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Abstract We study the quantum hair associated with coher-
ent states describing slowly rotating black holes and show
how it can be naturally related with the Bekenstein–Hawking
entropy and with 1-loop quantum corrections of the metric
for the (effectively) non-rotating case. We also estimate cor-
rections induced by such quantum hair to the temperature of
the Hawking radiation through the tunnelling method.

1 Introduction

The breakthrough in gravitational wave astronomy from the
LIGO and Virgo collaboration [1–3] has opened up a new
observational window, allowing us to directly learn more
about black holes. As solutions to the Einstein equations,
these spacetimes contain singularities which might just sig-
nal the breakdown of classical physics in the strong field
regime. In recent years, several ways of describing quantum
aspects of black holes have been proposed in the literature.
Some approaches, like the corpuscular picture [4–7], assume
that the geometry should only emerge at suitable (macro-
scopic) scales from the underlying (microscopic) quantum
field theory of gravitons [8–10]. Bekenstein’s conjecture for
the horizon area quantisation [11,12] then naturally follows
for the occupation number of gravitons is proportional to the
square of the ADM mass M [13] in units of the Planck mass
mp.1

An improved description of nonuniform geometries can be
obtained by employing coherent states of gravitons [14,15],
which then leads to necessary departures from the classical
Schwarzschild metric [16] (and thermodynamics [17,18]). In

1 We shall often use units with c = 1, GN = �p/mp and h̄ = �p mp,
where �p and mp denote the Planck length and mass, respectively.
a e-mail: wenbin.feng@studio.unibo.it
b e-mail: roldao.rocha@ufabc.edu.br
c e-mail: casadio@bo.infn.it (corresponding author)

particular, the central singularity of the Schwarzschild black
hole is replaced by an integrable singularity [19] without
Cauchy horizons. The coherent state is built for a scalar field
whose expectation value effectively describes the geometry
emerging from the (longitudinal or temporal) polarisation of
the graviton in the linearised theory. A similar analysis for
electrically charged spherically symmetric black holes was
then shown to remove both the central singularity and the
Cauchy horizon [20].

The majority of black holes in nature are very likely to
spin, which motivates investigating quantum descriptions of
black holes with non-vanishing specific angular momentum
a = J/M [21]. A complete description of axisymmetric
Kerr black holes [22] remains beyond our scope, but this
(conceptually and phenomenologically) important issue can
be addressed for slow rotation by considering coherent states
of gravitons similarly to the spherically symmetric case. In
particular, we will focus on the quantum description of the
approximate Kerr metric for |a| � GN M , which can be
written as [23]

ds2 � − (1 + 2 V ) dt2 + dr2

1 + 2 V

−4 GN M a

r
sin2 θ dt dφ + r2 d�2 (1.1)

where d�2 = dθ2 + sin2 θ dφ2. In the above, the metric
function

V = VM + Wa (1.2)

where

VM = −GN M

r
(1.3)

corresponds to the Schwarzschild metric [24] for a = 0, and

Wa = a2

2 r2 . (1.4)
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In the above stationary geometry, the possible event hori-
zon is a sphere located at r = rH defined as the largest (real)
solution of 1+2 V = 0. We shall find that the very existence
of a quantum coherent state again requires departures from
the classical geometry (at least) near the (would-be) classi-
cal central singularity. This induces the presence of “quantum
hair”,2 which we will further connect with the Bekenstein–
Hawking entropy [11], the Hawking evaporation [31], and
1-loop quantum corrections to the metric obtained in the
weak-field approximation (see [32] and references therein
for earlier works). Since the quantum corrected geometry
obtained from coherent states is not perturbative (in the ratio
GN M/r or Planck constant), the latter result extends, and
provides an independent support for, perturbative calcula-
tions.

In Sect. 2, we first review the classical solutions of the
Klein–Gordon equation and show how coherent states of a
massless scalar field on a reference flat spacetime associ-
ated to the vacuum can be used to reproduce a black hole
geometry with small angular momentum; Sect. 3 is devoted
to studying the quantum hair of such coherent state black
holes, whose existence implies that information about the
interior state is present outside the horizon; the relation with
the Bekenstein–Hawking entropy is derived in Sect. 4, where
corrections to the Hawking temperature are also estimated
using the semiclassical tunnelling methods; Sect. 5 contains
concluding remarks.

2 Coherent quantum states for slowly rotating geometry

Like in Ref. [16], the quantum vacuum is here assumed to
correspond to a spacetime devoid of matter and gravitational
excitations. Any classical metric should then emerge from a
suitable (highly excited) quantum state. A standard approach
for recovering classical behaviours employs coherent states,
which is generically motivated by their property of minimis-
ing the quantum uncertainty, and is further supported by stud-
ies of electrodynamics [15,33], linearised gravity [34], and
the de Sitter spacetime [35–37].

In particular, we want to reproduce the slowly rotating sta-
tionary geometry (1.1) as the full general relativistic exten-
sion of the Newtonian potential. The latter can be derived
from the longitudinal mode of gravitons in the linearised
theory and, like for the static case of Ref. [16], we assume
that this feature is preserved in the stationary limit of full
general relativity. We therefore try and obtain the complete
metric function (1.2) as the expectation value of an effec-
tive free massless scalar field

√
GN � = V satisfying the

2 The concept of quantum hair has been explored through different
quantum gravity frameworks, see e.g. Refs. [25–30].

Klein–Gordon equation

�� = 0. (2.1)

It is convenient to employ spherical coordinates in which a
complete (normalised) set of positive frequency solutions is
given by

uω�m = e−i ω t

√
2 ω

j�(ω r) Y�m(θ, ϕ) (2.2)

where j� are spherical Bessel functions of the first kind, and

Ym
� = (−1)m

√
(2 � + 1)(� − m)!

4 π (� + m)! Pm
� (cos θ) ei m ϕ (2.3)

are spherical harmonics of degree � and order m, Pm
� being

associated Legendre polynomials. We recall that these solu-
tions are orthonormal,3

(uω�m |uω′�′m′)

= π

2 ω2 δ(ω − ω′) δ��′ δmm′
(
uω�m |u∗

ω′�′m′
) = 0 (2.4)

in the Klein–Gordon scalar product

( f1| f2) = i
∫

d3x
(
f ∗
1 ∂t f2 − f2 ∂t f

∗
1

)
. (2.5)

The quantum theory is built by mapping the field � into
an operator expanded in terms of the normal modes (2.2),

�̂ =
∑

�

�∑
m=−�

2

π

∞∫
0

ω2 dω
√
h̄
[
uω�m â�m(ω)

+u∗
ω�m â†

�m(ω)
]
. (2.6)

Likewise, its conjugate momentum reads

�̂ = i
∑

�

�∑
m=−�

2

π

∞∫
0

ω3 dω
√
h̄
[
uω�m â�m(ω)

−u∗
ω�m â†

�m(ω)
]
. (2.7)

These operators satisfy the equal-time commutation rela-
tions,[

�̂(t, r, θ, ϕ), �̂(t, r ′, θ ′, ϕ′)
]

= i h̄
δ(r − r ′)

r2

δ(θ − θ ′)
sin θ

δ(ϕ − ϕ′) (2.8)

provided the creation and annihilation operators obey the
commutation rules[
â�m(ω), â†

�′m′(ω′)
]

= π

2 ω2 δ(ω − ω′) δ��′ δmm′ . (2.9)

3 See Appendix A for more details about the notation.
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The vacuum state is first defined by â�m(ω) |0〉 = 0 for all
allowed values of ω, � and m, and a basis for the Fock space
is constructed by the usual action of creation operators.

2.1 Semiclassical metric function

We seek a quantum state of � which effectively reproduces
(as closely as possible) the expected slow-rotation limit of
the Kerr geometry (1.1), that is√
GN 〈V | �̂(t, r, θ, ϕ) |V 〉 � V (r). (2.10)

We can build |V 〉 as a superposition of coherent states satis-
fying

â�m(ω) |g�m(ω)〉 = g�m(ω) ei γ�m (ω) |g�m(ω)〉 (2.11)

where g�m = g∗
�m and γ�m = γ ∗

�m , so that

√
GN 〈V | �̂ |V 〉 = �p

∑
�

�∑
m=−�

2

π

×
∞∫

0

ω2 dω j�(ω r)
(−1)m√

2 ω

√
(2 � + 1)(� − m)!

4 π (� + m)!
× 2 cos(ω t − γ�m + m ϕ) Pm

� (cos θ) g�m(ω). (2.12)

Since the Kerr metric is stationary and axially symmetric, we
impose that the phases γ�m � ω t + m ϕ. Indeed, one could
argue that recovering exact spacetime symmetries with such a
limiting procedure reflects the fact that no perfect isometries
exist in nature [16].

The coefficients g�m can be determined by expanding the
metric field V on the spatial part of the normal modes (2.2),

V (r, θ) =
∑

�

�∑
m=−�

2

π

∞∫
0

ω2 dω j�(ωr) (−1)m

×
√

(2 � + 1) (� − m)!
4 π (� + m)! Pm

� (cos θ) Ṽ�m(ω). (2.13)

By comparing the expansions (2.12) and (2.13), we obtain

g�m =
√

ω

2

Ṽ�m(ω)

�p
. (2.14)

The coherent state finally reads

|V 〉 =
∏
�

�∏
m=−�

e−N�m/2

× exp

⎧⎨
⎩ 2

π

∞∫
0

ω2 dω g�m(ω) â†
�m(ω)

⎫⎬
⎭ |0〉 (2.15)

where

N�m = 2

π

∞∫
0

ω2 dω |g�m(ω)|2 (2.16)

is the occupation number for the state |g�m(ω)〉. We note in
particular that NV = ∑

�m N�m measures the “distance” of
|V 〉 from the vacuum |0〉 in the Fock space and should be
finite [16].

2.2 Schwarzschild geometry

For zero angular momentum, hence a = Wa = 0, the metric
function (1.3) is obtained from

Ṽ00 = −2
√

π

ω2 GN M (2.17)

so that the only contributions to the coherent state |VM 〉 are
given by the eigenvalues [16]

g00 = −
√

2 π

ω3

M

mp
(2.18)

yielding the total occupation number

NM = N00 = 4
M2

m2
p

∞∫
0

dω

ω
. (2.19)

The number NM diverges logarithmically both in the infrared
(IR) and in the ultraviolet (UV). In particular, the UV diver-
gence arises from demanding a Schwarzschild geometry for
all values of r > 0 and can be formally regularised by intro-
ducing a cut-off ωUV ∼ 1/Rs, where Rs can be interpreted
as the finite radius of a regular matter source [38].

Note in fact that the static geometry we are reconstructing
from the coherent state should be completely determined by
the energy-momentum of the matter source in general rel-
ativity, like the Newtonian potential is fully determined by
the energy density in the linearised theory. The UV cut-off
is therefore just a mathematically simple way of account-
ing for the fact that the very existence of a proper quantum
state |VM 〉 requires the coefficients g00 = g00(ω) to depart
from their purely classical expression (2.18) for ω → ∞.
This departure from the classical expression would in turn
be related with the actual state of matter in the interior of
the black hole. Since we aim at a general analysis of the
geometry, we just demand that Rs � RH = 2 GN M for a
(quantum) black hole [16] and do not investigate the connec-
tion between the geometry and possible matter sources any
further here (see Refs. [39–42]). Likewise, we introduce a
IR cut-off ωIR = 1/R∞ to account for the necessarily finite
lifetime τ ∼ R∞ of the system, and finally write

NM = 4
M2

m2
p

ln

(
R∞
Rs

)
. (2.20)
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The coherent state |VM 〉 so defined corresponds to a
quantum-corrected metric function

VqM � √
GN 〈VM | �̂ |VM 〉 = 1

π3/2

ωUV∫
ωIR

ω2 dω j0(ωr) Ṽ00(ω)

� −2 GN M

π r

∫ R−1
s

R−1∞
dω

sin(ω r)

ω

� −GN M

r

{
1 −

[
1 − 2

π
Si

(
r

Rs

)]}
(2.21)

where we let ωIR = 1/R∞ → 0 and Si denotes the sine inte-
gral function. The emerging quantum-corrected geometry is
correspondingly given by 4

ds2 � − (1 + 2 VqM
)

dt2 + dr2

1 + 2 VqM
+ r2 d�2 (2.22)

which was already analysed in Ref. [16], where further details
can be found.

2.3 Slowly rotating black hole

The classical metric (1.1) is characterised by an angular
momentum of modulus h̄ � J = |a| M � GN M2 ori-
ented along the axis of symmetry, so that J z = J for a > 0,
and by the metric function Wa in Eq. (1.4). We can now show
that a quantum state that reproduces such a metric, as closely
as possible, like we discussed in the previous Sect. 2.2, can
be obtained by linearly combining the coherent state |VM 〉
of the Schwarzschild geometry with a suitable coherent state
|Wa〉.

The normal modes (2.2) are eigenfunctions of the angu-
lar momentum operators L̂2 and L̂ z (in Minkowski space-
time) with eigenvalues h̄2 � (� + 1) and h̄ m, respectively.
The expectation values of the angular momentum operators
on the coherent state |g�m(ω)〉 are therefore given by (see
Appendix B)

J�m = 〈g�m(ω)|
√
L̂2 |g�m(ω)〉

= h̄
√

� (� + 1) |g�m(ω)|2 (2.23)

and

J z�m = 〈g�m(ω)| L̂ z |g�m(ω)〉
= h̄ m |g�m(ω)|2 . (2.24)

4 For Rs → 0, the term in square brackets in Eq. (2.21) vanishes at any
r > 0 and the Schwarzschild metric is formally recovered.

The total angular momentum for a superposition |W 〉 of states
|g�m(ω)〉 can be obtained as

J ≡ 〈W |
√
L̂2 |W 〉 =

∑
�>0

�∑
m=−�

2

π

∞∫
0

ω2 dω J�m(ω)

=
∑
�>0

h̄
√

� (� + 1)

�∑
m=−�

N�m . (2.25)

Likewise,

J z ≡ 〈W | L̂ z |W 〉 =
∑
�>0

�∑
m=−�

2

π

∞∫
0

ω2 dω J z�m(ω)

=
∑
�>0

�∑
m=−�

h̄ m N�m . (2.26)

Let us next consider coherent states defined by the eigen-
values

g�m = C�m

√
2 π �α

p M

ω3/2−α mp
(2.27)

where C�m are numerical coefficients that do not depend on
ω and � ≥ 1. The corresponding occupation numbers (2.16)
are given by

N�m �

⎧⎪⎨
⎪⎩
C2

�m NM for α = 0

4C2
�m

M2

m2
p

[(
�p

Rs

)2 α

−
(

�p

R∞

)2 α
]

for α �= 0

(2.28)

where NM ∼ M2/m2
p is given in Eq. (2.20). Note that the IR

limit R∞ → ∞ is regular only for α > 0, for which N�m �
NM if Rs � �p. In this case, we can further approximate

N�m � 4C2
�m

M2

m2
p

(
�p

Rs

)2 α

∼ C2
�m (2.29)

where we considered Rs ∼ RH for a black hole. 5 Moreover,
the modification (2.13) to the metric function is given by

W�m � �p
2

π

×
ωUV∫

ωIR

ω2 dω j�(ω r)
(−1)m√

2 ω

√
(2 � + 1) (� − m)!

π (� + m)!
Pm

� (cos θ) g�m(ω)

� GN M

r

(
�p

r

)α
[
C�m (−1)m

√
(2 � + 1) (� − m)!

(� + m)!

Pm
� (cos θ)

2

π

∫ r/Rs

0
zα dz j�(z)

]
(2.30)

5 All numerical factors can be included in C�m .
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where the integral in square brackets can be expressed in
terms of regularised hypergeometric functions [see Eq. (A.11)].
We then see that the leading terms in the correction (2.30)
are of the classical form Wa ∼ r−2 in Eq. (1.4) if α = 1.

Finally, the contribution to the angular momentum satis-
fies the classicality conditions

h̄ � J�m � h̄
√

� (� + 1) N�m � h̄ m N�m � J z�m (2.31)

provided m � � and � N�m ∼ �C2
�m � 1. We can build

a coherent state |Wa〉 that reproduces the geometry (1.1) by
including different coherent states (2.27) with α = 1 and
angular momentum numbers satisfying these conditions. The
rotation coefficient will then be given by

mp

M
� a

GN M
∼ m2

p

M2

�c∑
�=1

√
� (� + 1) N��

∼ 1

NM

�c∑
�=1

√
� (� + 1) N�� � δJ � 1 (2.32)

where we introduced a parameter δJ > 0 to define the slow
rotation regime in terms of a maximum value of �, denoted
by �c.

The inclusion of states |W 〉 like the above will give rise to
quantum-corrected geometries

ds2 � − (1 + 2 VqM + 2 Wqa
)

dt2

+ dr2

1 + 2 VqM + 2 Wqa
− 4 GN J

r
sin2 θ dt dφ + r2 d�2

(2.33)

where VqM is given in Eq. (2.21), Wqa � W�m in Eq. (2.30)
and J in Eq. (2.25). These geometries do not entail a
weak-field approximation but are perturbative in the angular
momentum contributions, that is in J and Wqa .

3 Quantum hair

Black hole solutions in general relativity are determined only
by the total mass, angular momentum, and electric charge
(if present). These uniqueness theorems [43] strongly limit
the information about the internal state of a black hole that
can be obtained by outside observers. However, the situation
changes when we consider the quantum description of black
holes given by coherent states already for the spherically
symmetric case of Sect. 2.2. In fact, the coherent states from
which the geometry emerges as a mean field effect cannot
accommodate for perfect Schwarzschild spacetimes [16], but
they instead depend on the internal structure of the matter
sources (classically) hidden inside the horizon, as we recalled
in Sect. 2.2.

The classical case of slow rotation was considered in
Sect. 2.3, where we assumed that the quantum states of the

geometry only include specific coherent states (2.27) with
α = 1 satisfying the relations in Eq. (2.31) for the angular
momentum. However, the possibility that other states con-
tribute can only be limited from the condition of recovering
the classical metric (1.1) within the experimental bounds.
Their presence, on the other hand, will constitute a further
example of quantum hair [25–30], with departures from the
classical geometry.

Instead of attempting a general analysis, we shall only
consider states that violate one of the classicality conditions
defined in Sect. 2.3 at a time. In particular, we will study
(a) quantum contributions with J z � J but α > 1 inducing
departures from VM smaller than Wa at large r in Sect. 3.1
and (b) modes with α = 1 and a > 0 given by Eq. (2.32) but
such that |J z | � J in Sect. 3.2.

3.1 Quantum metric corrections

An explicit example of a coherent state which satisfies the
classical conditions J z � J for the angular momentum but
leads to a geometry with terms that fall off at r � RH =
2 GN M faster than Wa in Eq. (1.4) is built from

g�̄�̄ = C�̄

√
2 π �α

p M

ω3/2−α mp
(3.1)

where α > 1 and �̄ is a fixed integer value. The hairy geom-
etry can now be obtained from

W�̄�̄ � �p

π2

ωUV∫
ωIR

ω3/2 dω j�̄(ω r)
2 �̄ + 1

2�̄−1/2 �̄! (sin θ)�̄ g�̄�̄(ω)

(3.2)

where we used Eq. (A.8). We thus find

W�̄�̄ � C�̄

�α
p GN M

π3/2

2 �̄ + 1

2�̄−1 �̄! (sin θ)�̄

ωUV∫
ωIR

ωα dω j�̄(ω r)

� C�̄

GN M

π3/2 r

(
�p

r

)α 2 �̄ + 1

2�̄−1 �̄! (sin θ)�̄
∫ r/Rs

0
zα dz j�̄(z)

∼ GN M

r

(
�p

r

)α

(3.3)

where the integral is given in Eq. (A.11).
We can in particular estimate the correction on the (unper-

turbed) Schwarzschild horizon at r = RH,

W�̄�̄(RH) ∼
(mp

M

)α

(sin θ)�̄. (3.4)

Such corrections with different �̄ represent purely axial per-
turbations on the horizon, with vanishingly small amplitude
for macroscopically large black holes of mass M � mp pro-
vided α � 1.
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3.2 Quantum angular momentum

States that lead to metric functions of the classical form Wa

in Eq. (1.4) with a given by Eq. (2.32) but satisfy

J z ∼
�c∑

�=1

�∑
m=−�

m N�m � 0 (3.5)

can be simply obtained by assuming |g�m | = |g�−m | so that
N�m = N�−m . As an example, we consider

g�̄�̄ = g�̄−�̄ = C�̄

√
2 π

ω

M

mp
(3.6)

where �̄ is again a fixed integer value and �̄C2
�̄

is of the correct
size to yield a rotation parameter a > 0 satisfying the bounds
in Eq. (2.32). The metric correction is now given by

W�̄�̄ � �p

π2

ωUV∫
ωIR

ω2 dω j�̄(ω r)
(−1)�̄ + 1√

2 ω

2 �̄ + 1

2�̄−1 �̄!
×(sin θ)�̄ g�̄�̄(ω) (3.7)

where we used the known relation (A.9). For �̄ odd the above
expression vanishes, whereas for �̄ even we find twice the
value in Eq. (3.3) with α = 1, that is

W�̄�̄ ∼ �p GN M

r2 . (3.8)

From the above few examples, it should be clear that one
can engineer many different axially symmetric configura-
tions, all of which differ from the (slowly-rotating) Kerr
geometry only by terms of order (�p/r)α for α ≥ 1. Of
course, this ambiguity would be removed by computing the
coherent state generated by a given matter source, which is
however supposedly hidden behind the horizon. Moreover,
we remark that such terms would result in a (slight) shift
in the position rH of the event horizon with respect to the
classical value RH.

4 Entropy and evaporation

In the previous sections, for simplicity, we have modelled
the dependence of the geometry from the internal structure
of the black hole by introducing cut-offs ωIR ∼ 1/R∞ and
ωUV ∼ 1/Rs in momentum space and allowing for contribu-
tions of angular momentum that have no classical counter-
part. Were we able to test the gravitational field with sufficient
accuracy, for instance from the motion of test particles and
light in the outer region to the horizon, we could remove
these uncertainties and gather information about the interior
of the black hole.

4.1 Bekenstein–Hawking entropy

A common way to measure our ignorance about the actual
state of a system is provided by the thermodynamic entropy,
which is obtained by counting the possible microstates cor-
responding to a given macroscopic configuration. For a
Schwarzschild black hole, the Bekenstein–Hawking entropy [11]

SBH = π R2
H

�2
p

= 4 π M2

m2
p

(4.1)

can be obtained [17] by supplementing a pure coherent state
of the Schwarzschild geometry (2.18) with the Planckian dis-
tribution of Hawking quanta at the temperature [31]

TH = m2
p

8 π M
. (4.2)

Given a black hole of mass M , instead of one pure coherent
state, we could consider all possible states giving rise to (prac-
tically) indistinguishable semiclassical geometries with the
mass M . We can employ the total occupation number (2.20) 6

of the corresponding coherent state to estimate the total num-
ber of microstates available to build such configurations as

NM ∼
NM∑
n=0

(
NM

n

)
=

NM∑
n=0

NM !
(NM − n)! n! = 2NM . (4.3)

The thermodynamic entropy is thus

SM ∝ ln(NM ) ∼
(
M

mp

)2

(4.4)

which is clearly proportional to the Bekenstein–Hawking
entropy (4.1). One can therefore envisage that the coherent
states giving rise to Schwarzschild black hole geometries
contain the precursors (or proxies) of the Hawking particles,
like in the original corpuscular picture [4–7].

4.2 Entropy and angular momentum

We can also estimate the number of quantum states with
angular momentum corresponding to geometric configura-
tions that cannot be observationally distinguished from a non-
rotating Schwarzschild black hole. For this purpose, we can
consider again a maximum angular momentum parameter
δJ � 1 such that configurations with

J

M RH
� a

GN M
� δJ (4.5)

cannot be distinguished from the coherent state reproduc-
ing the quantum-corrected Schwarzschild geometry (2.21).

6 We just mention that the same quantisation law is obtained for the
ground state of a dust ball [40,41].
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Furthermore, we shall include in this count only those con-
tributions of the form in Eq. (2.27),

g�m ∼ C�m
ωα �α

p M

ω3/2 mp
(4.6)

that violate both of the classicality conditions considered in
Sects. 3.1 and 3.2, that is α � 1 and 0 ≤ |m| � �.

In particular, the contribution of modes with m � 0 to the
angular momentum (2.25) is approximately given by

a�

GN M
� �

m2
p

M2 N�0 ∼ �

(
�p

Rs

)2 α

(4.7)

in which we assumed N�0 ∼ C2
�0 ∼ 1 and � � 1. Imposing

the constraint (4.5) on the total angular momentum,

�c∑
�=1

a�

GN M
∼ �2

c

(
�p

Rs

)2 α

� δJ (4.8)

yields

�c �
(
Rs

�p

)α √
δJ ∼

(
M

mp

)α √
δJ (4.9)

where we again set Rs ∼ RH for a black hole. Upon allowing
for the inclusion of modes |g�0〉 with 1 ≤ � ≤ �c, we can
estimate the degeneracy of the quantum black hole given by
the total number of possible combinations in angular momen-
tum, that is

Nc =
�c∑

�=0

(
�c

�

)
=

�c∑
�=0

�c!
(�c − �)! �! = 2�c . (4.10)

The corresponding thermodynamic entropy,

S ∝ ln(Nc) ∼
(
M

mp

)α √
δJ (4.11)

is also proportional to the Bekenstein–Hawking entropy (4.1)
for α = 2.

It is then interesting to notice that the metric corrections
for α = 2 are of the same order in GN, �p and 1/r as those
obtained from 1-loop corrections to the Schwarzschild met-
ric [32], that is

Wqa �
�c∑

�=1

W�0 � GN M

r

(
�p

r

)2

×
�c∑

�=1

[
C�0

√
2 � + 1 P�(cos θ)

2

π

∫ r/Rs

0
z2 dz j�(z)

]

∼ GN M

r

(
�p

r

)2
(4.12)

where P� = P0
� are Legendre polynomials. The correspond-

ing quantum corrected Schwarzschild geometry is now given

by

ds2 � − (1 + 2 VqM + 2 Wqa
)

dt2

+ dr2

1 + 2 VqM + 2 Wqa
+ r2 d�2 (4.13)

where VqM is the metric function in Eq. (2.21). It is important
to remark that Wqa represents a perturbation over the full
quantum-corrected geometry (2.22) and is not restricted to
the weak-field approximation employed to perform 1-loop
corrections.

Finally, we can check that the condition (4.9) guarantees
that the horizon does not shift significantly from the unper-
turbed Schwarzschild radius. In fact, for α = 2 and neglect-
ing the effect of VqM , we can write the metric function

V � VM + ε
�2

p GN M

r3 (4.14)

where ε ∼ √
δJ now contains all the parameters (and angular

dependence) shown in the first line of Eq. (4.12). The largest
solution to V = −1/2 is then given by

rH � 2 GN M − ε �p (4.15)

which represents a negligible correction to RH = 2 GN M .
Given the fast fall-off of the metric correction in Eq. (4.12),
one could interpret these perturbations as being “confined”
about the horizon RH, like in the membrane approach [44]
and in derivation of the entropy (4.1) based on conformal
symmetry [45].

4.3 Hawking radiation

The Hawking evaporation has been studied with several
methods since its discovery [31]. In particular, semiclas-
sical approaches describe this effect as particles that tun-
nel out from within the event horizon on classically forbid-
den paths [46–55]. We will employ the WKB approach to
compute corrections to the Hawking temperature for slowly
rotating black holes described by the quantum-corrected
Schwarzschild metric (2.21) with the metric modification in
Eq. (4.12) that we showed can contribute to the Bekenstein–
Hawking entropy.

We start by noting that, replacing the WKB ansatz

� � exp

[
i

h̄
S(t, r, θ, φ)

]
(4.16)

in the Klein–Gordon Eq. (2.1) at leading order in h̄, yields
the Hamilton-Jacobi equation

gμν ∂μS ∂νS � 0. (4.17)

Solutions can be written in the form

S = −E t + W(r) + J (θ, φ) + K (4.18)
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where E represents the energy of the emitted boson and K
is a complex constant that will be fixed later. The ratio E/M
regulates the magnitude of the backreaction of the emission
on the black hole, which can alter the thermal nature of the
Hawking radiation [46]. We only consider large black holes
with mass M � mp, hence this effect can be neglected for
E � M .

Given the inverse of the metric (1.1), Eq. (4.17) can be
written as

(1 + 2 V )

[(
∂W
∂r

)2

+ r2

w sin θ

(
∂J
∂φ

)2
]

+ 1

r2

(
∂J
∂θ

)2

+ 4 a GN M r

w
E

∂J
∂φ

� r4

w
E2 (4.19)

where we used the form (4.18) for S and defined

w ≡ r4 (1 + 2 V ) + 4 a2 G2
N M2 sin2 θ. (4.20)

For Hawking particles in a quantum corrected Schwarzschild
geometry, we can just consider purely radial trajectories [52],
along which J is constant, and further approximate w �
r4 (1 + 2 V ). In this case, Eq. (4.19) is solved by

W± � ±E
∫ r dr̄

1 + 2 V
(4.21)

with + (−) for outgoing (ingoing) particles.
Imaginary terms in the action S correspond to the Boltz-

mann factor for emission and absorption across the event
horizon. Such terms can only arise due to the pole at r =
rH � RH, where 1 + 2 V = 0, and from the imaginary part
of K in Eq. (4.18), resulting in the probabilities

P± ∝ exp

[
− 2

h̄
(�W± + �K )

]
(4.22)

where � denotes the imaginary part. Assuming that ingoing
particles necessarily cross the event horizon, that is P− �
1, one must set �K = −�W−. Since W+ = −W−, the
probability of a particle tunnelling out then reads

P+ � exp

(
− 4

h̄
�W+

)
. (4.23)

The integral (4.21) around the pole at r � RH with the Feyn-
man prescription for the propagator [52] yields

�W+ � lim
r→RH

π E

2 h̄ V ′(r)
(4.24)

where V ′ = ∂r V . Finally,

P+ � exp

[
− 2 π E

V ′(RH)

]
(4.25)

which implies that the temperature must be given by

TM � h̄

2 π
V ′(RH) = h̄

2 π

[
V ′

qM (RH) + W ′
qa(RH)

]
. (4.26)

This expression with the metric function (2.21) and the con-
tribution (4.12) with α = 2 for the case of Sect. 4.1 gives

TM � TH
2

π

⎡
⎢⎣Si

(
RH

Rs

)
− sin

(
RH

Rs

)

− 3m2
p

4 π M2

�c∑
�=1

C�0
√

2 � + 1 P�(cos θ)

RH/Rs∫
0

z2 dz j�(z)

⎤
⎥⎦

(4.27)

where TH is the standard Hawking temperature (4.2), which
is therefore recovered asymptotically for M � mp and Rs �
RH.

Using the metric function in Eq. (4.14), one analogously
finds

TM � TH

(
1 − 3 ε m2

p

4 M2

)
. (4.28)

On equating the two corrections of order m2
p/M

2, we obtain

ε � 1√
π3

�c∑
�=1

C�0

√
2 � + 1 �(�/2 + 3/2) P�(cos θ)

2� � (� + 3/2) �(�/2 + 5/2)
1F2

×
(

� + 3

2
, � + 3

2
,
� + 5

2
,−1

4

)
(4.29)

where we used Eq. (A.11) with α = 2.

5 Conclusions and outlook

In this work, the semiclassical metric function reproducing
a Kerr geometry in the slow-rotation regime was shown to
arise from suitable highly-excited coherent states, thus gen-
eralising previous results obtained for spherically symmet-
ric geometries [16,20,37]. Quantum hair naturally emerges
in this context, since the existence of the quantum coherent
state does not allow for any possible IR and UV divergences
in general.

An additional source of quantum hair was then identified
in angular momentum modes that do not satisfy the condi-
tions for giving rise to a classical rotating geometry described
in Sect. 2.3. Such modes were further associated with the
Bekenstein–Hawking entropy of Schwarzschild black holes
and are therefore expected to play the role of precursors of the
Hawking radiation, at least for very massive black holes. The
Hawking evaporation was then studied with the Hamilton-
Jacobi method, from which modes representing quantum hair
in the geometry were related to metric corrections of the form
that one expects from 1-loop quantum corrections in the
weak-field approximation [32].
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There are different directions along which the present
results could be improved and developed. First of all, results
regarding the Hawking evaporation can be straightforwardly
generalised to massive bosons and fermions [53–55]. One
could furthermore study other black hole solutions that can
emerge from coherent quantum states and eventually attempt
at a quantum description of black holes with arbitrary angular
momentum [21].
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A Normalisations and conventions

We summarise here the convention we use in the main text.
Projections on the spatial part of the normal modes (2.2) are
defined as

f̃�m(ω) =
+1∫

−1

d cos θ

2 π∫
0

dϕ

∞∫
0

r2 dr

× j�(ω r)
[
Ym

� (θ, ϕ)
]∗

f (r, θ, ϕ). (A.1)

The orthonormality relations (2.4) then follow from the
orthonormality of spherical Bessel functions,

∞∫
0

r2 dr j�(ω r) j�′(ω′ r) = π

2 ω2 δ(ω − ω′) δ��′ (A.2)

as well as the orthonormality of spherical harmonics,

+1∫
−1

d cos θ

2 π∫
0

dϕ Ym
� (θ, ϕ)

[
Ym′

�′ (θ, ϕ)
]∗ = δ��′ δmm′ . (A.3)

The commutation relations (2.8) and (2.9) follow from the
completeness relations

2

π

∞∫
0

ω2 dω j�(ω r) j�(ω r ′) = δ(r − r ′)
r2 (A.4)

and

∑
�

�∑
m=−�

Ym
� (θ, ϕ)

[
Ym

� (θ ′, ϕ′)
]∗ = δ(θ − θ ′)

sin θ
δ(ϕ − ϕ′).

(A.5)

Other useful properties of spherical harmonics are given by[
Ym

�

]∗ = (−1)m Y−m
� (A.6)

and

P−m
� = (−1)m

(� − m)!
(� + m)! P

m
� . (A.7)

From

P�
� = (−1)�

2� �!
√

(2 � + 1)!
4 π

(sin θ)� (A.8)

we then obtain

P−�
� = 1

2� �! (2 �)!
√

(2 � + 1)!
4 π

(sin θ)�. (A.9)

In all of the above expressions, the Kronecker delta is
defined by δi j = 1 for i = j and δi j = 0 for i �= j . The
Dirac delta is defined by∫

dz δ(z − z0) f (z) = f (z0) (A.10)

where integration is assumed on the natural domain of the
variable z.

Relevant integrals of the spherical Bessel functions are
given by∫ x

0
zα dz j�(z) =

√
π

2�+2

�((1 + α + �)/2)

�(3/2 + �) �((3 + α + �)/2)

×1F2((1 + α + �)/2, �

+3/2, (3 + α + �)/2,−x2/4) (A.11)

where 1F2 is the generalised hypergeometric function. In
particular, for α = 1, we have
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∫ x

0
z dz j�(z) =

√
π

2�+2

�(1 + �/2)

�(3/2 + �) �(2 + �/2)

1F2(1 + �/2, � + 3/2, 2 + �/2,−x2/4). (A.12)

B Angular momentum

The normal modes (2.2) are eigenfunctions of the angular
momentum, that is

L̂2 uω�m = h̄2 � (� + 1) uω�m and

L̂ z uω�m = h̄ m uω�m . (B.1)

It then follows that

L̂2 |1�m(ω)〉 = h̄2 � (� + 1) |1�m(ω)〉 and

L̂ z |1�m(ω)〉 = h̄ m |1�m(ω)〉 (B.2)

where |1�m(ω)〉 = â†
�m(ω) |0〉. We can also write the first

relation as defining the operator

√
L̂2 |1�m(ω)〉 = h̄

√
� (� + 1) |1�m(ω)〉 . (B.3)

Likewise, we have

√
L̂2 |n�m(ω)〉 = h̄

√
� (� + 1) n�m |n�m(ω)〉 and

L̂ z |n�m(ω)〉 = h̄ m n�m |n�m(ω)〉 (B.4)

where |n�m(ω)〉 = (n!)−1/2
[
â†
�m(ω)

]n |0〉 (with n = n�m

for brevity).
Let us consider a coherent state of fixed ω (which we omit

for simplicity), � and m,

|g�m〉 = e−N�m/2 exp
{
g�m â†

�m

}
|0〉

= e−N�m/2
∑
n

(
g�m â†

�m

)n
n! |0〉

= e−N�m/2
∑
n

gn�m√
n! |n�m〉 . (B.5)

From 〈 n�m | n′
�m 〉 = δnn′ , the normalisation

〈 g�m | g�m 〉 = e−N�m
∑
n

g2 n
�m

n! = 1 (B.6)

implies N�m = g2
�m . From Eq. (B.4), we then find

〈g�m |
√
L̂2 |g�m〉 = e−g2

�m
∑
n,s

gs�m√
s!

gn�m√
n! 〈s�m |

√
L̂2 |n�m〉

= e−g2
�m
∑
n�m

g2 n�m
�m

n�m ! h̄
√

� (� + 1) n�m

= e−g2
�m h̄

√
� (� + 1)

∑
n�m

g2 n�m
�m

(n�m − 1)!

= h̄
√

� (� + 1) g2
�m e−g2

�m
∑
n

g2 n
�m

n!
= h̄

√
� (� + 1) N�m (B.7)

which is Eq. (2.23) with N�m = g2
�m(ω). Likewise,

〈g�m | L̂ z |g�m〉 = h̄ m N�m (B.8)

which is Eq. (2.24).
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