 𝑥)𝜋𝑥(𝑥), (8)

assuming that 𝜋𝑏(𝑏) ≠ 0. In the expression for the posterior, 𝜋𝑏(𝑏)
represents a scaling factor that is unimportant in most of the analysis
and is often omitted, hence the symbol ‘‘∝’’ indicating ‘‘proportional up
to a scaling factor’’.

Given the posterior density, it is common to summarize it with
either the Maximum A Posteriori (MAP) estimate, or the Posterior Mean
(PM) estimates,

𝑥MAP = argmax𝜋𝑥∣𝑏(𝑥 ∣ 𝑏), 𝑥PM = ∫R𝑛
𝑥𝜋𝑥∣𝑏(𝑥 ∣ 𝑏)𝑑𝑥,

assuming that the above quantities are well defined. The estimate 𝑥MAP
3

is the solution of an optimization problem, while the computation of m
𝑥PM requires integration in R𝑛. In high dimensional problems, it is
not feasible to integrate using numerical quadratures, and one has to
resort to Monte Carlo techniques. A common approach is to use Markov
chain Monte Carlo (MCMC) techniques to generate a large sample of
realizations,

S𝑁 =
{

𝑥(1), 𝑥(2),… , 𝑥(𝑁)}, (9)

drawn from the distribution 𝜋𝑥∣𝑏(𝑥 ∣ 𝑏), then using the sample to
estimate the posterior mean as

𝑥PM ≈ 1
𝑁

𝑁
∑

𝑗=1
𝑥(𝑗).

Observe that the sample S𝑁 provides much more information about
he posterior distribution than just the posterior mean: For instance,
e may approximate the posterior covariance matrix by

= 1
𝑁 − 1

𝑁
∑

𝑗=1
(𝑥(𝑗) − 𝑥PM)(𝑥(𝑗) − 𝑥PM)𝖳.

Moreover, the posterior (marginal) belief intervals of 𝑝% of the com-
ponents 𝑥𝑘, denoted by [𝑚𝑝

𝑘,𝑀
𝑝
𝑘 ], can be determined by sorting the

components 𝑥(𝑗)𝑘 in increasing order,

𝑥(𝑗1)𝑘 ≤ 𝑥(𝑗2)𝑘 ≤ ⋯ ≤ 𝑥(𝑗𝑁 )
𝑘 ,

nd discarding 1
2 (100 − 𝑝)% of the values from the top and from the

bottom. More precisely, letting

𝑗low =
⌈

1
2

(

1 −
𝑝

100

)

𝑁
⌉

, 𝑗high = 𝑁 − 𝑗low,

we define

𝑚𝑝
𝑘 = 𝑥(𝑗low)𝑘 , 𝑀𝑝

𝑘 = 𝑥
(𝑗high)
𝑘 .

We end this section by outlining the MCMC sampling algorithm that
will be used in the numerical calculations. Consider the current sample
point 𝑥(𝑗). The Gibbs sampler algorithm provides a method to generate
the next sample point 𝑥(𝑗+1) in the chain, drawn from the posterior
robability distribution in the following way. For notational simplicity,
et us denote the posterior density by 𝜋(𝑥) = 𝜋𝑥∣𝑏(𝑥 ∣ 𝑏), and let
(𝑥𝑘 ∣ 𝑥1, 𝑥2,… , 𝑥𝑘−1, 𝑥𝑘+1,… , 𝑥𝑛) denote the one-dimensional posterior
ensity of the component 𝑥𝑘 obtained by keeping all components in the
ensity 𝜋(𝑥) fixed except for the 𝑘th one. The updating step of the Gibbs
ampler consists of 𝑛 random draws from one-dimensional densities:
iven the current sample point 𝑥(𝑗),

raw 𝑥(𝑗+1)1 from 𝜋(𝑥1 ∣ 𝑥
(𝑗)
2 ,… , 𝑥(𝑗)𝑛 ),

raw 𝑥(𝑗+1)2 from 𝜋(𝑥2 ∣ 𝑥
(𝑗+1)
1 , 𝑥(𝑗)3 ,… , 𝑥(𝑗)𝑛 ),

raw 𝑥(𝑗+1)3 from 𝜋(𝑥3 ∣ 𝑥
(𝑗+1)
1 , 𝑥(𝑗+1)2 , 𝑥(𝑗)4 ,… , 𝑥(𝑗)𝑛 ),

⋮ ⋮

raw 𝑥(𝑗+1)𝑛 from 𝜋(𝑥𝑛 ∣ 𝑥
(𝑗+1)
1 , 𝑥(𝑗+1)2 ,… , 𝑥(𝑗+1)𝑛−1 ).

he implementation of the Gibbs sampler is, at least in principle, a
traightforward task, requiring only random draws from one-
imensional densities. We will discuss the details that need to be
ddressed for a successful implementation in the context of computed
xamples.

. Bayesian models for the muscle dynamics

In this section, we develop a family of Bayesian prior models
esigned to encode physiologically meaningful information about the

uscle dynamics.
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4.1. Likelihood model

In the Bayesian framework, we treat the equilibrium conditions (4)
as observation models. For reasons of computational simplicity, we
assume that the noise vectors 𝜀𝓁 are mutually independent, and more-
over, we model them as identically distributed scaled multivariate
Gaussian white noise vectors,

𝜀𝓁 ∼  (0, 𝜎2𝖨𝑛),

where 𝜎 > 0 is the noise level, and 𝖨𝑛 is the 𝑛 × 𝑛 identity matrix. This
ields the Gaussian likelihood model,

𝑏𝓁 ∣𝑞𝓁 (𝑏
𝓁 ∣ 𝑞𝓁) ∝ exp

(

− 1
2𝜎2

‖𝑏𝓁 − 𝖠𝓁𝑞𝓁‖2
)

.

We organize the muscle activations into a matrix with columns indexed
by the time instances and the rows by the muscles,

𝖰 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑞01 𝑞11 ⋯ 𝑞𝑁1
𝑞02 𝑞12 ⋯ 𝑞𝑁2
⋮ ⋮ ⋮

𝑞0𝑛 𝑞1𝑛 ⋯ 𝑞𝑁𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=
[

𝑞0 𝑞1 ⋯ 𝑞𝑁
]

,

and we arrange the observations in a similar fashion into a matrix
𝖡 ∈ R𝑚×(𝑁+1). To vectorize the calculations, we stack the columns of
𝖰 and 𝖡 into the vectors

𝐪 = vec(𝖰) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑞0

𝑞1

⋮
𝑞𝑁

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐛 = vec(𝖡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑏0

𝑏1

⋮
𝑏𝑁

⎤

⎥

⎥

⎥

⎥

⎦

,

and we assemble the block diagonal matrix ,

 =
⎡

⎢

⎢

⎣

𝖠0

⋱
𝖠𝑁

⎤

⎥

⎥

⎦

. (10)

Assuming mutual independence of the identically distributed noise
vectors 𝜀𝓁 , the likelihood of the time series of the generalized forces
is of the form

𝜋𝐛∣𝐪(𝐛 ∣ 𝐪) ∝ exp

(

− 1
2𝜎2

𝑁
∑

𝓁=0
‖𝑏𝓁 − 𝖠𝓁𝑞𝓁‖2

)

= exp
(

− 1
2𝜎2

‖𝐛 −𝐪‖2
)

.

(11)

his likelihood model can be augmented by complementary informa-
ion, for example electromyographic (EMG) measurements as indicated
ater in the discussion.

.2. Prior models

In Bayesian analysis of inverse problems, the prior plays a crucial
ole, as it is a way to augment the observations accounted for in
he likelihood with additional information that may be available. In
nderdetermined ill-posed inverse problems, where the data alone do
ot suffice to solve the problem in an unambiguous way, the prior can
e thought of as adding constraints similar to regularization in the clas-
ical deterministic inverse problems framework [14]. In the following
ubsections we present several prior models, based on physiologically
ustifiable assumptions, that help explore the uncontrolled manifold in
more insightful manner.

.2.1. Box prior
Muscle forces must be non-negative and cannot exceed their pre-

umably known tetanic values. These conditions can be expressed in
erms of the muscle activations as bound constraints

≤ 𝑞𝓁 ≤ 1, 0 ≤ 𝓁 ≤ 𝑁, (12)
4

ith the inequalities to be understood in component-wise sense. We
ncode these bounds into a box prior density of the form

box
𝐪 (𝐪) =

𝑇
∏

𝓁=0
𝜒
(

𝑞𝓁
)

,

where 𝜒 is the multivariable indicator function of the unit hypercube
in R𝑛.

4.2.2. Minimum activation prior
The information encoded in the box prior, while reducing consider-

ably the range of possible activations, still allows a lot of redundancy
in the determination of the force configurations, some of which may
be physiologically justified under certain conditions, for example co-
contraction forces at the joints. While simultaneous activation of ago-
nist and antagonist muscles may occur, e.g., when joint stabilization is
necessary, it is unlikely to occur under optimal conditions because it
is energetically wasteful. It may be argued that the body, to perform
a simple locomotion task such as level walking, may prefer activa-
tion configurations that minimize the need of energy metabolism, a
hypothesis corroborated by EMG measurements [15,16]. Following
this principle, it is reasonable to hypothesize that the body seeks to
minimize muscle activation. This is encoded in the minimum activation
prior,

𝜋MA
𝐪 (𝐪) ∝ 𝜋box

𝐪 (𝐪) exp
(

− 1
2𝜔2

‖𝐪‖2
)

,

where the prior variance 𝜔2 > 0 expresses how strongly the minimum
activation principle is believed to be followed by the muscles. If there
are reasons to believe that the task being performed requires co-
contractions (e.g., level walking on ice), a larger variance value may
be used to weaken the trust in the minimum energy principle.

4.2.3. Minimum yank prior
The two priors introduced so far assume that the muscle activation

patterns at the different times instances 𝑡𝓁 are mutually independent.
This assumption may not be physiologically justified, because there
are limitations for the speed at which an activation configuration can
change. Assuming that the velocity at which the activation configura-
tion takes place is a limiting factor, it is reasonable to hypothesize that
in a normal continued activity such as level walking, the muscle forces
do not change too abruptly in time. While in physics the time derivative
of a force has no particular significance, in [9] the authors introduce
the term ‘yank’ to refer to the time derivative of a muscle force. In
physiology, yank is an important and useful concept: maximizing the
yank improves a predator’s chances of reaching a target area, and the
prey’s chances to escape. In [17] the authors discuss the problem of
finding the cost function to be minimized to reduce the redundancies
in muscle activations during healthy gait, highlighting the importance
of the yank in sensorimotor systems, Furthermore, in support of their
position they argue that mitigating the impact of external forces, iden-
tified with yank, could be detected by the cutaneous mechanoreceptors
in the foot [18,19], pointing towards the importance of the yank in the
feedback mechanism in normal human walking. It has been suggested
that controlling the yank is a way for the body to avoid injuries in
leg tissues [20,21], and in [22] it was shown that yank control may
be motivated by energetic considerations because fast muscle cells use
significantly more ATP than slow muscle cells.

Motivated by these considerations, we introduce a prior model
favoring solutions with low yank between time frames over those with
large yank. The yank of the 𝑘th muscle, defined as the time derivative
of the force,

𝑌𝑘(𝑡) =
𝑑𝐹𝑘
𝑑𝑡

(𝑡).

he average yank over the time interval [𝑡𝓁−1, 𝑡𝓁] is given by

𝑌
𝓁
𝑘 = 1 𝑡𝓁

𝑌𝑘(𝑡)𝑑𝑡 =
1 (

𝐹𝑘(𝑡𝓁) − 𝐹𝑘(𝑡𝓁−1)
)

𝛥𝑡 ∫𝑡𝓁−1 𝛥𝑡
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𝐹 𝓁
𝑘 − 𝐹 𝓁−1

𝑘
)

,

where 𝐹 𝓁 = 𝐹 (𝑡𝓁) ∈ R𝑛. To formulate the belief about the yank in terms
of a probability density function, for each muscle we write

𝐹 𝓁
𝑘 − 𝐹 𝓁−1

𝑘 = 𝜂𝓁𝑘 , 𝜂𝓁𝑘 ∼  (0, 𝛾2), 𝓁 = 1, 2,… , 𝑁, (13)

where we assume that 𝛾 → 0 as 𝛥𝑡 → 0, guaranteeing continuity of
the muscle forces. We can express condition (13) in vectorial form
simultaneously for all muscles in terms of the activation vectors 𝑞𝓁

with the help of the diagonal matrix 𝖥∗ of the tetanic forces, so that
𝐹 𝓁 = 𝖥∗𝑞𝓁 . We write the component-wise Eqs. (13) for each 𝓁 as

𝐹 𝓁 − 𝐹 𝓁−1 = 𝖥∗(𝑞𝓁 − 𝑞𝓁−1) = 𝛾𝛽𝓁 , 𝛽𝓁 ∼  (0, 𝖨𝑛).

Next we consider all time instances together and write the matrix
equation

⎡

⎢

⎢

⎢

⎢

⎣

−𝖥∗ 𝖥∗

− 𝖥∗ 𝖥∗

⋱ ⋱
−𝖥∗ 𝖥∗

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑞0

𝑞1

⋮
𝑞𝑁

⎤

⎥

⎥

⎥

⎥

⎦

= 𝛾

⎡

⎢

⎢

⎢

⎢

⎣

𝛽1

𝛽2

⋮
𝛽𝑁

⎤

⎥

⎥

⎥

⎥

⎦

which can be expressed as
(

𝖫⊗ 𝖥∗
)

𝐪 = 𝛾𝐞, 𝐞 ∼  (0, 𝖨𝑛𝑁 ),

where

𝖫 =

⎡

⎢

⎢

⎢

⎢

⎣

−1 1
−1 1

⋱ ⋱
−1 1

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑁×(𝑁+1), 𝐞 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛽1
𝛽2
⋮
𝛽𝑁

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛𝑁

and ⊗ is the Kronecker product.
We are now ready to write the corresponding prior model for the

paths 𝐐 as

𝜋MY
𝐪 (𝐪) ∝ 𝜋box

𝐪 (𝐪) exp
(

− 1
2𝛾2

‖

‖

‖

(

𝖫⊗ 𝖥∗
)

𝐪‖‖
‖

2
)

.

bserve that unlike the priors defined previously, the yank prior ties
he time slice activations together to form paths, thus the realizations
t different time slices are no longer mutually independent.

.2.4. Mixed prior
We end this section with a mixed prior model that interpolates

he minimum activation prior and the yank prior. We define the prior
ensity as geometric interpolation of the form

mix
𝐪 (𝐪) ∝

(

𝜋MA
𝐪 (𝐪)

)𝜗 (
𝜋MY
𝐪 (𝐪)

)1−𝜗

= 𝜋box
𝐪 (𝐪) exp

(

− 𝜗
2𝜔2

‖𝐪‖2 − 1 − 𝜗
2𝛾2

‖

‖

‖

(

𝖫⊗ 𝖥∗
)

𝐪‖‖
‖

2
)

, 0 < 𝜗 < 1,

here the parameter 𝜗 determines the relative weight of the two priors.
e remark that in the limit 𝜗 → 0+ we have the minimum yank prior,
hile letting 𝜗 → 1− we obtain the minimum activation prior. More
enerally, the priors can be combined as

mix
𝐪 (𝐪) ∝

(

𝜋MA
𝐪 (𝐪)

)𝜗1 (
𝜋MY
𝐪 (𝐪)

)𝜗2

ith mutually independent exponents 𝜗1 and 𝜗2. In our numerical
imulations, we restrict the model to the former one to reduce the
umber of parameters.

. Bayesian exploration of the posteriors

In this section we describe different ways to explore the posterior
ensities corresponding to the priors introduced in Section 4. In the
omputed examples, since the number 𝑛 of muscles exceeds the number

of degrees of freedom, the matrices 𝖠𝓁 ∈ R𝑚×𝑛 have a non-trivial
ull space, hence the posterior density for the box prior does not
ave a unique maximizer. Therefore, in the following discussion, MAP
stimates are considered only for the minimum activation, minimum
5

ank, and mixed priors.
.1. MAP estimates by optimization

One popular way to summarize the posterior density is by means
f the realization with ‘‘highest probability’’, i.e., the MAP estimate.
e start by considering the posterior distribution corresponding to the
inimum activation (MA) prior. Since in this case the time slices are
utually independent, it suffices to consider single time slices. In the

ollowing, to simplify the notation we omit the superscript referring to
he time instance, and write 𝖠 = 𝖠𝓁 , 𝑏 = 𝑏𝓁 and 𝑞 = 𝑞𝓁 for 𝑡 = 𝑡𝓁 .

With these notations, the posterior density for a single time slice is

𝑞∣𝑏(𝑞 ∣ 𝑏) ∝ 𝜒(𝑞) exp
(

− 1
2𝜎2

‖𝑏 − 𝖠𝑞‖2 − 1
2𝜔2

‖𝑞‖2
)

,

therefore the MAP estimate 𝑞MAP is the solution of

minimize 𝑔(𝑞) = 1
2𝜎2

‖𝑏 − 𝖠𝑞‖2 + 1
2𝜔2

‖𝑞‖2 subject to 0 ≤ 𝑞 ≤ 1.

ince this is a quadratic minimization problem with bound constraints,
he solution can be found using a projected Newton algorithm [23]. For
ompleteness, we present an outline of how the algorithm proceeds.

We begin by computing the global unconstrained minimizer 𝑞∗ of
. Since

(𝑞) = 1
2𝜎2

‖

‖

‖

‖

‖

[

𝖠
𝛼𝖨𝑛

]

𝑞 −
[

𝑏
0

]

‖

‖

‖

‖

‖

2

= 1
2𝜎2

(

𝑞𝖳𝖢𝑞 − 2𝑞𝖳𝑟 + ‖𝑏‖2
)

, 𝛼 = 𝜎
𝜔
,

here

= 𝖠𝖳𝖠 + 𝛼2𝖨𝑛, 𝑟 = 𝖠𝖳𝑏,

t follows from the first order optimality condition that
∗ = 𝖢−1𝑟.

n general, there is no guarantee that the 𝑞∗ satisfies the bound con-
traints, therefore we use it as a starting point for an iterative process
eading to a feasible solution. Let
(1) = 𝖯𝑞∗,

here 𝖯 is the orthogonal projector onto the unit hypercube, so that
(1)
𝑗 = max

{

min{𝑞∗𝑗 , 1}, 0
}

,

and we identify the set of indices 𝐼act ⊂ {1,… , 𝑛} corresponding to the
components on which the constraints are active, that is, 𝐼act = {𝑗 ∣
𝑞(𝑗)𝑗 ∈ {0, 1}}, and denote by 𝐼inact the set of indices of the components
naffected by the constraints. If 𝐼act = ∅, the global minimizer is inside

the feasible set and the algorithm terminates, otherwise we continue as
follows. To find the next iterate, we partition the vector 𝑞, fixing the
omponents in the active set to the values determined by the projection
nto the feasible set. After possibly rearranging the entries of 𝑞 we have

𝑞 =
[

𝑞1
𝑞2

]

, 𝑞1 = 𝑞(1)(𝐼inact ), 𝑞2 = 𝑞(1)(𝐼act ),

here the components of 𝑞2 are known and fixed to the extremal values
0, 1}. Next we partition the matrix 𝖢 and the vector 𝑟 according to the
ctive/inactive partitioning of 𝑞, obtaining

=
[

𝖢(𝐼inact , 𝐼inact ) 𝖢(𝐼inact , 𝐼act )
𝖢(𝐼act , 𝐼inact ) 𝖢(𝐼act , 𝐼act )

]

=
[

𝖢11 𝖢12
𝖢21 𝖢22

]

,

𝑟 =
[

𝑟(𝐼inact )
𝑟(𝐼act )

]

=
[

𝑟1
𝑟2

]

,

nd we write the objective function as

(𝑞) = 𝑔(𝑞1, 𝑞2)

= 1
2𝜎2

(

(𝑞𝖳1𝖢11𝑞1 − 2𝑞𝖳1 (𝑟1 − 𝖢12𝑞2)) + terms independent of 𝑞1
)

.
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We remark that since 𝑞2 is constant, the minimizer 𝑞∗1 of 𝑔(𝑞1, 𝑞2) with
respect to the free variables 𝑞1 is given by

𝑞∗1 = 𝖢−1
11 (𝑟1 − 𝖢12𝑞2).

As in the previous step, we project 𝑞∗1 onto the feasible set to guarantee
that the constraints are satisfied, obtaining thus the next iterate,

𝑞(2) = 𝖯

[

𝑞∗1
𝑞2

]

.

The process continues until no new active components are found. The
process is guaranteed to converge in at most 𝑛 steps, although usually
it terminates much sooner.

The projected Newton algorithm can be used also to find the MAP
estimate for the minimum yank (MY) prior and the mixed prior (MX).
In the case of the MY prior, we can write the posterior density as

𝜋𝐪∣𝐛(𝐪 ∣ 𝐛) ∝ 𝜋MY
𝐪 (𝐪)𝜋𝐛∣𝐪(𝐛 ∣ 𝐪)

∝ 𝜋box
𝐪 (𝐪) exp

(

− 1
2𝛾2

‖

‖

‖

(

𝖫⊗ 𝖥∗
)

𝐪‖‖
‖

2
− 1

2𝜎2
‖𝐛 −𝐪‖2

)

, (14)

where  is the block diagonal matrix (10). Recall that in this case the
MAP estimate is a vector 𝐪∗ = vec(𝖰∗), with each row of 𝖰∗ ∈ R𝑛×(𝑁+1)

defining a paths for each muscle, minimizing

minimize 𝐺(𝐪) = 1
2𝜎2

‖𝐛−𝐪‖2+ 1
2𝛾2

‖

‖

‖

(

𝖫⊗𝖥∗
)

𝐪‖‖
‖

2
subject to 𝟎 ≤ 𝐪 ≤ 𝟏.

The minimizer can be found with the same algorithm used to find
the MAP with the MA prior. The fact that the matrix 𝖫 ⊗ 𝖥∗ has a
non-trivial null space may cause technical difficulties. We overcome
this shortcoming by assigning boundary conditions at 𝑡 = 𝑡0 and/or at
= 𝑡𝑁 . Possible choices of boundary conditions will be considered in

he next section, where the MCMC sampling from the posterior density
s discussed. The same strategy can be adapted for the case of the mixed
rior.

.2. MCMC sampling: Independent time slices

We begin by discussing the Gibbs sampler algorithm for the pos-
erior density corresponding to the minimum action prior with the
ox constraint condition. Because of the mutual independence of the
ime slices, we limit the discussion to a single time slice, omitting
he superscript indicating the time instance. The sampling algorithm
as inspired by the engine behind the software Metabolica, designed

or analyzing steady state reaction and transport fluxes in complex
etabolic networks [24,25], and later employed to investigate the
uscle recruitment problem [5,6].

After computing the singular value decomposition (SVD) of the lever
rm matrix 𝖠,

= 𝖴𝖣𝖵𝖳,

nd substituting it in the term describing the equilibrium condition, we
btain

𝑏 − 𝖠𝑞‖2 = ‖𝖴
(

𝖴𝖳𝑏 − 𝖣𝖵𝖳𝑞
)

‖

2 = ‖𝑏′ − 𝖣𝜉‖2,

here
′ = 𝖴𝖳𝑏, 𝜉 = 𝖵𝖳𝑞.

et 𝑟 ≤ 𝑛 be the rank of the matrix 𝖠, and let 𝑑𝑗 , 1 ≤ 𝑗 ≤ 𝑟 be its positive
singular values. It follows from the orthogonality of the matrix 𝖵 that

1
2𝜎2

‖𝑏 − 𝖠𝑞‖2 + 1
2𝜔2

‖𝑞‖2 = 1
2𝜎2

𝑟
∑

𝑗=1
(𝑏′𝑗 − 𝑑𝑗𝜉𝑗 )2 +

1
2𝜔2

𝑛
∑

𝑗=1
𝜉2𝑗 .

We draw from the posterior using the Gibbs sampler for updating 𝜉
one component at a time. To update the 𝑗th component we proceed as
follows. Denote by 𝜉𝑐 the current value of 𝜉, and write

𝜉(𝑡) = 𝜉 + 𝑡𝑒 ,
6

𝑐 𝑗 
where 𝑒𝑗 is the 𝑗th canonical Cartesian unit vector. The random variable
𝜉(𝑡) is distributed according to a one-dimensional Gaussian density with
bound constraints. From 𝑞(𝑡) = 𝖵𝜉(𝑡) it follows that

exp
(

− 1
2𝜎2

‖𝑏 − 𝖠𝑞(𝑡)‖2 − 1
2𝜔2

‖𝑞(𝑡)‖2
)

∝ exp

(

− 1
2𝛿2𝑗

(𝑡 − 𝑡𝑗 )2
)

,

where

𝛿2𝑗 = 𝜎2𝜔2

𝑑𝑗𝜔2 + 𝜎2
, 𝑡𝑗 =

𝑑𝑗𝜔2(𝑏′𝑗 − 𝑑𝑗𝜉𝑐,𝑗 )

𝑑𝑗𝜔2 + 𝜎2
,

with the understanding that 𝑑𝑗 = 0 if 𝑗 > 𝑟.
To write the bound constraints confining 𝑞(𝑡) inside the unit hy-

ercube in terms of 𝑡, we observe that 𝑡 must be chosen so that the
nequality

≤ 𝑞(𝑡) = 𝖵𝜉(𝑡) = 𝖵𝜉𝑐 + 𝑡𝑣(𝑗) ≤ 1, 𝑣(𝑗) = 𝖵𝑒𝑗 = 𝑗th column of 𝖵,

olds component-wise, or equivalently,

≤ 𝑡𝑣(𝑗) ≤ 𝛽, where 𝛼 = −𝖵𝜉𝑐 , 𝛽 = 1 − 𝖵𝜉𝑐 .

ince 𝑡 = 0 corresponds to the current value of 𝜉 which satisfies the
ounds, the set of feasible values of 𝑡 is non-empty. To avoid numerical
nstabilities, we set the components of 𝑣(𝑗) with an absolute value below
threshold 𝜏 > 0 to zero, and write the bounds for the components of
as
𝛼𝑘
𝑣(𝑗)𝑘

≤ 𝑡 ≤
𝛽𝑘
𝑣(𝑗)𝑘

if 𝑣𝑗𝑘 > 𝜏,

𝛽𝑘
𝑣(𝑗)𝑘

≤ 𝑡 ≤
𝛼𝑘
𝑣(𝑗)𝑘

if 𝑣𝑗𝑘 < −𝜏.

enoting the index sets where the above conditions hold by 𝐽+ and 𝐽−,
espectively, depending on the sign of 𝑣(𝑗)𝑘 , we conclude that

min = max
{

𝛼(𝐽+)
𝑣(𝑗)(𝐽+)

,
𝛽(𝐽−)
𝑣(𝑗)(𝐽−)

}

, 𝑡max = min
{

𝛽(𝐽+)
𝑣(𝑗)(𝐽+)

,
𝛼(𝐽−)
𝑣(𝑗)(𝐽−)

}

.

(15)

Observe that if the Gaussian is centered at 𝑡𝑗 > 𝑡max or 𝑡𝑗 < 𝑡min, the
alues of 𝑡 must be drawn from the tail of the Gaussian. Unfortunately,
ost of the time the feasible interval is very far in the tail, and

he standard error functions cannot be employed. In those cases one
eeds to resort to numerical quadratures to evaluate the cumulative
istribution functions.

Formulas (15) need to be modified when using only the box prior.
ormally, the corresponding equations are obtained by the limiting
rocess of letting 𝜔2 → ∞. The bound constraints (15) do not change,

but the expressions for the mean and variance simplify, giving

𝛿2𝑗 →
𝜎2

𝑑𝑗
, 𝑡𝑗 → 𝑏′𝑗 − 𝑑𝑗𝜉𝑐,𝑗 for 𝑗 ≤ 𝑟,

while for 𝑟 + 1 ≤ 𝑗 ≤ 𝑛, the parameter 𝑡 is drawn from the uniform
distribution over the interval [𝑡min, 𝑡max]. We remark that the algorithm
or sampling from the posterior with the box prior case is the same as
he sampling scheme used in the articles [5,6].

.3. Sampling of paths and Feynman–Kac model

We turn now to sampling from the posterior densities corresponding
o minimum yank and mixed priors, respectively. Unlike in the previous
ases, the time slices are no longer mutually independent, thus the
ongitudinal nature of the priors need to be taken into account.

We consider first the posterior associated with the minimum yank
rior (14). Monte Carlo sampling generates an ensemble of paths,

=
{

𝐪1,𝐪2,… ,𝐪𝐿
}

, 𝐿 = sample size.
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There is a formal similarity of this procedure with the Feynman–Kac
path integral formalism of representing solutions of certain diffusion-
type parabolic equations as expectations of integrals over paths [26]. In
our case the expectation over paths yields the posterior mean estimate
of the muscle activation problem with the yank prior. This connection
between Monte Carlo sampling and the Feynman–Kac model has been
pointed out, e.g., in [27]. It is because of this formal similarity that we
refer to the path sampling as Feynman–Kac model.

5.3.1. Fixed boundary conditions
We are now ready to address the question how to generate samples

from the posterior density (14). The modifications needed to make it
suitable for the mixed prior are outlined at the end of this subsection.
Consider first a case in which the boundary values at 𝑡 = 𝑡0 and
= 𝑡𝑁 are fixed, 𝑞0 = 𝑞0 and 𝑞𝑁 = 𝑞𝑁 . In this case, the time slices
1, 𝑞2,… , 𝑞𝑁−1 are drawn from the density

𝑞1 ,…,𝑞𝑁−1 ∣𝐛,𝑞0 ,𝑞𝑁 (𝑞1,… , 𝑞𝑇−1 ∣ 𝐛, 𝑞
0, 𝑞𝑁 ) ∝ 𝜋𝐪∣𝐛(𝑞

0, 𝑞1, 𝑞2,… , 𝑞𝑁−1, 𝑞𝑁 ∣ 𝐛),

hat is, we consider the posterior density with 𝑞0 and 𝑞𝑁 fixed to the
iven boundary values.

To generate the sample, we consider a block Gibbs sampler, where the
pdating is done time slice by time slice: Given 𝐪𝑘−1 =

[

𝑞0;
(

𝑞1
)𝑘−1;⋯ ;

𝑞𝑁−1)𝑘−1; 𝑞𝑁
]

, we generate 𝐪𝑘 =
[

𝑞0;
(

𝑞1
)𝑘;⋯ ;

(

𝑞𝑁
)𝑘; 𝑞𝑁

]

through the
ollowing process:

1. Draw
(

𝑞1
)𝑘 from 𝜋1(𝑞1) = 𝜋𝐪∣𝐛(𝑞

0, 𝑞1,
(

𝑞2
)𝑘−1,

(

𝑞3
)𝑘−1,… ,

(

𝑞𝑁−1)𝑘−1, 𝑞𝑁 ∣ 𝐛);
2. Draw

(

𝑞2
)𝑘 from 𝜋2(𝑞2) = 𝜋𝐪∣𝐛(𝑞

0,
(

𝑞1
)𝑘, 𝑞2,

(

𝑞3
)𝑘−1,… ,

(

𝑞𝑁−1)𝑘−1, 𝑞𝑁 ∣ 𝐛);
⋮

𝑁 − 1. Draw
(

𝑞𝑁−1)𝑘 from 𝜋𝑁−1(𝑞𝑁−1) = 𝜋𝐪∣𝐛(𝑞0,
(

𝑞1
)𝑘,

(

𝑞2
)𝑘,… ,

(

𝑞𝑁−2)𝑘,
(

𝑞𝑁−1), 𝑞𝑁 ∣ 𝐛);

Formally, the task is similar to generating sample paths for the
diffusion model corresponding to a Brownian bridge [28], a Brownian

otion in which the initial and final values are pinned down. The
ath generation is complicated by the need for the forces to satisfy
he box constraints and the equilibrium conditions. Before discussing
hese details, consider the term corresponding to the yank term in the
osterior density for a single activation vector 𝑞𝓁 , 0 < 𝓁 < 𝑁 , assuming

that all other activation vectors are given. We have

‖

‖

‖

(

𝖫⊗ 𝖥∗
)

𝐪‖‖
‖

2

= ‖

‖

‖

𝖥∗(𝑞𝓁 − 𝑞𝓁−1)‖‖
‖

2
+ ‖

‖

‖

𝖥∗(𝑞𝓁+1 − 𝑞𝓁)‖‖
‖

2
+ terms independent of 𝑞𝓁

= 2‖‖
‖

𝖥∗𝑞𝓁‖‖
‖

2
− 2

(

𝖥∗𝑞𝓁
)𝖳
𝖥∗
(

𝑞𝓁−1 + 𝑞𝓁+1
)

+ terms independent of 𝑞𝓁

= 2‖‖
‖

𝖥∗
(

𝑞𝓁 − 1
2
(

𝑞𝓁−1 + 𝑞𝓁+1
))

‖

‖

‖

2
+ terms independent of 𝑞𝓁 .

herefore, ignoring the bound constraints and the equilibrium condi-
ions, the updating of 𝑞𝓁 conditional on the rest of the activation vectors
orresponds to drawing from a second order smoothness prior weighted
y the matrix 𝖥∗ [12], the extra conditions making the process slightly
ore complicated.

The observations above imply that the 𝓁th update requires drawing
from the density

𝜋𝓁(𝑞𝓁)

∝ 𝜒(𝑞𝓁) exp
(

− 1
2𝜎2

‖

‖

‖

𝑏𝓁 − 𝖠𝓁𝑞𝓁‖‖
‖

2
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜋0
𝓁 (𝑞

𝓁 )

× exp
(

− 1
𝛾2

‖

‖

‖

𝖥∗
[

𝑞𝓁 − 1
2
((𝑞𝓁−1)𝑘 + (𝑞𝓁+1)𝑘−1)

]

‖

‖

‖

2)

(16)

= 𝜋0
𝓁(𝑞𝓁) exp

(

− 1
𝛾2

‖

‖

‖

𝖥∗
[

𝑞𝓁 − 1
2
((𝑞𝓁−1)𝑘 + (𝑞𝓁+1)𝑘−1)

]

‖

‖

‖

2)

, 1 ≤ 𝓁 ≤ 𝑁 − 1,
7

ith
(

𝑞0
)𝑘 = 𝑞0 and

(

𝑞𝑁
)𝑘−1 = 𝑞𝑁 .

The block Gibbs sampling algorithm outlined above requires thus
the updating of each 𝑞𝓁 , keeping the other activation vectors fixed. This
an be done as for the updating of the independent time slices, giving
ise to the following nested Gibbs-within-Gibbs algorithm.

Consider the density (16). Denoting

𝐹 𝓁 = 𝖥∗𝑞𝓁 ,

and setting 𝜆 = 𝛾∕
√

2, it follows that

1
2𝜎2

‖

‖

‖

𝑏𝓁 − 𝖠𝓁𝑞𝓁‖‖
‖

2
+ 1

2𝜆2
‖

‖

‖

𝖥∗
[

𝑞𝓁 − 1
2
(𝑞𝓁−1)𝑘 + (𝑞𝓁+1)𝑘−1

]

‖

‖

‖

2

= 1
2𝜎2

‖

‖

‖

𝑏𝓁 − 𝖠𝓁(𝖥∗)−1𝐹 𝓁‖
‖

‖

2
+ 1

2𝜆2
‖

‖

‖

𝐹 𝓁 − 1
2
[

(𝐹 𝓁−1)𝑘 + (𝐹 𝓁+1)𝑘−1
]

‖

‖

‖

2
.

Because the update is computed for one individual time slice at
a time, we proceed as in the updating process of independent time
slices, using the singular value decomposition of the corresponding
equilibrium matrix, scaled by the tetanic forces. Letting

𝖠𝓁(𝖥∗)−1 = 𝖴𝖣𝖵𝖳

be the SVD of 𝖠𝓁(𝖥∗)−1, and observing that the matrices 𝖴, 𝖣 and 𝖵 have
a different meaning than before, we write the quadratic expression as

1
2𝜎2

‖

‖

‖

𝑏𝓁 − 𝖠𝓁(𝖥∗)−1𝐹 𝓁‖
‖

‖

2
+ 1

2𝜆2
‖

‖

‖

𝐹 𝓁 − 1
2
[

(𝐹 𝓁−1)𝑘 + (𝐹 𝓁+1)𝑘−1
]

‖

‖

‖

2

= 1
2𝜎2

‖

‖

‖

𝑏′ − 𝖣𝖵𝖳𝐹 𝓁‖
‖

‖

2
+ 1

2𝜆2
‖

‖

‖

𝖵𝖵𝖳
{

𝐹 𝓁 − 1
2
[

(𝐹 𝓁−1)𝑘 + (𝐹 𝓁+1)𝑘−1
]}

‖

‖

‖

2
,

here 𝑏′ = 𝖴𝖳𝑏𝓁 . Further, letting 𝜉 = 𝖵𝖳𝐹 𝓁 , we arrive at the expression
1

2𝜎2
‖𝑏′ − 𝖣𝜉‖2 + 1

2𝜆2
‖𝜉 − 𝑐‖2,

here

= 1
2
𝖵𝖳

[

(𝐹 𝓁−1)𝑘 + (𝐹 𝓁+1)𝑘−1
]

. (17)

n this manner we have reduced the problem of updating 𝑞𝓁 to the
roblem of drawing the vector 𝜉 from the distribution proportional to

xp
(

− 1
2𝜎2

‖𝑏′ − 𝖣𝜉‖2 − 1
2𝜆2

‖𝜉 − 𝑐‖2
)

+ bounds,

and the process continues component-wise along the lines of the previ-
ous subsection.

Sampling the path for the mixed prior is very similar, requiring
only the few modifications indicated below. Starting from the formula
corresponding to (16),

𝜋𝓁(𝑞𝓁) ∝ 𝜒(𝑞𝓁) exp
(

− 1
2𝜎2

‖𝑏𝓁 − 𝖠𝓁𝑞𝓁‖2 − 𝜗
2𝜔2

‖𝑞𝓁‖2

−1 − 𝜗
𝛾2

‖

‖

‖

𝖥∗
[

𝑞𝓁 − 1
2
((𝑞𝓁−1)𝑘 + (𝑞𝓁+1)𝑘−1)

]

‖

‖

‖

2
)

,

we combine the first two terms in the exponential to obtain
1

2𝜎2
‖𝑏𝓁 − 𝖠𝓁𝑞𝓁‖2 + 𝜗

2𝜔2
‖𝑞𝓁‖2

= 1
2𝜎2

‖

‖

‖

‖

‖

[

𝑏𝓁

0

]

−
[

𝖠𝓁

𝜇𝖨

]

𝑞𝓁
‖

‖

‖

‖

‖

2

= 1
2𝜎2

‖

‖

‖

‖

‖

[

𝑏𝓁

0

]

−
[

𝖠𝓁

𝜇𝖨

]

(𝖥∗)−1𝐹 𝓁
‖

‖

‖

‖

‖

2

, 𝜇 =

√

𝜗𝜎
𝜔

.

As previously, we compute the SVD,
[

𝖠𝓁

𝜇𝖨

]

(𝖥∗)−1 = 𝖴𝖣𝖵𝖳,

where, again, the matrices 𝖴, 𝖣, and 𝖵 differ from the earlier defini-
tions, and define

𝑏′ = 𝖴𝖳

[

𝑏𝓁
]

, 𝜉 = 𝖵𝖳𝑞𝓁 ,

0
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so that the sampling algorithm becomes formally identical to the one
presented before.

Above, it was assumed that the initial and final boundary values
were given and fixed. Technically, we could fix only one of the two
boundary values and treat the other value as a random variable. In gen-
eral, assuming one or both boundary values known may have a biasing
effect on the paths samples. In the rest of this section, we consider some
computationally feasible ways to deal with the restriction. In particular,
two physiologically meaningful alternatives are proposed.

5.3.2. Periodic boundary conditions
Periodic boundary conditions are a meaningful alternative when the

dynamics represents a repetitive task, such as level walking: In the last
time frame after a completed cycle of steps, the musculoskeletal system
is approximately in the same equilibrium position as in the beginning
of the cycle, and we may identify 𝑞0 and 𝑞𝑁 as random variables.

herefore, after initializing the chain by using an initial state 𝑞10 = 𝑞0,
e use the block Gibbs sampler, using in (16) for 𝓁 = 𝑁 and 𝓁 = 0

ormally

𝑞𝑁+1)𝑘−1 =
(

𝑞2
)𝑘,

(

𝑞−1
)𝑘 =

(

𝑞𝑁−1)𝑘−1.

This sampler is similar to a Brownian ring of periodic random walks.
To avoid ambiguities, the identification of the distributions of 𝑞0 and
𝑞𝑁 require that in the initial and final equilibrium conditions, the
replacements

𝖠0,𝖠𝑁 ←
1
2
(

𝖠0 + 𝖠𝑁)

, 𝑏0, 𝑏𝑁 ←
1
2
(

𝑏0 + 𝑏𝑁
)

re performed before the sampling.

.3.3. Freeing the fixed boundary values
Another possibility to free the fixed boundary conditions is to

ostulate prior distributions for the end values, and write

𝐪∣𝐛(𝑞0, 𝑞1,… , 𝑞𝑁−1, 𝑞𝑁 ∣ 𝐛)
= 𝜋𝑞2 ,…,𝑞𝑁−1 ∣𝑞1 ,𝑞𝑁 ,𝐛(𝑞

1,… , 𝑞𝑁−1 ∣ 𝑞0, 𝑞𝑁 ,𝐛)𝜋𝑞0 (𝑞0)𝜋𝑞𝑁 (𝑞𝑁 ),

where 𝜋𝑞0 (𝑞0) and 𝜋𝑞𝑁 (𝑞𝑁 ) represent the initial and final distributions.
In practice, we draw the new independent initial and final values

rom their respective distributions before each block Gibbs updating
ound. While this extension removes the necessity to specify exactly
he boundary values, an initial distribution needs to be entered, which
ay also bias the outcomes.

.4. Augmenting the likelihood

The main focus of the discussion above was on prior models, while
he likelihood was restricted to contain information about the equi-
ibrium condition only. Sometimes, however, we may have additional
bservations available, such as EMG-recordings of a given set of mus-
les. While the EMG data do not translate directly to muscle activa-
ion (see [29] for a discussion), they carry indirect information that
hould be taken into consideration in the analysis [30]. Consider,
or simplicity, EMG data collected from one single muscle. The most
traightforward model is to assume a strictly increasing dependency
etween the rectified and low-pass filtered EMG recording 𝜇(𝑡) of the
th muscle and the activation level of the muscle,

𝑗 (𝑡) = 𝑔𝑗 (𝜇(𝑡)) + error,

here 𝑔𝑗 is an appropriately chosen increasing function like a sigmoid,
nd the "error’’ refers to a modeling error. A computationally feasible
pproach is to use the activation model above to define a likelihood
nterval, requiring that 𝑞𝑗 (𝑡) satisfies
8

min(𝑡) = max{𝑔(𝜇(𝑡)) − 𝛥, 0} ≤ 𝑞𝑗 (𝑡) ≤ min{𝑔(𝜇(𝑡)) + 𝛥, 1} = 𝑞max(𝑡), t
here 𝛥 > 0 is the presumed model accuracy. This model translates
nto the likelihood model by multiplying the likelihood density (11) by
he indicator functions of the intervals [𝑞min(𝑡𝓁), 𝑞max(𝑡𝓁)],

𝐛∣𝐪(𝐛 ∣ 𝐪) ∝ exp
(

− 1
2𝜎2

‖𝐛 −𝐪‖2
) 𝑁
∏

𝓁=0
𝜒[𝑞min(𝑡𝓁 ),𝑞max(𝑡𝓁 )](𝑞

𝓁
𝑗 ).

his modification can be effectuated by simply replacing the lower and
pper bounds of 𝑞𝓁𝑗 in the box prior (12) by the new bounds, thus the
odification of the Gibbs sampler algorithm becomes straightforward.

. Computed examples

In this section, we demonstrate the effect of different priors and
elections of boundary conditions and parameters.

The generic musculoskeletal model Gait2392 [31] was employed in
his study to simulate level ground walking. The model, illustrated in
ig. 1, was scaled to closely approximate the anthropometry of a 86
ear old man with an instrumented knee prosthesis, and includes 2
ower limbs and the torso, comprising of total of 12 bodies from the
orso down to the toes, 92 actuators representing the muscles, 46 for
ach leg, and 17 degrees of freedom: 3 at the hip, one at the knee,
nkle, subtalar joint, and metatarsophalangeal joint for each leg, and
between the pelvis and the torso. The experimental data are part of

he fifth dataset of the Knee Grand Challenge [32]. The biomechanical
ariables were estimated using OpenSim, an open-source platform to
erform biomechanical analyses of musculoskeletal dynamics [10].
oint angles and joint torques were computed by implementing and
olving the inverse problem, as described in Section 2. The muscle
oment arms defining the moment matrices 𝖠𝓁 were obtained through

he Analyze Tool of OpenSim once the joint angles were known.
As a starting point, we assume that the inverse dynamic problem

s thus completely solved, and the lever arm matrices and the corre-
ponding torque vectors {𝖠𝓁 , 𝑏𝓁}𝐿𝓁=0, where 𝖠𝓁 ∈ R𝑚×𝑛, 𝑏𝓁 ∈ R𝑚, are
esolved with accuracy that allows us to use an equilibrium model (4)
ith noise modeled as
𝓁 ∼  (0, 𝜎2𝓁𝖨𝑚).

n our data set, the number of equilibrium equations is 𝑚 = 17, while
the number of muscles included in the model is 𝑛 = 92. The time
interval of the full stride is divided in 𝐿 = 130 intervals. Observe that
he vectors 𝑏𝓁 represent generalized forces, and in order to scale the
tandard deviation properly, we write

𝓁 = 𝑏𝓁𝜎0, 𝑏𝓁 = 1
𝑚
‖𝑏𝓁‖,

and set 𝜎0 = 0.001.
We start the simulations by running the MCMC sampler using the

box prior, i.e., including only the physiological bound constraints to
muscle activations, and subsequently we compute samplers for three
more informative priors, minimum activation (MA), minimum yank
(MY) and mixed (MX) priors. In all simulations, the sample size is set
at 𝑁 = 100 000, while the prior and likelihood variance parameters
are set as indicated in Table 1. The results are summarized in figures
that show quantile plots as described in detail below. The plots are
limited to only eight muscles, four large ones (Gluteus Medius Anterioris
L, Medial Gastrocnemius L, Soleus L, and Tibial Anterioris L) and four
maller muscles (Sartorius L, Gracilis L, Flexor Digitorum L, and Extensor
igitorum L). The locations of the muscles are shown in Fig. 2.

Fig. 3 shows a superposition of the results corresponding to the
A box prior. In the figure, the interval between the minimum and
aximum sample value at each time slice of the box prior is indicated

y a thin red bar, while the interval of the 75% quantile is plotted
ith a thick red bar. On top of that, we have plotted the envelopes

ontaining 75% (darker shade) and 100% (lighter shade) of the sample
oints corresponding to the MA prior sampling. Finally, the median of
he MA sample is indicated by a blue curve, and the MAP estimate
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Fig. 1. OpenSim model employed in current simulations. The model consists of 12 bodies divided into two lower limbs and a torso as indicated in the figure, 17 degrees of
freedom and 92 muscle–tendon actuators, 46 for each leg.
Fig. 2. The eight selected muscles of the left leg whose activation patterns are shown
in this study. Anterior (left) and posterior (right) view.

Table 1
The values of the parameters used in the simulations. In all simulations, the sample
size is 𝑁 = 100 000.

Prior 𝜎0 𝜔 𝛾0 𝜗

Box 0.001
Min. activation 0.001 0.1
Min. yank 0.001 0.01
Mixed 0.001 0.1 0.01 0.5

computed by the optimization algorithm is plotted in red. Using the
same color coding, the results corresponding to the smaller muscles are
shown in Fig. 4.

The results indicate that as expected, the MA prior drives the
sample envelope, and the MAP estimate in particular, to the low end
9

of the box prior feasible intervals. In particular, the samples of the
smaller muscles seem to reflect very weakly the performed task of level
walking, showing an almost flat response.

We then run the sampler using the minimum yank prior. The
standard deviation 𝛾 is given in the units of forces (N), the implicit
dependency of the length of the time step being suppressed, and in
order to have dimensionless parameters, we scale 𝛾 by the average of
the tetanic forces, writing.

𝛾 = 1
𝑛

𝑛
∑

𝑗=1
𝐹 ∗
𝑗 𝛾0.

To set the value 𝛾0, literature about the rate of force development
(RFD, [N/s]) or rate of torque development (RTD, [Nm/s]) was con-
sulted [33–37]. The RFD and RTD parameters represent the ability of a
muscle to rapidly develop external force. Based on the experimentally
measured values, we defined a plausible range for the yank. Subse-
quently, to obtain a plausible value for 𝛾, the value range of the yank,
originally estimated for one second, was scaled to the time step of the
example data, corresponding to 𝛥𝑡 = 0.00833 s. The value of 𝛾0 used in
the simulations is given in Table 1.

In the first simulation, the initial and final activations patterns, 𝑞0
and 𝑞𝑁 , are fixed to be equal to the median values of the corresponding
activations of the box prior sample. Figs. 5 and 6 show the envelopes
containing 75% of the sampled values as well as the full intervals of
the values. For comparison, the envelopes are superimposed on the
intervals containing the full intervals of the sampled values using the
box prior and the minimum activation priors, respectively, giving an
idea of how much the minimum yank prior restricts and translates the
values.

To investigate the effect of the fixed boundary conditions on the en-
velopes, for comparison we run the sampler using the periodic bound-
ary conditions. The results are shown in Fig. 7 for the selected larger
muscles and in Fig. 8 for the smaller ones. The results with the smaller
muscles, in particular, indicate that the periodic boundary condition
may be overly lax, leaving a large uncertainty in the muscle paths.

Finally, we generate the samples using the mixed prior, setting the
value of the interpolation parameter to 𝜗 = 1∕2. Figs. 9 and 10 show the
envelopes corresponding to the fixed boundary conditions. Here, the
initial and final values were set to be equal to the median values of 𝑞0
and 𝑞𝑁 over the sample corresponding to the minimum activation prior.
Again, the envelopes of 75% quantile and full range are plotted against
the full range of the box prior (red bars) and the minimum activation
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Fig. 3. Sampling results corresponding to the MA prior. The thick red bars correspond to the 75% quantile of samples computed with the box prior, while the thin red bars
indicate the full range of the samples. Similarly, the dark and light beige envelopes correspond to the 75% quantile and the full range, respectively, of the sample based on the
MA prior. The red curve is the computed minimum activation MAP estimate, and the blue curve is the median over the MA sample. The sampling time step in all figures is
𝛥𝑡 = 0.00833 s, the total time interval being therefore about 1.1 s. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. The sampling results corresponding to Fig. 3 for the selected smaller muscles. The color coding is as in the previous figure.
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Fig. 5. Sampling results corresponding to the minimum yank prior with fixed boundary conditions, the boundary values being fixed at the median value of the sample drawn with
the box prior. The red bars indicate the full range of the sample using the box prior, and the green bars correspond to the full range corresponding to the minimum activation
prior. The dark and light blue envelopes correspond to the 75% quantile and the full range of the paths drawn with the MY prior, respectively. The blue curve is the median over
the MY sample. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. The figure corresponding to Fig. 5 for the selected smaller muscles. The color coding is as in the previous figure.
prior (green bars). For comparison, the corresponding plots using the
periodic boundary condition are shown in Figs. 11 and 12, respectively.

7. Discussion

The Bayesian framework provides a rich environment of investi-
gating the muscle recruitment problem by sampling the probability
distributions representing possible activation configurations that re-
spect the equilibrium conditions up to a prescribed accuracy. The
previous works [5,6] were limited to consider equilibrium solutions
11
with the minimum prior assumption that the natural bound constraints
were satisfied with no other preferential properties given. Here, the
formalism is extended to include further prior information. Unlike the
minimum activation prior that still assumes the different time slices
to be independent, the minimum yank and mixed priors introduce
longitudinal prior structure, tying together the time slice realizations
through a smoothness prior of first order. While the minimum activa-
tion prior can be justified, e.g., through energetic considerations, the
longitudinal prior structure is meaningful as the musculoskeletal system
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Fig. 7. Sampling results corresponding to the minimum yank prior with periodic boundary conditions. The red bars indicate the full range of the sample using the box prior, and
the green bars correspond to the full range corresponding to the minimum activation prior. The dark and light blue envelopes correspond to the 75% quantile and the full range
of the paths drawn with the MY prior, respectively. The blue curve is the median over the MY sample. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 8. The figure corresponding to Fig. 7 for the selected smaller muscles. The color coding is as in the previous figure.
under normal conditions and outside the regime of extreme movements
is likely to favor smooth paths without jerky activations that may
even be harmful for the muscles. Considering the results, significant
differences in the activation patterns can be seen both in the large and
small muscles. For instance, comparing the activation pattern of the
soleus muscle in Fig. 3 on one hand and in Figs. 5 and 7, we see that the
minimum activation prior allows a significantly higher activation level
than the minimum yank prior, regardless of the boundary condition, in-
dicating that while the minimum activation prior aims overall to favor
lower activation levels, in single muscles, the desired effect is achieved
12
by restricting the yank. Conversely, comparing a smaller muscle such
as extensor digitorum muscle in Figs. 4 with those in Figs. 6 and 8,
the minimum yank prior leads to a higher activation level. In fact, the
minimum activation prior seems to favor solutions that are close to
zero, which, while possible from the point of view of the equilibrium,
may not correspond to a typical activation during normal level walk,
see, e.g., the supplementary EMG data in [38], and foot EMG data
in [39]. These considerations promote models with longitudinal priors,
however, further evidence to definitely justify the use of one prior
over another is required. Future tests for model validation include a
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Fig. 9. Sampling results corresponding to the mixed prior with fixed boundary conditions, the boundary value as before fixed at the median value over the minimum activation
prior sample. The red bars indicate the full range of the sample using the box prior, and the green bars correspond to the full range corresponding to the minimum activation
prior. The dark and light blue envelopes correspond to the 75% quantile and the full range of the paths drawn with the MX prior, respectively. The blue curve is the median over
the MX sample. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. The figure corresponding to Fig. 9 for the selected smaller muscles. The color coding is as in the previous figure.
comparison of the joint contact forces predicted by the models based
on the muscle forces to the in vivo recordings from the instrumented
implants.

A standard deterministic approach to solve the muscle recruitment
problem is to use optimization tools to find a single trajectory that
minimizes or maximizes a given objective function. The Bayesian for-
mulation described here can be used to produce such optimal solutions
by maximizing the posterior density, or, equivalently, minimizing the
corresponding Gibbs energy, defined as the negative logarithm of the
posterior probability density. Formally, the Gibbs energy corresponds
13
to a penalized least squares solution with bound constraints. In par-
ticular with the minimum yank prior, a caveat concerning the MAP
estimate is in order. The MAP estimate is easy to find by using the
projected Newton algorithm described in this paper. However, while
the minimum yank prior favors smooth solutions with no sudden jerks,
the hard boundary conditions may make the MAP estimate to be non-
smooth: When the smooth solution meets the boundary, typically an
abrupt flattening of the curve ensues, creating a sudden kink that does
not respect the smoothness requirement. For this reason, the MAP
estimate does not necessarily represent the typical paths. We point out
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Fig. 11. Sampling results corresponding to the mixed prior with periodic boundary conditions. The red bars indicate the full range of the sample using the box prior, and the
green bars correspond to the full range corresponding to the minimum activation prior. The dark and light blue envelopes correspond to the 75% quantile and the full range of
the paths drawn with the MX prior, respectively. The blue curve is the median over the MX sample. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
Fig. 12. The figure corresponding to Fig. 11 for the selected smaller muscles. The color coding is as in the previous figure.
that there is also a physiological reason to assume that the muscles
anticipate the change in the activation state: Human walking is some-
times characterized as ‘‘controlled falling’’ [40], and the muscles secure
the joints through co-contractions before the reactive forces activate.
The sampled solutions with the MY and MX priors do qualitatively
demonstrate this behavior. The fact that the MAP estimate may not be
a good representative of the density is nothing new in the Bayesian
context, which is the reason why the computations of MAP estimates
are sometimes not recommended in the literature.
14
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