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Abstract—The proliferation of non-interoperable smart objects
within the Internet of Things (IoT) has led to a fragmented and
heterogeneous landscape. The Web of Things (WoT), particularly
the W3C WoT, has emerged as a promising solution to this
challenge, enabling seamless integration across IoT platforms
and domains by extending known web standards. This paper
introduces Zion, an open-source scalable W3C Thing Description
Directory (TDD) designed to efficiently address the indexing
and querying of Thing Descriptions (TDs) and the associated
Web Things (WTs). Zion offers a standard API for performing
CRUDL operations while supporting metadata querying through
JSONPath. We further demonstrate its practical utility through
real-world deployments, applying Zion to Structural Health
Monitoring (SHM) and integrating it with IoT devices alongside
blockchain technology. Comparative analysis with the other TDD
implementations complying with the W3C standards – e.g., WoT
Hive and TinyIoT – demonstrates that Zion outperforms both.
It exhibits response times approximately ten times lower than
those observed in the compared TDDs under high workloads.

Index Terms—Interoperability, Web of Things, Performance
Evaluation.

In recent years, there has been an exponential surge in the
number of smart objects connected to the Internet, giving rise
to a globally interconnected ecosystem, i.e., the Internet of
Things (IoT). This novel paradigm catalyzed a new generation
of applications, platforms, and devices. However, the rapid
development of IoT has been accompanied by a significant
challenge: the lack of interoperability, manifesting through the
proliferation of proprietary interfaces, diverse data formats,
and a plethora of network protocols. Those factors lead to an
unprecedented level of fragmentation and heterogeneity within
the IoT landscape [1]. The lack of interoperability in IoT is
a crucial challenge that hinders the expansion and evergreen
adoption of IoT-based systems [2].

One of the most promising solutions to address the chal-
lenges in the current IoT scenario is the Web of Things (WoT)
[3], with a particular emphasis on the W3C WoT framework
[4]. The W3C WoT extends existing Web standards and
technologies to provide interoperable abstractions. It achieves
this by offering standardized metadata and other reusable tech-
nological components, facilitating seamless integration across
diverse IoT platforms and application domains [4]. The W3C
WoT has widespread as an interoperability solution across
various domains characterized by heterogeneity, including but
not limited to condition monitoring scenarios [5], edge caching
[6], [7], Industry 4.0 [8] and mobile crowdsensing [9].

One crucial challenge within the WoT ecosystem is the
efficient indexing and querying of Web Things (WTs) [10].

To address this, a novel W3C standard has been introduced,
outlining the process for discovering WTs by utilizing device
metadata while incorporating security and privacy features
[11]. The W3C publishes the standard specification docu-
ments, but it does not provide its implementation. Instead, the
engaged communities often take up the implementation task
through open-source initiatives. However, there is no scalable
WoT-compliant indexer, particularly concerning a domain that
frequently interfaces with numerous devices, often numbering
in the thousands.

To bridge this gap, we have introduced Zion, a scalable
W3C Thing Description Directory (TDD). Zion represents
an open-source TDD fully aligned with the W3C Discovery
standard. Its core values revolve around speed, flexibility,
and user-friendliness. It comprises a standard API that facili-
tates CRUDL (Create, Read, Update, Delete, List) operations
managing TDs. The same interface supports querying TDs
metadata through JSONPath, following the IETF JSONPath
standard1, and offers robust pagination capabilities.

To validate Zion’s scalability, we conducted a comparative
analysis with two other open-source TDD implementations,
specifically, WoT Hive [12], and TinyIoT [13]. We evalu-
ated the querying performance of each TDD while indexing
various quantities of Web Things, ranging from hundreds to
tens of thousands. Our results showcase that Zion service
time increases linearly while TinyIoT scales exponentially.
Additionally, the WoT Hive processing time was prohibiting
high no matter the tested workload.

In the remainder of this paper, Section I details the W3C
WoT Standards while Section II discusses other similar works
in the field. Zion architecture is presented in Section III, its
use cases are illustrated in Section IV, and its scalability is
assessed by the performance evaluation conducted in Section
V. Finally, Section VI concludes and proposes relevant future
works.

I. W3C WEB OF THINGS STANDARD

Unlike traditional approaches, which often propose the
creation of new protocols or middleware layers, the W3C WoT
approach revolves around a descriptive information model
capable of representing diverse solutions. This information
model is the Thing Description (TD) [4].

1https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base#section-3.5.8



The TD contains detailed instructions about the nature of a
device or service – i.e., a WT. In practice, the information
model standardized by W3C contains a set of interaction
patterns (or affordances) that a service or device is capable
of supporting. Those interaction patterns have been designed
after an in-depth review of the current IoT landscape and
they have been found quite good to represent a vast range
of use cases. The affordances group together a set of atomic
functions, called operations, that clients can use to interact
with the represented WT. A WT can have three types of
affordances:

• properties: represent the inner state of a WT – e.g.,
the current temperature of a smart thermometer or the
configuration parameters of a coffee machine. A client
can perform the following operations: write read, observe,
and unobserved.

• actions: high-level functions that WTs offer to their
clients. Usually, actions operate on the physical world or
modify the WT’s state. Examples include: toggle a smart
lamp or move a robotic arm to the desired position. A
client can invoke the action and if it is a long-running
function it can later query its state or cancel its execution.

• events: data sources that asynchronously push data to
clients. Typically, alarms or expected states are modeled
as events, but not regular property changes that are
modeled with the Property affordances. The operations
grouped under the events affordances are: subscribe and
unsubscribe.

A Protocol Binding Template defines how clients can per-
form the operations described in the TD. These low-level
communication requirements can be paired with security con-
straints thanks to the Security Schemas. Security Schemas are
common Web authentication paradigms that can be declared to
be used when invoking an action or any affordance operation.
Notice that the TD only contains the methodology to access
the affordance, not the sensitive information (e.g., username
and password) required to interact with the WT.

In summary, the TD serves as the cornerstone of the W3C
Web of Things, empowering clients to seamlessly interact with
a wide range of software and hardware entities. However, the
true power of WoT lies in its ability to offer the ability to
dynamically discover TD at runtime. This capability ensures
that clients can adapt to the ever-evolving landscape of devices
and services operating across diverse protocols, whether they
are known in advance or encountered on the fly. This crucial
aspect of discovery is thoughtfully addressed by the normative
specification of the W3C Web of Thing Discover [11], detailed
in the following subsection.

A. Discovery

The W3C Web of Thing Discovery [11] focuses on the
normative steps required to obtain and publish TDs over
the Web. The approach to acquiring TDs adopts a two-
phase architectural model, balancing the dual demands of
openness and controlled access to metadata, ensuring that
only authorized entities can access the necessary information.

The first phase, known as ”Introduction,” is employed to
discover one or more candidate URLs. These URLs are
treated as opaque strings, deliberately devoid of any substantial
metadata. During this phase, the process remains entirely open,
with no restrictions applied to consumers. The candidate URLs
are acquired through one of the defined introduction methods.
Presently, there exist five introduction methods: well-known
URLs, Direct (e.g., QR codes or manual URL provision),
DNS-Based Service Discovery, CoRE Link Format and CoRE
Resource Directory, and DID Documents.

Upon obtaining a set of candidate URLs, the Discoverer
proceeds to the second phase, denoted as ”Exploration.” This
phase encompasses the operations necessary to retrieve the
TD referenced by the URLs and further processing to extract
additional information. Typically, these operations are pro-
tected by security mechanisms, such as authentication tokens,
ensuring that the TDs remain inaccessible to unauthorized
users. Notice that the URL obtained via one introduction
mechanism invariably directs to a single TD hosted by an
exploration service. Discoverers must be capable of interacting
with different types of exploration services:

• Thing Description Server: ”Any web service that can be
referenced by a URL and returns a TD with appropriate
authentication and access controls can be used as an
exploration mechanism” [11].

• Thing Description Directory (TDD): serves as a WT
that offers services for managing a collection of TDs
describing other WTs [11]. The TDD facilitates a broader
set of APIs for filtering and searching for the desired TDs.

B. Thing Description Directory

A TDD is an exploration service that can be used to retrieve
and filter a list of TDs. Currently, the specification is focusing
on TDD based on HTTP but, in the future, it might support
other non-web-native protocols like CoAP or MQTT. Imple-
menters of a TDD are required to support a set of compliant
APIs exposed as HTTP endpoints. Currently, those APIs are
grouped into three categories: things, events, and filtering.
Things endpoints are further subdivided into creation, retrieval,
update, deletion, and listing. Those functions represent the
CRUDL operations for the set of TDs stored inside the service.
The specification recommends protecting relevant resources
with secure protocols and credentials. The events API allows
the client to subscribe to the basic events fired by the TDD like
the creation of a Thing Description, an update, or a deletion.
Finally, the filtering API comprehends three different querying
technologies that implementers can choose to support or not:
JSONPath, XPath, and SPARQL.

II. RELATED WORK

One of the most prominent verticals of WoT research is
to design and develop a mechanism to enable the W3C WoT
standard to integrate with non-WoT components seamlessly.
Indeed, a known shortcoming of the W3C WoT standard is
the lack of out-of-the-box conversion methods to dissonant
interfaces to its ecosystem. Implementation efforts are often



needed to integrate third-party Web services or other standard
interfaces into the WoT. Recent advances filled that gap,
providing seamless integration of RESTful Web services [14]
and NGSI-based interfaces [15] to the W3C WoT ecosystem.
Other efforts are on the live migration of WTs [16] to cope
with the intrinsic dynamicity of IoT environments in terms of
time-varying network and computational loads.

The WoT standard enables abstracting the device’s physical
properties and creating interoperable interfaces that facilitate
seamless communication within IoT systems. However, effi-
cient indexing and searching of WTs are fundamental aspects
for the widespread adoption of WoT [3]. Numerous techniques
have been proposed to address WT search challenges [17],
varying in the adopted query language and overall technology.
Among these, IoT-SVKSearch [18] stands out as a promising
approach, supporting searches based on both spatial-temporal
attributes and value-based criteria, effectively incorporating the
dynamism of IoT environments into the search mechanism.
GOLDIE [10] offers a hierarchical location-based WoT direc-
tory architecture that includes federated identity management
and IoT-specific features like discoverability, aggregation, and
geospatial queries. DBAC [19] innovates in the access-control
vertical, enabling decentralized attributed access without the
need for complete trust or credential provision while pre-
serving user privacy. Other efforts have focused on indexing
WTs for specific scenarios, such as indoor devices [20].
In [20], device features are automatically extracted using
machine learning techniques and clustered to group similar
devices. Although these works advance the state-of-the-art in
WT indexing and searching, they do not align with current
W3C standards for discoverability, leading to an increasingly
fragmented landscape with multiple heterogeneous solutions
for indexing and querying devices.

There are two other W3C-compatible implementations,
namely TinyIoT [13] and WoT Hive [12]. TinyIoT holds a
historical significance as the first implementation of the APIs
outlined within the specification. Originating as a research
project within the Fraunhofer Institute, it has since evolved
into an independent open-source endeavor. The service, im-
plemented in Go, uses an integrated LevelDB instance for
the storage and querying of TDs. It supports a comprehensive
feature set, including DNS-SD as an introduction service for
the TDD, complete implementation of all mandatory APIs,
and a JSON-Path query endpoint. While the software solution
is robust, the queries are performed entirely in memory, which
could potentially pose challenges when deploying TinyIoT in
large-scale environments.

WoT Hive has been developed inside the European project
AURORAL and wants to be the most feature-rich implemen-
tation of the Thing Description Directory APIs. The service
is written in Java with the help of the Spark framework and
it supports SPARQL endpoints as storage for the list of TDs.
In contrast to TinyIoT, WoT Hive boasts more robust seman-
tic and syntactic capabilities thanks to its backend support
for Triple stores, supporting both JSONPath, SPARQL-based
discovery and semantic validation. On the other hand, the

expanded feature set compromises scalability with a large set
of TDs as demonstrated in [12]. Although we utilized the
WoT standard in this study, there are other efforts to solve
the interoperability problem in the context of IoT [21], which
are outside the scope of this work.

III. ZION ARCHITECTURAL DESIGN

Zion’s software architecture is modular, ensuring scalability
and maintainability. The architecture is divided into:the API
Reference, Authentication, Introduction, and Persistence mod-
ules. Each of these modules serves a distinct purpose, ensuring
that the software can handle the diverse requirements of an IoT
device directory.

A. API Reference

The API Reference offers a comprehensive implementation
of the functionalities outlined in the W3C WoT Discovery
document. It is structured into three distinct sub-modules:
Events, Search, and Things.

The Events module handles API endpoints related to device
events, allowing the tracking and monitoring of device activi-
ties. Clients can subscribe to all events or a specific event, such
as when a device is added, modified, or deleted. This real-
time subscription mechanism is implemented using Server-
Sent Events (SSE), ensuring immediate updates and efficient
communication between the server and clients.

Within the W3C-specified Search API, advanced searching
mechanisms are proposed, including JSONPath, XPath, and
SPARQL. However, in our Search module, we prioritized the
JSONPath implementation due to its flexibility and intuitive
nature for querying JSON data structures which is the default
encoding format for TDs.

The Things module provides comprehensive endpoints for
TD operations, including creation, retrieval, modification, and
deletion. Authentication mechanisms secure these operations,
limiting modifications to authorized clients. Advanced query-
ing options are available, allowing clients to filter and enrich
TD listings with additional metadata and related information.
The module’s design adheres to RESTful API principles,
offering intuitive endpoints and standard HTTP methods for
simplified client integration and consistent interactions.

B. Authentication

The authentication module supports token-based authentica-
tion via username and password. This self-contained support
model doesn’t necessitate the use of an external service.
However, we are actively working on refactoring this feature to
adopt a more extensible approach. In the future, users will have
the flexibility to select their preferred authentication mecha-
nisms to suit their specific needs. For instance, they can opt
for username and password authentication for smaller setups or
utilize OIDC (OpenID Connect) for cloud-based deployments,
ensuring enhanced security and user convenience.



C. Persistence

The Persistence module serves as an abstraction layer for
data storage and retrieval. It utilizes the Knex.js2 query builder
to establish a robust connection with the PostgreSQL database
and generate the needed queries. This module not only ensures
the efficient management of user data and TDs but also adeptly
handles TD lifecycle events. The AbstractRepository offers
a generic blueprint for basic CRUDL operations promoting
modularity and reusability, with specialized repositories like
the UserRepository and ThingDescriptionRepository extending
these operations for their specific needs. The ThingDescrip-
tionRepository’s capability to process JSONPath queries is
particularly noteworthy. To achieve this, a dedicated library3

was developed to translate JSONPath queries into SQL/JSON
Path, the language natively supported by PostgreSQL. This
translation covers 90% of the language, and it’s sufficient
to support the querying of almost every TD. The TDLife-
cycleEventRepository is currently in-memory, but there are
considerations to migrate to more persistent storage solutions
like Redis to enhance scalability.

IV. REAL USE CASES

Despite being a newly developed software, Zion has already
found extensive utilization as an important component in
various real-world use cases spanning different IoT domains.
Subsection IV-A elaborates on its role in supporting Structural
Health Monitoring (SHM) systems, while Subsection IV-B
introduces Zion’s integration into a blockchain system with
the objective of establishing a global IoT market.

A. IoT support for Structural Health Monitoring

Modern SHM deployments frequently entail installing di-
verse sensor devices capable of conducting long-term measure-
ments. Consequently, there is a growing demand for dedicated
software platforms that address scalability and interoperability
requirements, ensuring the seamless integration of diverse sen-
sors and enabling real-time monitoring and early detection of
structural anomalies or potential issues in critical infrastructure
assets. In such scenarios, IoT interoperability plays a core
role by enabling seamless communication and interfaces of
disjoint system actors. In the landscape of IoT platforms for
SHM, MODRON [22], [23] rises as a versatile framework
comprising software components designed to support appli-
cations spanning from sensor to cloud data acquisition and
data management. This framework leverages the W3C WoT
standard to integrate heterogeneous sensors and applications
through a dedicated interoperability layer. Zion serves as a
directory to register and manage TDs for sensors responsible
for capturing accelerometer and acoustic emission data. In
MODRON, every time a new WT is deployed, a component
checks whether it is already registered in Zion, and if not, it
proceeds to register it. This automated process allows for the
discovery of WTs without human intervention. Additionally,

2https://knexjs.org
3https://github.com/vaimee/jsonpath-to-sqljsonpath

Fig. 1: MAC4PRO monitored concrete structure.

Zion is consumed by other MODRON components, which
list and visualize the indexed WTs. Through the graphical
user interface, users control which set of TDs and features
they wish to visualize. This user input is translated into Zion
queries. Figure 1 depicts one scenario of the MAC4PRO
project in which MODRON enables the monitoring of the
concrete structure. The image showcases a test of a shaking
table applying seismic inputs to a concrete structure.

B. Blockchain Integration

The DESMO architecture presented in the recent study
[24] enables a decentralized IoT global market where clients
can retrieve IoT data from multiple data sources in a trusted
manner through blockchain integration. This architecture finds
its application in various domains, including urban scenarios
related to noise pollution. By leveraging the DESMO system,
entities can monitor and manage noise levels in real-time,
ensuring adherence to regulations and enhancing the quality of
life in urban areas. Within this framework, the data sources are
indexed using specialized directory nodes that must comply
with the W3C WoT Discovery specification. On the other
hand, devices are described by a W3C WoT TD and must
be registered on (at least) one of these TDDs, ensuring they
can be located and utilized by the system. Zion is the official
implementation, playing a critical role in enhancing the level
of interoperability and performance. Its ability to perform
complex JSONPath queries in a very efficient way is the key
that allows the network to scale and become a real ”global
market” for IoT data.

V. PERFORMANCE ANALYSIS

We conducted a performance analysis to assess the scalabil-
ity of the various implementations of TDDs compatible with
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Fig. 2: Histogram that shows the distributions of WT TDs per
number of lines

the W3C WoT Discovery standard; namely: Zion, TinyIoT, and
WoT Hive. Our focus was on characterizing the scalability of
the query time under different workloads, as it represents the
most critical metric in this context. Unlike the less frequent
operations of inserting, removing, and updating TDs, querying
TDs occurs more frequently under real-world conditions – as
searching and consuming internet content is a more common
activity than the tasks of creating or removing content.

In our experimental setup, we performed experiments where
we systematically varied the quantity of TDs stored in the
database across different scenarios. In detail, we conducted
experiments for 10, 100, 1,000, 10,000, and 100,000 TDs. We
categorized the TDs into different complexity levels according
to their number of lines: simple, medium, and complex. To
guarantee a greater similarity with real-world scenarios, we
distributed the categories of TDs stored in each experiment
replication mimicking a Pareto distribution (the Pareto dis-
tribution is commonly employed to model the sizes of files
on the internet) as Figure 2 depicts. Hence: 80% of simple
TDs, 15% of medium TDs, and only 5% of complex TDs. We
emphasize that the TDs utilized in the experiments represented
real devices. They were collected from public repositories of
official W3C WoT Events (e.g., PlugFest) and are publicly
available in a GitHub repository4. Before each experiment, we
populated the TDD with the TDs according to the specified
distribution and complexity levels.

In each experiment, we conducted a hundred sequential calls
to the TDD JSONPath search endpoint. For each call, we
randomly select a query from the following options:

• $[?(@.properties.lightColor)]: this query
searched for TDs containing the lightColor property.;

• $[?(@.properties.lightColor &&
@.properties.brightness)]: This query

4https://github.com/vaimee/tdd-workload-generator/tree/main/src/populate-
db/examples-td
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Fig. 3: Processing times for Zion and TinyIoT with y-axis in
logarithm scale.

searches TDs featuring both the lightColor and
brightness properties.

• $[?(@.properties.sensorInformation)].
properties..state: This query searches
TDs with state as a sub-property within the
sensorInformation property.property.

Preliminary experiments unveiled that all three queries
have similar processing times. In each replication, we reset
the database and re-populated it. Additionally, we utilized
Mersenne Twister [25] algorithm as the pseudo-number gen-
erator, and we seeded it manually with a prime number for
each replication. The manual seeding operation serves a dual
purpose:

1) It ensures fairness in terms of the sequence of pseudo-
random numbers generated when comparing different
implementations. For instance, replication #12 of a
specific experiment with Zion was seeded in the same
manner as replication #12 of a corresponding TinyIoT
replication.

2) It allows for the replication of the performance anal-
ysis by fellow researchers and developers, promoting
transparency and reproducibility in our experimentation
process.

The workload generator and the analyzed TDD were de-
ployed in the same machine (12GB of RAM and an Intel Core
i5-7200U CPU running at 2.50GHz with 4 cores). We con-
tainerized Zion and TinyIoT using Docker. Each experiment
was replicated 30 times and asymptotic confidence intervals
were computed at the level of 99%.

The results are depicted in Figure 3, note that the y-axis is
in logarithm scale. We omitted WoT Hive from the graphs due
to its unfeasible high processing time in all tested workloads.
In the lowest workload scenario with 10 TDs, the average
processing time was 0.94 seconds. This average increased
to 1.85 seconds with 100 TDs and further extended to 8.61
seconds with 1,000 TDs. During all WoT Hive experiments,
we encountered numerous error replies and experienced denial
of service from the server. Our experiments support that WoT



Hive is not suitable for the use cases defined in this study.
Regarding the performance comparison for TinyIoT with Zion,
we can note that the effect of increasing workload on Zion
results in a steady, linear rise in its processing time. In contrast,
TinyIoT experiences an exponential surge in processing time
as the workload intensifies.

VI. CONCLUSION

In our work, we introduce Zion, an open-source Web Things
directory implementing the W3C WoT Discovery Standard.
It efficiently indexes devices and offers a discovery mech-
anism that searches device metadata. Zion provides a well-
documented REST interface, allowing authenticated users to
create, modify, update, and delete TDs. Regular users can list
and search TDs using JSONPath queries. In our experiments,
Zion outperformed other TDD implementations by scaling its
service time linearly, while other TDDs either scaled expo-
nentially or experienced crashes with increasing workloads. As
future work, we plan to include a geospatial API and a tagging
system. The geospatial API will enable device management
and queries based on geographical locations, while the tagging
system aims to provide mechanisms for categorizing and
organizing TDs.
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