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Introduction:Growth Differentiation Factor 15 (GDF15) is amitokine expressed in

response to various stresses whose circulating levels increase with age and are

associated with numerous pathological conditions, including muscle wasting

and sarcopenia. However, the use of circulating GDF15 (c-GDF15) as a biomarker

of sarcopenia is still debated. Moreover, the role of GDF15 intracellular precursor,

pro-GDF15, in human skeletal muscle (SM-GDF15) is not totally understood. In

order to clarify these points, the association of both forms of GDF15 with

parameters of muscle strength, body composition, metabolism and

inflammation was investigated.

Methods: the levels of c-GDF15 and SM-GDF15 were evaluated in plasma and

muscle biopsies, respectively, of healthy subjects (HS) and patients with lower

limb mobility impairment (LLMI), either young (<40 years-old) or old (>70 years-

old). Other parameters included in the analysis were Isometric Quadriceps

Strength (IQS), BMI, lean and fat mass percentage, Vastus lateralis thickness, as

well as circulating levels of Adiponectin, Leptin, Resistin, IGF-1, Insulin, IL6, IL15

and c-PLIN2. Principal Component Analysis (PCA), Canonical Discriminant

Analysis (CDA) and Receiving Operating Characteristics (ROC) analysis

were performed.

Results: c-GDF15 but not SM-GDF15 levels resulted associated with decreased

IQS and IGF-1 levels in both HS and LLMI, while only in LLMI associated with

increased levels of Resistin. Moreover, in LLMI both c-GDF15 and SM-GDF15

levels were associated with IL-6 levels, but interestingly SM-GDF15 is lower in

LLMI with respect to HS. Furthermore, a discrimination of the four groups of

subjects based on these parameters was possible with PCA and CDA. In particular

HS, LLMI over 70 years or under 40 years of age were discriminated based on SM-

GDF15, c-GDF15 and Insulin levels, respectively.
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Conclusion: our data support the idea that c-GDF15 level could be used as a

biomarker of decreasedmuscle mass and strength. Moreover, it is suggested that

c-GDF15 has a different diagnostic significance with respect to SM-GDF15, which

is likely linked to a healthy and active state.
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Introduction

Aging is a complex process characterized by multiple biological

alterations, including changes in body composition. In particular,

during aging, a decrease of muscle mass and strength and an

increase of total fat mass occur (1–3). Over time, these changes

may contribute to the onset of different age-related diseases, and in

particular sarcopenia (4). The causes of sarcopenia are not yet

completely understood, but to date, it is thought to be a

multifactorial disease, in which neurological decline, hormone

changes, increased inflammatory status, decline in physical

activity and poor nutrition, together contribute to its onset (5).

Sarcopenia is becoming highly prevalent in the elderly population,

with a remarkable impact on the quality of life, since it is associated

with increase of falls, poor physical function and difficulties in

activities of daily living. Moreover, it is considered as both a

precursor and a physical manifestation of frailty, and its

diagnostic process is often difficult (6, 7). Given the impact of this

pathology, in particular on Western societies that are rapidly aging,

and the fact that elderly population is continuously increasing,

prevention, early diagnosis and treatment of sarcopenia are

becoming fundamental.

A chronic and low-grade state of inflammation, known as

“inflammaging” (8), is considered one of the hallmarks of aging and

one of the main drivers of many, if not all, age-related diseases,

including sarcopenia. In fact, elevated circulating levels of typical

inflammaging mediators, such as Interleukin 6 (IL6), Tumor

necrosis factor a (TNFa) and C-reactive protein (CRP), have

been found in patients with sarcopenia (9–11). However,

inflammaging has also a counterpart indicated as anti-

inflammaging, whose components are still under investigation,

though some of them have been possibly identified, such as

Growth Differentiation Factor 15 (GDF15) (12, 13). Recently, a

possible association of GDF15 with sarcopenia and muscle mass

loss has been reported (14–16). GDF15 is a mitokine, i.e. a stress-

related protein mainly secreted in response to mitochondrial stress,

and one of the most upregulated proteins during aging and is

associated with overall mortality in the elderly (17–19). Human

GDF15 gene encodes for a 308 amino acid biologically inactive

precursor protein, named pre-pro-GDF15, which is cleaved in the
02
endoplasmic reticulum to pro-GDF15. At the C-terminal a

conserved domain of seven consecutive cysteines makes the pro-

GDF15 to form an intracellular homodimer (35 kDa) through a

single disulfide bond (20). The pro-GDF15 is further processed in

the trans-Golgi apparatus and secreted as mature GDF15

homodimer (15 kDa) (21, 22). As mentioned, a tight relationship

of GDF15 with inflammation has been found, since it has been

shown that its levels increase in response to infections and

inflammat ion , w i th poss ib l e immunoregu la tory and

immunosuppressive roles, being fundamental in tolerance and

adaptation to bacterial and viral infections (23, 24). Other precise

biological functions of GDF15 are still poorly defined, but it has

been shown that it acts centrally to control appetite and is involved

in energy metabolism, with catabolic and cachexia-promoting

effects (13, 25). Many studies have associated GDF15 with a

plethora of age-related diseases, such as neurodegenerative

diseases, cardiovascular diseases, metabolic diseases and cancer

(13, 26–29).

As mentioned, an association of the circulating GDF15 (c-

GDF15), i.e. the mature GDF15 homodimer, with sarcopenia and

muscle atrophy has been suggested. In particular, studies showed

that c-GDF15 level could easily predict sarcopenia in patients with

chronic obstructive pulmonary disease (30) and in aged mice and

humans (31). Moreover, inactivation of GDF15 signaling in a

mouse model of cancer-induced cachexia led to improved muscle

mass and physical performance (16). However, the usefulness of c-

GDF15 as a biomarker of sarcopenia is still debated, as it is not

possible to understand which tissue it comes from. In fact, GDF15,

as pro-GDF15 form, is expressed by many tissues, including skeletal

and cardiac muscles, and consequently it is listed among myokines

(32). Moreover, it is not clear what is the role, if any, of intracellular

pro-GDF15 protein in human skeletal muscle (SM-GDF15). In

particular, it is not clear whether SM-GDF15 expression is just a

sign of muscle stress and reflects c-GDF15 levels, or rather it may

play a detrimental or beneficial role trying to promote or counteract

muscle wasting and weakness. To this aim, in the present study we

have analyzed the levels of c-GDF15 and SM-GDF15 in both

healthy subjects with an active life-style and patients with lower

limb mobility impairment and a sedentary life-style, with different

age (from 20 to 96 years). We have found that in patients c-GDF15
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level is higher while, surprisingly, SM-GDF15 level is lower

compared to healthy subjects. Moreover, c-GDF15 level is

inversely correlated with muscle strength in both healthy subjects

and patients, supporting its use as a biomarker of sarcopenia and

muscle dysfunction.
Methods

Subjects’ description

The subjects were recruited in the framework of the EU Project

“MYOAGE”. The study protocol was approved by the Ethical

Committee of Istituto Ortopedico Rizzoli, Bologna, Italy (ethical

clearance no. 10823 issued on April 26, 2010). All subjects signed an

informed consent before entering the study. For this study, ethical

aspects for aging research were considered, as illustrated in 33.

Samples from two groups of subjects were used: i) 47 healthy

subjects (HS) (mean age 57.1 ± 3.6) divided in 15 subjects <40 years

of age (mean age 22.7 ± 0.63) and 32 subjects >70 years of age

(mean age 74.3 ± 0.62); ii) 46 patients with lower limb mobility

impairment (LLMI) (mean age 61.3 ± 3.6), divided in 21 subjects

<40 years of age (mean age 36.3 ± 1.5) and 25 subjects >70 years of

age (mean age 82.2 ± 1.6). To ensure the selection of subjects in

healthy conditions, the following exclusion criteria were used:

presence of comorbidities as detailed in 2, inability to walk a

distance of 250m, use of medication, immobilization for 1 week

during the last 3 months and orthopedic surgery during the last 2

years. For the patient’s group, exclusion criteria were: the presence

of chronic kidney or liver diseases, bleeding disorders, severe

diabetes mellitus, rheumatic diseases other than osteoarthritis,

neuromuscular disorders, malignancies and systemic infections,

chronic steroid use, major psychological problems or history of

alcohol or drug abuse, evidence of prior surgery in the involved

hip (2).

Height and weight were measured for each subject and BMI was

calculated as weight in kilograms divided by the square of the height

in meters (kg/m2).
Laboratory measurements on plasma

Blood samples were collected in the morning after an overnight

fasting. Plasma samples were obtained after a 15 minutes

centrifugation at 2,000 g at 4°C, then rapidly frozen and stored at

-80°C until the analysis was performed. Plasma IGF-1, Insulin,

Adiponectin, Leptin, Resistin, IL6 and GDF15 concentrations were

obtained using commercial ELISA kits (Quantikine R&D Systems),

according to manufacturer’s instructions. Circulating Perilipin 2 (c-

PLIN2) was measured using the ELISA commercial kit Human

ADRP ELISA (E-EL-H0278, Elabscience), according to the

manufacturer’s instructions. Each analyte was measured in

duplicate for each sample. Plasma IL15 was analyzed using the

Simple Plex Human IL-15 Cartridge (ProteinSimple/Bio-Techne)

run on an Ella Automated Immunoassay System (ProteinSimple/

Bio-Techne), according to manufacturer’s instructions.
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Muscle strength

For HS, isometric quadriceps strength (IQS) was measured with

a quadriceps chair (Forcelink B.V). Briefly, the subjects were

positioned in an upright position, with straps to fix the hips to

the chair and the ankle to the force transducer, at the knee angle of

90 degrees. Three trials were conducted to measure maximal

voluntary contraction of the quadriceps. Each trial was separated

by one minute of rest. The trial with the highest force output was

taken for analyses.

For LLMI, the IQS was measured in seated position using a

Handifor dynamometer (TRACTEL S.A. Montreuil Cedex –

France). After a warming up period, patients were asked to

perform three series of 10 contractions, progressively increasing

the strength developed. The highest peak torque was withheld

for analyses.
Muscle ultrasound measurements

Only for LLMI, ultrasound imaging of the Vastus lateralis (VL)

was performed using a portable ultrasound (Mylab25, Esaote) with

a 7–10 MHz linear probe. Acquisition was performed by a trained

examiner. Muscle thickness was calculated as the vertical distance

between muscle superficial and deep aponeuroses, at an equidistant

point from right and left borders of the sagittal image.
Dual-energy x-ray absorptiometry

Only for HS, a whole-body scan to detect total fat and lean mass

was performed. The scan was performed using Dual-energy X-ray

absorptiometry (DXA) (Hologic QDR 4500, version 12.4, Hologic

Inc., Bedford), by a trained technician.
Muscle biopsies sampling

Muscle biopsies were taken from VL muscle from 23 HS, after

localized anesthesia, and from 16 LLMI, during the operation at the

site of surgical incision. All biopsies were immediately frozen in

liquid nitrogen and then stored at -80°C.
Protein extraction and western blotting

Proteins were obtained by lysis of about 40mg of frozen tissue

using TEAD buffer (Tris-HCl 20 mM pH= 7.5, EDTA 1mM, NaN3

1mM, DTT 1mM) with protease and phosphatase inhibitors

(Sigma). Homogenization was performed using a motor driven

homogenizer and lysates obtained were then centrifuged at 25,000 g

for 1h at 4°C.

10 mg of total proteins were separated on a polyacrylamide gel

(4-15% Mini-PROTEAN® TGX™ Precast Protein Gels, Bio-Rad).
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Proteins were then transferred to a nitrocellulose membrane

(Trans-Blot Transfer Medium, Bio-Rad) and then immunoblotted

with anti-Mic-1/GDF15 (Cell Signaling) primary antibody. Anti-

GAPDH primary antibody (Novus Bio) was used as housekeeping

for normalization.

Images acquisition was performed with ChemiDoc Imaging

System (Bio-Rad). Band densitometry analysis was performed with

Fiji software.
Statistical analysis

Results are shown as mean ± SD or SE. After a Shapiro-Wilk

normality test, Student’s t test, and Pearson correlation were used

for normally distributed data whereas Mann-Whitney test was used

for data that did not follow a normal distribution. SPSS 17.0 for

Windows was used for analyses. P values <0.05 were considered

statistically significant. The post-hoc power calculation, performed

with G*Power software, was 0.81, considering an effect size of 0.30.

To understand the role of c-GDF15 and SM-GDF15 in relation

to other parameters (Insulin, Leptin, c-PLIN2, IL6, IL15, Resistin,

Adiponectin and BMI) involved in muscle strength and mass loss, a

principal component analysis (PCA) was used. The PCA is a

multivariate dimension reduction application, mainly aimed at

synthesizing data contained in a set of n observed variables (y1,

…, yn) by checking a new set of p (p < n) variables (X1,…,Xp),

named principal components (PCs). The first PC (PC1) explains the

highest variability, while the remaining PCs (PC2, PC3,… PCn; n =

number of variables) report for the remaining variability in the data.

Each PC is independent and orthogonal to the others. Generally, the

first few PCs are sufficient to describe most of the total data

variations (34).

Subsequently, a Canonical Discriminant Analysis (CDA) was

used to evaluate which of the variables involved in the PCA were

able to best discriminate the 4 groups of subjects involved in the test

(healthy young subjects, young patients, healthy old subjects and

old patients). The CDA is a dimension-reduction technique, related

to principal component analysis and canonical correlation, able to

perform both univariate and multivariate 1-way analyses. Given a

classification character and several interval variables, CDA derives a

set of new variables, called canonical functions (CAN), which are

linear combinations of the original interval variables.

Moreover, receiver operating characteristics (ROC) curves were

constructed to assess the cut-off levels and the discriminatory ability

of the above-mentioned parameters in HS and LLMI.
Results

c-GDF15 levels and SM-GDF15 protein
follow different trends in patients and
healthy subjects

We have previously reported that the level of c-GDF15 in

patients with lower limb mobility impairment (LLMI) is higher

than that of healthy subjects (HS), and that in both LLMI and HS,
Frontiers in Endocrinology 04
older subjects have higher levels of c-GDF15 with respect to younger

ones (14). The analysis of c-GDF15 in the present study confirmed

previous results, i.e. higher c-GDF15 levels in LLMI vs HS and in

>70yrs vs <40yrs subjects (Supplementary Figures 1A–C).

We then wondered whether the same trend was also present in

skeletal muscle tissue. To this purpose, we evaluated, in the same

subjects, the protein level of the intracellular pro-GDF15 form

within skeletal muscle (SM-GDF15), analyzing the whole protein

extract from VL biopsies by western blotting. Surprisingly, the level

of SM-GDF15 followed a different trend compared to c-GDF15. In

particular, LLMI showed a significantly lower level of SM-GDF15 as

compared to HS (Figures 1A, B). Moreover, no significant

differences were found between younger (<40 yrs) and older

(>70yrs) subjects in both HS and LLMI groups (Figures 1C, D).

These results indicate that actually GDF15 protein follows different

concentration trends in plasma and skeletal muscle. Moreover, no

correlation between SM-GDF15 and c-GDF15 was observed

(see below).
c-GDF15 correlates with markers of
inflammation and muscle functionality

We then sought for correlations of c-GDF15 and SM-GDF15

with biochemical, anthropometric and functional parameters [age,

BMI, Isometric Quadriceps Strength (IQS), Adiponectin, Leptin,

Resistin, Insulin, IL6, IL15, c-PLIN2, IGF-1] related to

inflammation, metabolism, body composition and muscle

functionality. Mean values of the above-mentioned parameters,

analyzed in HS and LLMI, are summarized in Table 1.

When we considered all the subjects analyzed (LLMI+HS), a

positive correlation of c-GDF15 with age, IL6 and Resistin and a

negative correlation with IGF-1 were observed. As far as SM-

GDF15, a positive correlation with Adiponectin and a negative

correlation with Insulin were observed (Figures 2A–F).

When we considered HS group only, a positive correlation of c-

GDF15 with age, BMI and IL6 and a negative one with IQS, IQS/BMI

and IGF-1 were observed. For this group, data on body composition

were available. Interestingly, SM-GDF15 correlated with fat percentage

and inversely with lean percentage (27.6% ± 1.3 and 70.4% ± 1.3 of HS

body composition on average, respectively) (Table 2).

When we considered LLMI group only, a positive correlation of

c-GDF15 with age, Resistin and IL6 and a negative one with IQS,

IQS/BMI and IGF-1 were observed. For this group, data on VL

thickness were available (1.3mm ± 0.1 on average). An inverse

correlation of c-GDF15 with this parameter was found.

Furthermore, a positive correlation between SM-GDF15 and IL6

was found (Table 3). Interestingly, higher IL6 plasma levels were

observed in LLMI with respect to HS (p= 0.00095, Student’s t test.

Supplementary Figure 2).

No correlation was observed with either c-PLIN2 (a marker of

adiposity according to 28) or IL15 (a positive modulator of muscle

growth, according to 35). Taken together, these data indicate that c-

GDF15 is correlated with decreased muscle strength and increased

inflammation and could thus represent a biomarker of poor

muscle function.
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Principal component and canonical
discriminant analyses separate HS
and LLMI

To better understand the diagnostic role and the possible link of

c-GDF15 and SM-GDF15 with the other parameters analyzed, we

performed a principal component analysis (PCA) and a canonical

discriminant analysis (CDA).
Frontiers in Endocrinology 05
PCA was applied to explore the effect of the parameters

analyzed in both HS and LLMI subjects. The first two principal

components (PC1 and PC2) described 54% of the total variation

(29.6% and 24.8% for PC1 and PC2 respectively). The loading plot

of the PCA showed that the parameters analyzed could be grouped

into three main groups (Figure 3A). The first group (positive

loadings for PC1 and PC2) included c-GDF15, IL6, IL15 and

Resistin, which are molecules related to inflammatory responses

(23, 36–38). The second group (variables with negative and positive

loadings for PC1 and PC2 respectively) included BMI, c-PLIN2 and

Leptin, that are related to adipose tissue and its metabolism, as well

as energy balance regulation (39, 40). The third group (negative

loadings for both PCs) included Adiponectin, an anti-inflammatory

protein secreted by adipose tissue, and SM-GDF15. Surprisingly,

the score plot of the PCA showed that HS were mainly associated

with SM-GDF15 and Adiponectin, while LLMI were associated with

all the other parameters. These latter could be further subdivided by

age, in particular >70yrs LLMI were mainly associated to c-GDF15,

IL6, IL15 and Resistin (Figure 3B).

CDA showed that the parameters considered could

discriminate the subjects into four groups (<40yrs HS, >70yrs HS,

<40yrs LLMI and >70yrs LLMI). The canonical 1 accounted for

67.93% of separation and the canonical 2 for 21.17%. In particular,

>70yrs LLMI were well separated from all other groups, mainly

because of c-GDF15 and Leptin expression levels (Figure 4).

In order to evaluate which of the parameters analyzed had the

highest discriminative ability in HS and LLMI, we calculated the

receiver operating characteristic (ROC) curves, also in order to

detect a cut-off for the discriminating parameters considered. The
TABLE 1 Summary of biochemical and anthropometric parameters of HS
and LLMI patients. Data are expressed ad mean ± SE.

HS (47 subjects) LLMI (46 subjects)

Age (years) 57.1 ± 3.6 61.3 ± 3.6

BMI (kg/m2) 24.9 ± 0.6 26.0 ± 0.6

c-GDF15 (pg/ml) 1168.1 ± 87.6 2021.6 ± 249.1

IQS (kg) 146.5 ± 10.4 26.3 ± 1.7

Adiponectin (µg/ml) 13.7 ± 1.2 10.7 ± 1

Leptin (pg/ml) 11.7 ± 1.9 12.2 ± 1.4

Resistin (ng/ml) 7.1 ± 0.4 9.3 ± 1.1

IGF-1 (ng/ml) 122.5 ± 9.7 117.5 ± 8.4

Insulin (µU/ml) 2.1 ± 0.03 12.6 ± 2.1

IL6 (pg/ml) 3.2 ± 0.2 16.7 ± 3.7

IL15 (pg/ml) 2.0 ± 0.1 4.0 ± 1.8

c-PLIN2 (ng/ml) 32.2 ± 4.9 44.7 ± 5.3
B

C D

A

FIGURE 1

Western blotting analysis of GDF15 in the skeletal muscle (SM-GDF15). (A) Representative immunoblotting image of GDF15 and GAPDH in the
skeletal muscle. (B) Relative protein expression of GDF15 in the SM from 23 healthy subjects (HS) and 16 patients with lower limb mobility
impairment (LLMI). (C) Relative protein expression of GDF15 in the SM from 10 HS <40 years (<40) and 13 HS >70 years (>70). (D) Relative protein
expression of GDF15 in the SM from 7 LLMI <40 and 9 LLMI >70. The bars represent mean ± SD. The quantification was performed using Fiji
software and normalized to GAPDH expression. Student’s t test was applied.
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areas under the curves (AUCs) are reported in Tables 4, 5. SM-

GDF15 and Adiponectin resulted the most discriminative

parameters for HS (Figure 5A), while Insulin and c-GDF15 were

those for LLMI (Figure 5B). These data indicate that these

parameters can discriminate between LLMI and HS and,

interestingly, that c-GDF15 and SM-GDF15 levels seem to

characterize LLMI and HS, respectively.
Discussion

It has been reported that plasma levels of GDF15 are associated

with low muscle function and sarcopenia (14, 41–45). However, it is

not yet clear what is the role of SM-GDF15 in muscle function and

whether the levels of c-GDF15 are linked to SM-GDF15, given that
Frontiers in Endocrinology 06
skeletal muscles constitute the largest body component. Therefore,

in this study we addressed the following questions: i. are the levels of

SM-GDF15 correlated with those of c-GDF15? ii. are the levels of

SM-GDF15 correlated with muscle strength or other parameters

related to inflammation or metabolism? iii. is there any change with

age in SM-GDF15 and its possible correlations with other

parameters? iv. is it possible to discriminate patients suffering of

muscle disuse or sarcopenia from healthy controls, as well as young

from elderly subjects taking advantage of these parameters?

Quite surprisingly, SM-GDF15 expression evaluated in Vastus

lateralis biopsies did not correlate with the levels of c-GDF15 nor

with isometric quadriceps strength (IQS) and resulted higher in HS

than LLMI samples. This suggests that the contribution of skeletal

muscle to the production of c-GDF15 is likely exceeded by the

contributions of other organs/tissues. Moreover, given the fact that
frontiersin.or
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FIGURE 2

Linear regression analysis of c-GDF15 with (A) age, (B) IL6, (C) Resistin, (D) IGF-1, and of SM-GDF15 with (E) Insulin and (F) Adiponectin, in HS and
LLMI. Pearson correlation coefficient (r) and p-value are shown.
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the expression of SM-GDF15 is apparently higher in HS group, it is

possible that in skeletal muscle such an expression is stimulated by

fiber contraction, as suggested also by previous data indicating a

transient spike of GDF15 expression upon a strenuous physical

bout (14). On the contrary, it seems that inactivity induces a much
Frontiers in Endocrinology 07
lower expression of SM-GDF15. This conclusion is schematized

in Figure 6.

As far as the correlation with other parameters, when

considering LLMI and HS together, c-GDF15 is associated with

age, as expected, and with other parameters such as IGF-1 (46), IL6
TABLE 2 Pearson correlations of c-GDF15 and SM-GDF15 with the
metabolic and inflammatory parameters in HS (r: Pearson correlation
coefficient; p: p-value).

c-GDF15 SM-GDF15

r p r p

Age 0.756 < 0.0001 -0.083 0.744

BMI 0.300 0.041 -0.196 0.436

IQS (kg) -0.325 0.026 -0.426 0.078

IQS/BMI -0.381 0.008 -0.342 0.165

Fat % 0.165 0.272 0.517 0.028

Lean % -0.118 0.435 -0.527 0.025

Adiponectin 0.122 0.413 0.322 0.192

Leptin 0.154 0.301 0.389 0.110

Resistin 0.131 0.379 -0.005 0.984

IGF-1 -0.594 < 0.0001 0.059 0.818

Insulin -0.093 0.534 0.334 0.176

c-PLIN2 0.152 0.330 0.299 0.243

IL6 0.640 < 0.0001 0.123 0.639

IL15 -0.055 0.104 0.104 0.896

SM-GDF15 -0.199 0.444 – –
Statistically significant values are indicated in bold.
TABLE 3 Pearson correlations of c-GDF15 and SM-GDF15 with the
metabolic and inflammatory parameters in LLMI (r: Pearson correlation
coefficient; p: p-value).

c-GDF15 SM-GDF15

r p r p

Age 0.714 < 0.0001 0.378 0.135

BMI -0.263 0.081 0.106 0.685

IQS (kg) -0.405 0.019 -0.188 0.628

IQS/BMI -0.469 0.006 -0.164 0.673

Muscle
thickness -0.551 < 0.0001 -0.028 0.921

Adiponectin 0.192 0.213 0.284 0.308

Leptin -0.076 0.623 0.263 0.308

Resistin 0.689 < 0.0001 0.086 0.743

IGF-1 -0.403 0.013 -0.205 0.482

Insulin -0.144 0.350 -0.421 0.092

c-PLIN2 -0.019 0.908 0.291 0.292

IL6 0.687 < 0.0001 0.503 0.039

IL15 -0.105 0.493 -0.336 0.188

SM-GDF15 0.366 0.148 – –
Statistically significant values are indicated in bold.
BA

FIGURE 3

Principal component analysis (PCA) in HS and LLMI. (A) Loading plot of the PCA showing the different groups of parameters. (B) Score plot of the
PCA showing the association of the different groups of subjects (<40 years HS, >70 years HS, <40 years LLMI and >70 years LLMI) with the
parameters analyzed. Empty red circles are HS <40 years; empty blue circles are HS >70 years; filled red circles are LLMI <40 years; filled blue circles
are LLMI >70 years; filled triangles are LLMI >85 years.
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(47), Resistin (46), a finding that is also not unexpected, as these

parameters are associated with age, too. At variance, SM-GDF15

resulted directly associated with Adiponectin and inversely with

Insulin. In the case of Adiponectin, it is known that it plays a role in

maintaining skeletal muscle health and function, in particular by

promoting glucose uptake and fatty acids oxidation in the skeletal

muscle (48, 49). Given that a role in promoting lipid oxidation has

also been attributed to GDF15 (50), it is possible that the two

molecules could have a synergic role in the skeletal muscle. As far as

Insulin, it is known that GDF15 improves insulin sensitivity (51,

52), thus it is possible that an inverse correlation exists between

Insulin and GDF15. However, it is to note that existing data regard

c-GDF15, but not SM-GDF15, therefore this hypothesis has to be

further validated. Interestingly, c-GDF15 is inversely associated

with IQS in both HS and LLMI, while SM-GDF15 positively

correlates with IL6 only in LLMI but not HS group. Together
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with the observation that SM-GDF15 seems to be higher in HS,

these data may suggest that c-GDF15 but not SM-GDF15 is

associated with inflammation and decreased muscle function

(Figure 6). In particular, the fact that in LLMI, but not in HS

group, SM-GDF15 is associated with IL6 may suggest that a normal

physical activity induces GDF15 but not IL6 expression, while

chronic inactivity induces IL6 but not (or not so much) GDF15.

Unfortunately, we do not have data on muscle-specific expression

of IL6, however, being IL6 a well-known myokine needed to induce

muscle repair (53, 54), it can be inferred that, in absence of overt

infections, the large majority of circulating IL6 comes frommuscles.

Since GDF15 expression is triggered, among others, by

mitochondrial stress (55–57), it can be hypothesized that GDF15

expression is induced in contracting myofibers, where an intense

mitochondrial activity is present. On the contrary, inactive muscle
FIGURE 4

Canonical discriminant analysis (CDA) in HS and LLMI. Discrimination of <40 HS, >70 HS, <40 LLMI and >70 LLMI based on the parameters analyzed.
Red circle: <40 HS; green circle: >70 HS; blue circle: <40 LLMI; yellow circle: >70 LLMI.
TABLE 4 ROC analysis of metabolic and inflammatory parameters in HS.

Test result variables Area (AUCs) Std. Error p

Adiponectin 0.734 0.084 0.019

Leptin 0.507 0.103 0.947

Resistin 0.480 0.106 0.843

Insulin 0.023 0.024 0.000

c-GDF15 0.230 0.082 0.007

SM-GDF15 0.888 0.062 0.000

IL6 0.219 0.089 0.005

c-PLIN2 0.438 0.100 0.529
Areas under the curves (AUCs) are shown. Null hypothesis: true area = 0.5.
Statistically significant values are indicated in bold.
TABLE 5 ROC analysis of metabolic and inflammatory parameters in
LLMI patients.

Test result variables Area (AUCs) Std. Error p

Adiponectin 0.266 0.084 0.019

Leptin 0.493 0.103 0.947

Resistin 0.520 0.106 0.843

Insulin 0.977 0.024 0.000

c-GDF15 0.770 0.082 0.007

SM-GDF15 0.112 0.062 0.000

IL6 0.781 0.089 0.005

c-PLIN2 0.562 0.100 0.529
frontier
Areas under the curves (AUCs) are shown. Null hypothesis: true area = 0.5. The test result
variable IL6 has at least one tie between the positive actual state group and the negative actual
state group, statistic may be biased.
Statistically significant values are indicated in bold.
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may display a reduced GDF15 expression but, on the contrary, a

higher IL6 expression. Further experiments are needed to formally

prove this hypothesis.

It is important to note that in skeletal muscle tissue we were

only able to detect the immature and non-cleaved form of GDF15

(pro-GDF15) and not the mature form, which is the one found in

the circulation and considered the most active. Thus, we cannot rule

out the possibility that SM-GDF15 (being an immature form) is not

proportionally connected with the levels of c-GDF15 (therefore

accounting for the missing association between the two forms),

however, it is known that many other organs and tissues produce

this protein, including prostate, kidney, lung, but also senescent

cells and many types of cancers (13, 26, 58–60). Therefore, the level

of c-GDF15 derives from the sum of all these contributions,

reflecting the general health state of a subject rather than muscle

health alone.

To further support the idea that the diagnostic meaning of c-

GDF15 and SM-GDF15 are different, the PCA, CDA and ROC

analysis clearly indicate that these two variables have an opposite

direction and can help discriminating between HS and LLMI groups.

In particular, c-GDF15 is the main factor for discriminating >70yrs
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patients, while <40yrs patients seem to be discriminated by other

parameters including Insulin and IL6. At variance, SM-GDF15 seems

to be associated with muscle activity and can help discriminating

healthy, active people.

As a whole, these data suggest that c-GDF15 is associated with

decreased muscle strength and mass and can be useful to identify

patients with muscle function impairment/sarcopenia, in particular

elderly ones (Figure 6).
Limitations of the study

This study has some limitations. First of all, the relatively low

number of subjects that have been studied and the lack of

measurement of some parameters, such as IL6 in skeletal muscle

biopsies, due to the tiny amount of biopsy material available.

However, the post-hoc power analysis indicated that the sample

numerosity was high enough to grant for trustable results. The exact

role of GDF15 within the muscle fibers remains poorly elucidated

and the present data seem apparently in contrast with the well-

known pro-cachectic and catabolic role of GDF15. It is however to
frontiersin.or
B
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FIGURE 5

Receiver operating characteristic (ROC) analysis in HS and LLMI. (A) ROC curves of Adiponectin and SM-GDF15 in HS. (B) ROC curves of Insulin and
c-GDF15 in LLMI.
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note that the conclusions of the majority of studies stem from

experiments only considering c-GDF15, not SM-GDF15. Whether

the level of this intramuscular form of GDF15 has precise biologic/

metabolic effects at muscle level or it is rather a mere marker of

muscle activity needs to be better clarified with further studies.
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FIGURE 6

Working hypothesis on the diagnostic roles of c-GDF15 and SM-GDF15. Higher levels of SM-GDF15 and lower levels of c-GDF15 are observed in
healthy subjects with functional muscles, and are associated with reduced inflammation, higher muscle strength and higher Adiponectin levels.
Lower SM-GDF15 and higher c-GDF15 levels, on the contrary, are observed in patients with LLMI, with atrophic and weak muscles, and are
associated with increased inflammation, higher IL6 levels and lower IGF-1 levels and muscle strength.
frontiersin.org

https://doi.org/10.3389/fendo.2024.1404047
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Chiariello et al. 10.3389/fendo.2024.1404047
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fendo.2024.

1404047/full#supplementary-material

SUPPLEMENTARY FIGURE 1

ELISA analysis of c-GDF15 levels in healthy subjects (HS) and patients with

lower limbmobility impairment (LLMI). (A) c-GDF15 level in LLMI compared to
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HS. (B) c-GDF15 level in HS of <40 years of age (<40) compared to HS of >70
years of age (>70). (C) c-GDF15 level in LLMI <40 compared to LLMI >70. Data

are expressed as mean ± SD. Mann-Whitney test was applied. Each sample

was analyzed in duplicate.
SUPPLEMENTARY FIGURE 2

ELISA analysis of plasma IL6 levels in HS and LLMI. Data are expressed as

mean ± SD. Student’s t test was applied. Each sample was analyzed
in duplicate.
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