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Abstract: A novel approach for the quantification of recycled polyethylene terephthalate (r-PET) in 

commercial bo�les is presented. Fifty-eight bo�le samples from several brands and producers 

containing different percentages of r-PET were purchased from the market. Samples were analyzed 

by two spectroscopic methods: near-infrared (NIR) spectroscopy and a�enuated total reflection 

(ATR) spectroscopy in the mid-infrared (MIR) region. No chemical pre-treatment was applied before 

analyses. The spectra were analyzed by partial-least squares (PLS) regression, and two models for 

NIR and MIR data were computed. Then, a multi-block regression was applied to join the two 

datasets. All models were validated by cross-validation and by excluding and projecting onto the 

model the replicated spectra of one sample at a time. Results demonstrated the potential of this 

approach, especially considering the variability of commercial samples in terms of additives, shape, 

or thickness of the bo�les: for samples close to the centroids of the models (i.e., from 10 to 50% r-

PET), the predictions of multi-block method seldom departed from the expected values of ±10%. 

Only for samples with 0% declared r-PET, the models showed poor prediction abilities. 
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1. Introduction 

Plastic waste management is one of the main environmental problems that have 

arisen in the last few years [1]. Most plastic-manufactured goods, indeed, are thought of 

as single-use (e.g., bo�les, straws, crockery), posing the issue of dealing with their after-

use fate. It has been estimated that the world’s production of plastics reached 368 million 

tons in 2019, with an increase of 10 million tons from 2018 [2]. Europe alone is responsible 

for 16% (60 million tons) of global plastic production [2]. The uncontrolled accumulation 

of plastic waste causes several problems, starting with the pollution of natural areas [3,4] 

but also extending to an economic point of view [5].  

Among plastic materials, polyethylene terephthalate (PET) is probably the most 

important and the most used due to its physical and chemical properties [6] in terms of 

lightness, resistance, transparency, flexibility, and impermeability. These properties make 

it an ideal material for food packaging and several other applications [7]. 

Recycling plastic materials, in general, is deemed the best solution to waste 

accumulation since it transforms waste into a newly usable artifact. The European target 

for plastic recycling is to reach 70% of the total waste by 2030 [8]. Such a task, however, 

poses new issues to researchers, starting from finding new, efficient, and clean processes 
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to recycle plastic materials [9–11]. Another relevant issue is that recycled PET (r-PET) used 

for food packaging must not transfer residuals of its previous content or substances used 

during the recycling process into the new product (migration). Much a�ention has been 

paid to this, and several publications deal with this problem [12,13], in particular, 

considering that r-PET for food packaging may derive from PET not used for food [3,14]. 

Moreover, the physical properties of r-PET have been studied [15–17], and several possible 

advanced applications, other than food packaging, have been evaluated [18–20]. 

Another important problem to be faced is the quantification of r-PET into new 

manufactured goods. Besides the problem of migration of chemical residuals from r-PET 

into the food, there is also an economic aspect that influences r-PET, real or pretend: r-PET 

generally has a lower cost than the virgin material [21], and, at the same time, some countries 

economically encourage the use of r-PET, leading to scarce transparency in the declared 

composition mix of the final composite. Some studies have already dealt with this issue by 

studying, in particular, PET and polyethylene by gas-chromatography coupled to mass 

spectrometry (GC-MS) [21,22] and polypropylene by near-infrared (NIR) spectroscopy [23]. 

Two interesting works of Peñalver et al. regarded the use of chemometrics to develop a 

method for the quantification of r-PET in bottles. In the first one [21], they analyzed the volatile 

organic compounds (VOCs) of r-PET by GC-MS. These are probably present in the samples 

due to polymer degradation during the recycling process or as a residual from the previous 

life of the plastic objects. The second one [24], instead, reported the quantification of r-PET and 

the classification of virgin and recycled PET samples using Raman spectroscopy. 

The present work explored, instead, the use of infrared spectroscopy to quantify r-

PET in commercial bo�les. In particular, we analyzed a set of bo�le samples containing 

different declared amounts of r-PET with two distinct methods: NIR reflectance and 

a�enuated total reflectance (ATR) spectroscopy, the la�er working in the medium-

infrared (MIR) range. It has already been shown that by adopting careful and reproducible 

measuring protocols, MIR-ATR can be employed for quantitative analysis [25]. An 

extensively used chemometric tool for processing spectroscopic data is partial least 

squares (PLS) regression [26], which has been applied to the two datasets both separately 

and jointly by Sequential and Orthogonalized-PLS (SO-PLS) regressions [27]. The 

application of IR spectroscopy makes the analyses very simple and only slightly 

destructive because the sample must be only cut to suit the instrument probe without any 

chemical pre-treatment. However, IR signals might not be suitable for immediately 

discriminating virgin PET from r-PET due to their common chemical structure. The main 

difference observed between the two PET typologies is, instead, the length of the polymer 

chains [28], besides the possible presence of trace residues. A proper chemometric analysis 

is essential to extract all the chemical information embedded in IR spectra, such as, for 

example, SO-PLS, enhancing the amount of available information by using both datasets 

at the same time [29]. Last, the proposed method is totally untargeted; thus, it does not 

require previous knowledge about the chemical nature of the species generating the 

signals: once validated, it might be potentially implemented by the industry as quality 

control to guarantee the percentage of r-PET present in their manufactured goods. 

2. Materials and Methods 

2.1. Bo�le Samples 

For the present study, fifty-eight bo�le samples were collected. Fifty-four of them 

were used as training sets for the chemometric models, while the remaining four were 

randomly chosen as test sets. Of the 54 training samples, eighteen bo�les were purchased 

from the market; one of them contained milk, five cold tea, and the other twelve drinking 

water. The remaining 36 bo�les were purchased directly from the producers before their 

market placement. The bo�les were produced with different percentages of declared r-

PET: 0% (fifteen samples, not declaring to contain r-PET); 10% (three samples); 25% (five 

samples); 30% (nine samples); 50% (thirteen samples); 100% (nine samples). The 
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percentage declared on the label was considered as the actual r-PET fraction and used as 

a response for the chemometric models described in the following paragraphs. The four 

test samples were water bo�les, also in this case purchased from the market; one had a 

declared r-PET percentage of 0%, one of 100%, and two of 50%. They were employed to 

test the models and check the consistency between the results obtained with the listed 

batch and these samples. 

All the bo�les were emptied of their content (if present), rinsed, and dried. For both 

NIR and ATR analysis and for each bo�le sample, three round portions with diameters of 

about 2 cm were cut from the bo�les. The round portions were washed with Milli-Q grade 

water (Millipore, Bedford, MA, USA) and dried again prior to spectroscopic analyses. 

2.2. NIR Analysis 

NIR analyses were carried out with a MicroNIR OnSite-W spectrometer (VIAVI 

Solutions Inc., Sco�sdale, AZ, USA), a portable spectrophotometer (about 250 g in weight), 

with two integrated vacuum tungsten lamps, an InGaAs detector covering the spectral 

range of 908–1676 nm, and a linear variable filter as dispersing element. The resolution 

was 7 nm; the integration time was set at 10 ms, with 50 scans for each spectrum, resulting 

in a total acquisition time of 0.25 s. Two replicates for each round plastic portion were 

acquired (resulting in six replicates for each bo�le sample). Dark and reference samples 

were acquired before each sample. All analyses were carried out with the probe 

perpendicular to the sample and the standard.  

2.3. MIR-ATR Analysis 

MIR-ATR spectra were collected with a Bruker ALPHA FT-IR spectrometer (Bruker 

Platinum ATR, Billerica, MA, USA), with a 0.6 mm × 0.6 mm active area and HgCdTe 

detector. The instrument is equipped with a single-reflection diamond ATR accessory 

(Bruker Platinum ATR, Billerica, MA, USA). Spectra were acquired in the range of 400–1900 

cm−1, with a resolution of 4 cm−1. The final spectrum is the mean of 64 scans for a total 

analysis time of 3 min. Five replicates were acquired for each sample, each time changing 

the probe position on the sample and recording a blank before the analysis of each new 

sample. 

The main problem with MIR analysis in ATR mode is that the plastic sample must be 

as flat as possible to optimize the contact with the instrument probe (the instrumental 

se�ing of NIR analysis made it less susceptible to sample concavity). This could represent 

a drawback for commercial samples since sometimes bo�les contain no flat parts except 

for the base (that, in turn, may have printed or relief portions). 

2.4. PLS Analysis 

Before any chemometric analysis using spectra in the IR region, particularly 

concerning regression, spectra pre-processing is strongly recommended [30]. Therefore, 

the most common pre-processing methods for NIR data and their combinations were 

applied: derivatization (Savi�ky–Golay derivative); multiplicative sca�er correction 

(MSC); standard normal variate (SNV) [30]; and orthogonal signal correction (OSC) [31]. 

The corrected NIR and MIR-ATR spectra were used to compute a PLS regression 

model. PLS is a consolidated chemometric method [26,32] that performs a regression using 

the experimental variables (in this case, IR spectra) as predictors and one or more continuous 

variables characterizing the samples (in this case, the label-declared percentage of r-PET) as 

dependent ones. The computation is carried out by calculating factors that are linear 

combinations of the predictors and retaining part of the information derived also from the 

dependent variable(s). A detailed description of the PLS algorithm is beyond the scope of 

the present work and can be found elsewhere [26,33]; it is important to highlight that a 

proper number of factors must be selected to compute and evaluate a model and to use it 

for predictions. This is generally chosen as the number of factors that minimizes the root 
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mean squared error (RMSE), which is the mean (squared) difference between the known 

response values and the ones recalculated by projecting the samples onto the calculated 

model. It can be calculated both by keeping all the samples in the computed model 

(calibration mode) or by excluding one sample or a group of samples from the computation 

and then projecting onto the resulting model the excluded sample(s) (cross-validation pro-

cedure, CV). CV is generally considered a good starting point for evaluating the predictive 

abilities of the model before projecting real unknown samples. Both for calibration and CV, 

a response plot can be created, in which the known response values are reported vs. the 

fitted and predicted ones, respectively. The regression line calculated with these data should 

have a unitary slope and a null intercept as target values, indicating a perfect match between 

fitted-predicted and known values. The deviations from these ideal values, besides R2 of the 

line and the PLS-model RMSE, can be used to evaluate the model performances. 

Due to the absence of certified standards of r-PET mixed with virgin PET, in the pre-

sent work, a general PLS model was computed to check for the reliability of the NIR and 

MIR-ATR methods. Then, a “leave-one-sample-out” CV was performed by computing 59 

different models, each time excluding all the replicates of a bo�le sample (test set) and 

projecting them onto the model computed by the other ones (training set). The calculated 

response was then compared with the label-declared percentage of r-PET. The five “un-

known” samples were instead projected onto the full model, and their percentage of r-

PET was calculated to compare NIR and ATR models. 

Computations of all PLS models were carried out with R version 4.1.0 [34] using the 

library “pls” [35]. Spectra pre-treatments necessary to deal with IR spectra were carried 

out using the R library “prospectr” [36] and the software The Unscramber 10.4 (CAMO, 

Oslo, Norway). 

2.5. Multi-Block Analysis 

Sequential and Orthogonalized Partial Least Squares (SO-PLS) [37] is a multi-block 

regression method developed to sequentially extract information by several blocks of 

data, eliminating redundancies possibly present among the predictor blocks. The ap-

proach is conceived to combine data of different natures, allowing for the ensemble pre-

processing of the signals [38]. For a two-block case, wherein two predictor matrices (�� 

and ��) are used to estimate a response �, the algorithm can be summarized as depicted 

in the following steps:  

1. � is fi�ed to �� by PLS; 

2. �� is orthogonalized with respect to the X-scores extracted in 1, obtaining ��,����; 

3. ��,���� is used as a predictor to estimate (by means of PLS) the y-residuals from 1;  

4. The final model is estimated by combining the two sub-models: 

� = ��� + ��� + �  

where �  and �  are the regression coefficients matrices, and  �  the residuals of the 

model. 

For more than two predictor blocks, the algorithm continues following the same pro-

cedure, taking care of orthogonalizing each further block with respect to all the previously 

modeled ones. For more details, the reader is referred to the literature [27]. All calculations 

related to the multi-block analysis were run in Matlab (The Mathworks, Natick, MA, USA; 

version 2015b) using in-house functions. 

3. Results 

NIR, MIR-ATR, and multi-block starting dataset were composed of 354 objects (six 

replicates of 58 bo�le samples), 24 of which (four samples) were considered as a “test-set”. 

In order to find possible outliers in NIR and MIR-ATR datasets and to have the same num-

ber of objects for all analyses, spectra were first analyzed in the following way. All NIR 
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and MIR-ATR were pre-treated by SNV, followed by an MSC carried out on the six repli-

cates of each sample. Then, a low-level data fusion was performed, a�aching MIR-ATR 

spectra after the NIR ones. A PCA model for each percentage of declared r-PET (0%, 10%, 

25%, 30%, 50%, and 100%) was calculated, and objects falling outside the Hotelling’s el-

lipse at 25% significance were considered outliers and discarded from further analyses. 

We decided to raise the significance from the common value of 5% to 25% because the 

spectra showed a wide variability, mostly in their baseline, as is also supported by visual 

inspection. We could not be sure, however, that samples with the same declared r-PET 

percentage could be actually comparable, considering that these came from different 

brands and producers. Therefore, we decided to put a stricter decision limit in order to 

obtain a more reliable dataset for regressions. In this way, the datasets cleaned by outliers 

were composed of 261 objects; only two samples (one at 0% and one at 25% r-PET) were 

completely removed from the dataset, while for other samples, only some (if any) repli-

cates were removed. All r-PET percentages were still represented by at least three samples. 

The original data, without previous pre-treatments and cleaned from outliers, were then 

used to calculate PLS models. 

3.1. NIR Data 

NIR data were composed of 125 variables (wavelengths ranging from 908 to 1676 

nm). To find the best pre-processing method, the most common spectra pre-treatments 

(MSC, SNV, derivative, OSC, and their binary combinations) were independently applied 

to the data. Figure 1 shows the effects of single pre-treatments on the NIR spectra. The 

quality of pre-processing methods was evaluated by computing a PLS model after each of 

them and by evaluating the CV performances of each model. The best pre-processing 

method for NIR data was found to be MSC. 

 

Figure 1. Effects of pre-treatments on NIR spectra: (a) original spectra (six replicates of a single sam-

ple, indicated by different colors); (b) MSC (considered the best pre-treatment in this case); (c) SNV; 

(d) Savi�ky–Golay second derivative; (e) OSC. The original spectra are reported in Absorbance Unit 

(AU); the other are dimensionless due to pre-treatments.  
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Figure 2 shows that the RMSE for the NIR model reaches a local minimum for factor 

7, which is the one used for extracting the recalculated values in calibration and CV 

modes. Both RMSE and response plots indicate that the model has poor performance in 

CV. RMSE is, indeed, also quite high at its minimum (~23%), and the response plot has 

low R2 values (0.59 in calibration and 0.32 in CV), with all slopes and intercepts signifi-

cantly different from the ideal values. Such poor performances can be due to sample var-

iability and to the fact that NIR alone might not be suitable for quantitative analysis.  

 

Figure 2. RMSE in cross-validation vs. PLS factors for NIR model. 

However, the most interesting results for the present work are the model performances 

on predictions of r-PET percentages. Nonetheless, we decided to keep the PLS model to 

perform the “leave-one-sample-out” CV procedure on single samples. Sample-by-sample 

replicates were excluded from the model; PLS was recalculated and used to recalculate the 

fraction of r-PET in the excluded objects. Results of such computations on all samples are 

reported in Table A1 in Appendix A. Table 1, instead, reports the PLS results obtained for 

each r-PET percentage in terms of means and standard deviations (calculated over all the 

objects). The results in Table 1 show some drawbacks of the method but also some encour-

aging results. The mean recalculated values are generally not far from the expected ones 

except for 0%, although standard deviations are generally high. Table A1 confirms that the 

reason mainly resides in some specific samples, whose recalculated percentage is far from 

the expected (e.g., sample “SM02”, expected 50%, predicted 93.7%). However, considering 

the absolute values of the differences between known and recalculated values, their mean is 

19.7%, while the median is 17.4%. It indicates that there is generally a satisfactory agreement 

between expected and recalculated r-PET percentages. 

Table 1. Mean PLS prediction on NIR dataset for each r-PET percentage. Mean and standard devi-

ations (Std. Dev.) are calculated over all the objects of each percentage. 

Known r-PET % Mean Predicted Std. Dev. Predicted 

0 26.1 9.7 

10 8.1 5.1 

25 26.4 12.0 

30 30.4 13.2 

50 33.7 19.6 

100 83.3 28.5 
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Unexpectedly, the main gap in the model concerns virgin PET (0%) samples. Table 1 

shows that the mean recalculated value is 26.1%, and from Table A1, it can be seen that 

only one sample out of 15, “SM53”, yields a satisfactory prediction, while most of the other 

recalculated values range between 20 and 40%. We also observed the score plot of both 

PCA and PLS, also considering different pre-treatments (not shown), but in all cases, no 

clear discriminations between the 0% and the other samples were observed. 

3.2. MIR-ATR Data 

MIR-ATR spectra were acquired in the mid-IR range from 1900 to 400 cm−1. We de-

cided not to analyze the full mid-IR range, from 4000 cm−1, because most of the signals 

between 4000 and 1800 cm−1 turned out to be flat for all samples (or with small bands due 

to residual humidity), except for a band between 3000 and 2800 cm−1 with peaks a�ribut-

able to C-H stretching. However, this band was not clearly visible in most of the spectra; 

thus, it was discarded. The final dataset was then composed of 735 variables. Again, the 

most common pre-treatments and their combinations were applied to the dataset without 

outliers (Figure 3), and, in this case, the combination SNV followed by Savi�ky–Golay 

second derivative (using a third-degree polynomial function and a window of five varia-

bles) (Figure 3f) was considered the best. 

 

Figure 3. Effects of pre-treatments on MIR-ATR spectra: (a) original spectra (six replicates of a single 

sample, indicated by different colors); (b) MSC; (c) SNV; (d) Savi�ky–Golay second derivative; (e) 

OSC; (f) SNV followed by Savi�ky–Golay second derivative, considered the best pre-treatment in 

this case. The original spectra are reported in Absorbance Unit (AU); the other are dimensionless 

due to pre-treatments. 

The chemometric procedure is the same as previously applied to NIR data, where the 

first step is a general PLS model. Compared to the NIR model, the MIR-ATR one does not 

show significant differences. The best observed RMSE (Figure 4) is higher than that calcu-

lated for the NIR model (~27%), with a higher number of factors (11). Moreover, the cor-

responding response plot shows worse R2 both in calibration (0.59) and in CV (0.32). 

Slopes and intercepts are again significantly different from the ideal values of 1 and 0. 

Despite the poor performances in cross-validation, this model was also used alone to 
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predict the analyzed samples. Results are reported in Table 2 as mean PLS results for each 

r-PET percentage and in Table A1, with the predicted values of each sample. 

 

Figure 4. RMSE in cross-validation vs. PLS factors for MIR-ATR model. 

Table 2. Mean PLS prediction on MIR-ATR dataset for each r-PET percentage. Mean and standard 

deviations (Std. Dev.) are calculated over all the objects of each percentage. 

Known r-PET % Mean Predicted Std. Dev. Predicted 

0 30.2 14.4 

10 4.0 6.0 

25 36.6 6.8 

30 35.0 10.4 

50 30.8 14.6 

100 71.4 21.2 

Table 2 shows that the prediction abilities are, in general, close to those observed for 

the NIR model, although a li�le poorer. Relative standard deviations are also close to those 

observed for the NIR mode. The results observed for the single samples in Table A1 are 

also similar to those observed for NIR, with some worse predictions but also with some 

be�er predictions. The mean value of absolute differences between expected and recalcu-

lated r-PET percentages is 21.3%, and the median is 16.7%. Also, in this case, the drawback 

concerning the virgin PET samples was observed, which never showed satisfactory pre-

dictions (it could also be an explanation for the very poor R2 of the general model). 

3.3. Multi-Block Analysis 

SO-PLS was applied to analyze the NIR and MIR blocks mentioned in Sections 3.1 

and 3.2, using different signal pre-treatments for the diverse data matrices. In total, eight 

blocks were exploited, i.e., NIR data pre-treated by OSC (��), SNV (��), first derivative 

(��), and second derivative (��), and MIR signals were pre-processed with the same pre-

treatments in the same order (corresponding to the fifth, sixth, seventh, and eighth blocks: 

�� ; �� ; ��; �� ). As described above, several cross-validated models were created in a 

“leave-one-sample-out” fashion: iteratively, for each set of replicates collected on individ-

ual samples, all the available spectra, except for those associated with a single specimen 

of PET, were used as the training set for calibration, whereas the replicated signals belong-

ing to the sample left out were used as the test set for validation. The optimal calibration 
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model has been chosen to inspect the cross-validated RMSECVs through a Mage plot, and 

it was the one built to extract two and one LVs from �� and ��, respectively. Results, 

expressed in terms of r-PET, mean predicted values, and their standard deviations, are 

reported in Table 3 (mean values) and Table A1. 

Table 3. Mean SO-PLS prediction. Mean and standard deviations (Std. Dev.) are calculated over all 

the objects of each percentage of r-PET. 

Known r-PET % Mean Predicted Std. Dev. Predicted 

0 23.5 12.1 

10 4.2 10.4 

25 34.1 13.8 

30 32.1 13.9 

50 36.9 18.7 

100 76.5 15.3 

It has to be noted that MIR blocks have never been selected as the best combination 

of input data, indicating that this platform does not provide further relevant information 

with respect to NIR. 

In general, the predictive capability of the various models is satisfying. It can be noted 

that the predictions at the edges of the r-PET range are less accurate than those at 25, 30, 

and 50% of r-PET.  

3.4. Comparison of the Three Models 

The cross-validation and “leave-one-sample-out” procedure showed that NIR and 

multi-block had the best performances in predicting r-PET percentage in bo�le samples. 

To further evaluate the models, four samples not involved in the computation of the mod-

els were projected onto each of them: two of them were chosen with extreme values (0 and 

100%, respectively), and the other two were chosen with the intermediate value of 50%. 

The results are reported in Table 4, in which mean and standard deviations (based on six 

replicates) are shown. These samples were used to simulate a real case in which the per-

centage of r-PET must be analytically confirmed. Table 4 shows that the MIR-ATR model 

has the poorest performances, both in terms of predictions and considering the variability 

bringing high-standard deviations. Instead, good consistency between multi-block and 

NIR models can be observed. The multi-block model shows the best performance for the 

extreme expected values, interestingly also for the 0%-sample (SM55). The two 50%-sam-

ples are slightly over-predicted by all samples, with NIR showing the best performances, 

although with a higher standard deviation compared to multi-block. 

Table 4. PLS predictions for the unknown samples based on the three models. 

 Known 

r-PET (%) 
NIR Model MIR-ATR Model Multi-Block Model 

SM55 0 11 ± 6 31 ± 11 9 ± 9 

SM56 100 79 ± 12 59 ± 27 85 ± 9 

SM57 50 70 ± 6 68 ± 26 85 ± 4 

SM58 50 63 ± 22 75 ± 32 73 ± 17 

4. Discussion 

The regression models so far presented have shown contrasting results. On the one 

hand, all PLS models have poor descriptive abilities, but on the other hand, Table A1 

shows that the recalculated r-PET values for most samples are close to the expected ones, 

although all 25-, 30-, and 50%-samples have close recalculated values for all models in the 

range of 30–50%. Most 100%-samples, except one, are instead recalculated in the range of 
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60–110%, therefore, with satisfactory results, also considering that no samples have been 

found in the market with declared r-PET percentage in the range of 50–100%. Moreover, 

Table 4 shows the satisfactory predictive abilities of the models, at least in the NIR and 

multi-block cases. The only percentage of the “class” with poor performances, and for all 

models, remains at 0%.  

We do not have a definitive explanation for such poor performances. One hypothesis 

is that virgin samples are somehow different from the others, perhaps in the mean length 

of the polymeric chain [6], since these samples did not undergo any recycling processes. 

It was observed in previous studies [5] that virgin and recycled PETs have different phys-

ical and chemical characteristics. Such difference might not be clearly visible in the spectra 

but may be important for the PLS model and, perhaps, magnified by the spectra pre-treat-

ment processes. Moreover, we cannot exclude that the inner surface of examined PET bot-

tles was treated either by functionalization or by filming for optimal preservation of bev-

erages [39]. These treatments may modify in an unpredictable way the overall spectrum 

due to the variety of treatments available on the market and whose type is not declared 

on the labels. A more in-depth analysis is necessary to face this issue, possibly involving 

further analytical methods, such as GC-MS, and it is postponed to future works. 

From a chemical and chemometric point of view, finally, NIR analysis demonstrated 

more reliability than MIR-ATR. SO-PLS, indeed, selected only blocks from NIR to com-

pute the final model. Predictions on unknown samples also showed higher variability in 

the MIR-ATR case. Besides the possible chemical treatment that might affect the MIR re-

gion more than the NIR one, another possible explanation could be a geometric one. As 

has already been stated, ATR analysis requires good contact between the sample and the 

instrument probe. Although caution has been kept during the analysis, i.e., using a spatula 

between the sample and the instrument press to further press the sample, such contact 

may not be fully reproducible for concave samples as most of the bo�le portions used in 

the present work are. 

It must be kept in mind, however, that the present work was carried out with com-

mercial samples, considering the r-PET percentage declared on the label as the expected 

one. The 0%-samples, however, are the ones with no declaration on the label of using r-

PET, considering that no brand declares to use only virgin plastic, but there should be no 

interest in using it without declaring it. With these premises, with no full certainties about 

the expected values, it is not surprising that the “leave-one-sample-out” recalculated val-

ues are not always in accordance with the expectations and mean differences between 

expected and recalculated values of around 20% (Table A1) can be considered satisfactory. 

In the research field of r-PET analysis, to the authors’ knowledge, there is only another 

work from Peñalver et al. [24] dealing with the quantification of r-PET in manufactured 

goods with spectroscopic methods. In that case, Raman spectroscopy was used on 400 PET 

samples with different r-PET percentages, obtaining regression of a model with higher R2 

(0.911) to those obtained in the present work but comparable RMSE (17.9) to ours. The 

predictive abilities of the model were be�er than ours, but also, in that case, with standard 

deviations in the order of 15–20%, which are again comparable with our results. Other 

works [21,40] demonstrated the capability of GC-MS in discriminating between virgin and 

recycled PET. Further methodological validation of our proposed method could foresee a 

direct comparison of the different approaches to suggest their combination or alternative 

use. In the work from Peñalver et al. [21], orthogonal PLS regression on VOCs concentra-

tions dataset was used, obtaining a model with higher R2 (0.978) and lower RMSE (9.27) 

compared to our results but with a lower number of samples (23, with three replicates). 

Bha�arai et al. [40], instead, did not calculate a regression model for the r-PET quantifica-

tion but demonstrated that the presence of some MS fragments (mainly due to oligomers) 

and also some MIR-ATR peaks could be used to discriminate recycled from virgin PET. 

The la�er conclusion was drawn by observing slight differences in some peak intensities 

a�ributed to a lower crystallinity degree of r-PET. 
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In the absence of r-PET standards, which is a huge limitation for the development of 

a quantitative methodology, GC-MS can be evaluated as a method to validate at least vir-

gin and recycled PET samples. Quantification by spectroscopic analyses may be carried 

out at a later time, perhaps removing the virgin samples from the model (yet “validated” 

as a virgin by GC-MS) and focusing only on different percentages of r-PET. Chemometrics 

and data pre-treatments must be extensively used to highlight the slight spectra differ-

ences due to the different recycling amounts. 

5. Conclusions 

Fifty-nine PET bo�les were analyzed by NIR and MIR-ATR spectroscopy in order to 

quantify the content of recycled polyethylene terephthalate. Preliminary regression mod-

els based on NIR and MIR-ATR spectra, used both independently from each other and 

jointly, were computed and validated by cross-validation and by a “leave-one-sample-

out” validation. Results are promising because good predictions were obtained, in large 

part, by the NIR model and also by the MIR-ATR one. Considering all cross-validated 

results, as reported in Table A1, the overall mean difference between expected and recal-

culated values is 19.7% for NIR data and 21.3% for MIR-ATR. The application of a multi-

block method such as SO-PLS optimized the predictions, reducing the overall mean dif-

ference to 18.5% but using only NIR data. NIR spectroscopy seems, therefore, to be the 

most promising technique for further applications. The main weak point in the model was 

observed for virgin plastic samples, for which the poorest predictions were observed. 

More samples will be acquired in the future, and a different chemometric approach, even-

tually a classification, will be applied to evaluate the reasons for such differences. Moreo-

ver, the models and the results were found to be not brand-dependent. In all computed 

models, indeed, all samples from several brands and different percentages of declared r-

PET were used, and the results did not depend on the presence or absence of a specific 

brand. Therefore, such an approach can be generally used for the quantification of r-PET 

and also as a screening test in the industry. Our method also has the advantage of being 

almost non-destructive and does not require chemical pre-treatments on plastic samples; 

therefore, it is easy, low-cost, low-time-consuming, and clean. Moreover, it must be fur-

ther underlined that the present method was based on commercial samples; thus, its ap-

plication to standards of pure virgin and recycled PET would certainly increase its stabil-

ity and reliability. 
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Appendix A 

Table A1. Known and PLS-predicted values, with the corresponding standard deviations, for all 

samples projected onto the three models (NIR, MIR-ATR, and multi-block). Overall mean and me-

dian differences between known and predicted values are also provided. 

Sample 
Known 

r-PET (%) 
NIR Model MIR-ATR Model Multi-Block Model 

SM08 0 32 ± 6 51 ± 16 34 ± 6 

SM19 0 23 ± 5 34 ± 13 22 ± 5 

SM20 0 43 ± 2 58 ± 13 48 ± 4 

SM26 0 26 ± 4 36 ± 16 23 ± 7 

SM28 0 34 ± 9 39 ± 14 28 ± 12 

SM29 0 18 ± 5 31 ± 13 9 ± 7 

SM36 0 24 ± 4 18 ± 11 23 ± 7 

SM38 0 26 ± 4 12 ± 24 25 ± 6 

SM39 0 30 ± 6 37 ± 14 27 ± 7 

SM40 0 34 ± 7 35 ± 14 34 ± 9 

SM46 0 30 ± 4 28 ± 10 27 ± 5 

SM50 0 24 ± 4 13 ± 29 17 ± 4 

SM51 0 21 ± 4 23 ± 22 17 ± 6 

SM53 0 1 ± 3 8 ± 3 −4 ± 12 

SM49 10 8 ± 11 9 ± 13 4 ± 11 

SM52 10 13 ± 12 −2 ± 30 15 ± 22 

SM54 10 3 ± 9 5 ± 34 −6 ± 13 

SM01 25 35 ± 4 39 ± 10 47 ± 4 

SM06 25 30 ± 3 27 ± 4 38 ± 3 

SM43 25 9 ± 7 38 ± 22 15 ± 10 

SM47 25 32 ± 5 43 ± 5 36 ± 6 

SM10 30 51 ± 6 46 ± 11 54 ± 6 

SM11 30 35 ± 10 34 ± 16 41 ± 12 

SM13 30 15 ± 7 30 ± 10 28 ± 9 

SM21 30 27 ± 11 38 ± 16 33 ± 15 

SM31 30 47 ± 17 41 ± 8 46 ± 13 

SM34 30 16 ± 4 19 ± 21 9 ± 14 

SM42 30 39 ± 7 19 ± 13 35 ± 10 

SM44 30 19 ± 3 42 ± 16 24 ± 4 

SM48 30 25 ± 6 45 ± 8 18 ± 8 

SM02 50 94 ± 9 41 ± 5 82 ± 6 

SM07 50 36 ± 7 29 ± 12 49 ± 9 

SM09 50 38 ± 2 33 ± 14 45 ± 2 

SM12 50 35 ± 7 38 ± 17 43 ± 7 

SM16 50 28 ± 13 28 ± 17 44 ± 21 

SM18 50 34 ± 6 38 ± 20 40 ± 6 

SM22 50 29 ± 7 37 ± 7 39 ± 7 

SM25 50 18 ± 6 47 ± 10 23 ± 10 

SM30 50 27 ± 4 24 ± 11 27 ± 4 

SM32 50 39 ± 6 46 ± 15 38 ± 6 

SM33 50 26 ± 4 33 ± 13 25 ± 7 

SM37 50 23 ± 8 15 ± 11 23 ± 10 

SM41 50 12 ± 6 −8 ± 10 2 ± 12 
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SM03 100 103 ± 9 56 ± 18 86 ± 5 

SM04 100 105 ± 4 94 ± 43 87 ± 2 

SM05 100 95 ± 6 113 ± 45 82 ± 4 

SM14 100 116 ± 12 74 ± 22 86 ± 7 

SM15 100 106 ± 31 56 ± 45 88 ± 18 

SM23 100 64 ± 3 55 ± 5 74 ± 4 

SM24 100 68 ± 7 58 ± 8 79 ± 10 

SM27 100 29 ± 7 54 ± 15 41 ± 5 

SM45 100 64 ± 4 82 ± 11 65 ± 3 

Mean difference 

|Known−Predicted| 
19.7 21.3 18.5 

Median difference 

|Known−Predicted| 
17.4 16.7 16.4 
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