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Small-Sample Bias Correction 
of Inequality Estimators in 
Complex Surveys
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Abstract
Income inequality estimators are biased in small samples, leading generally to an underestimation. 
This aspect deserves particular attention when estimating inequality in small domains and 
performing small area estimation at the area level. We propose a bias correction framework for 
a large class of inequality measures comprising the Gini Index, the Generalized Entropy, and the 
Atkinson index families by accounting for complex survey designs. The proposed methodology 
does not require any parametric assumption on income distribution, being very flexible. Design-
based performance evaluation of our proposal has been carried out using EU-SILC data, their 
results show a noticeable bias reduction for all the measures. Lastly, an illustrative example of 
application in small area estimation confirms that ignoring ex-ante bias correction determines 
model misspecification.

Keywords
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1. Introduction

The interest in reliable local estimates of economic inequality is growing due to the 
observed increment in the income gap and social exclusion among regions. Specifically, 
inequality estimates for specific sub-populations—such as areas at a fine level of geo-
graphical disaggregation or rather specific socio-demographic groups—are increasingly 
in demand (Márquez et al. 2019). Policymakers and stakeholders need these to formulate 
and implement policies, distribute resources, and measure the effect of policy actions at 
local levels. In addition, their contribution to regional studies is valuable in the process 

Department of Statistical Sciences “P.Fortunati,” University of Bologna, Bologna, Italy

Corresponding author:
Silvia De Nicolò, Department of Statistical Sciences “P.Fortunati,” University of Bologna, Via Belle Arti 41, 
Bologna 40126, Italy. 
Email: silvia.denicolo@unibo.it

1244920 JOF0010.1177/0282423X241244920Journal of Official statisticsDe Nicolò et al.
research-article2024

Article

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/jof
mailto:silvia.denicolo@unibo.it


2 Journal of Official Statistics 00(0)

of decomposing spatial spillovers and identifying local areas that drive inequality at 
national levels (Cavanaugh and Breau 2018).

When dealing with inequality estimation in specific groups or local scales, a problem 
of observations scarcity typically arises. Disposable income is generally adopted as the 
variable of interest and the primary source of data collection is through household sur-
veys. However, since such surveys are not planned for the estimation of target quantities 
in specific domains, they result in small sample sizes. In this context, small area estima-
tion techniques are applied, integrating survey data with auxiliary data to “borrow 
strength” across areas and, in this way, improve the reliability of estimates.

The small area models can be specified at the unit (individual or household) level; 
previous proposals dealing with inequality estimation are provided by Tzavidis and 
Marchetti (2016) and Marchetti and Tzavidis (2021) by means of robust methods. 
However, such models require a large amount of data as, generally, the auxiliary varia-
bles have to be known for each unit of the population and linked to survey data. This may 
be hard to get as administrative archives are not publicly accessible at individual level, 
cross-linked and associated with survey data (Harmening et al. 2023). On the other hand, 
small area models defined at the area level are less demanding in terms of data require-
ments, needing only survey (direct) estimates endowed with related measures of uncer-
tainty and areal covariates (Rao and Molina 2015). An application of such models to 
inequality estimation can be found in Benedetti and Crescenzi (2023).

Area-level models in their classical specification, the Fay-Herriot model (Fay and 
Herriot 1979), have the strict assumption of (approximate) unbiasedness of the survey 
estimators given as input (Rao and Molina 2015). However, inequality estimators are 
biased in small samples, often underestimating inequality (Breunig and Hutchinson 
2008; Deltas 2003). In this paper, we focus on such bias which may depend on the non-
linear nature of inequality indicators, on the characteristic of the distribution of the vari-
able of interest, that is, the income variable (Breunig 2001), and on the uncertainty 
induced by the sample selection scheme.

Unfortunately, such an issue is typically neglected when measuring inequality with 
area-level models, leading to model misspecification and thus to a possible misleading 
inference. Note that this aspect deserves attention given that estimates of inequality 
measures are often used for comparisons across time and locations. Neglecting it may 
bring out discrepancies that, rather than being true inequality gaps, may be due to dispa-
rate sample sizes or to different underlying distributions of the variable of interest 
(Breunig and Hutchinson 2008). In this vein, we propose a bias correction strategy for a 
large set of inequality measures and we adopt it in an illustrative small area estimation 
exercise.

Concerning the Gini index, a large body of literature faces the small sample bias issue, 
such as Jasso (1979), Lerman and Yitzhaki (1989), Deltas (2003), Davidson (2009), Van 
Ourti and Clarke (2011) in iid samples. The context of application is varied, spanning 
from economic inequality to crime or concentration of scholarly citations (Kim et al. 
2020; Mohler et al. 2019). Fabrizi and Trivisano (2016) tackle such an issue in the com-
plex survey case and their correction is indeed considered within a small area estimation 
framework. However, concerning alternative measures such as Atkinson Indexes and the 
Generalized Entropy (GE) measures, the literature on bias is very scarce, even in the iid 
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case: some contributions are provided by Giles (2005), Breunig and Hutchinson (2008), 
Schluter and van Garderen (2009) by adopting different methodological approaches of 
correction.

Note that income data are collected through household surveys with complex sam-
pling designs that adopt stratification and/or selection of sampling units in more than one 
stage. Thus, the sample selection process, together with ex-post treatment procedures 
such as calibration and imputation, invariably introduces a complex correlation structure 
in the data that has to be taken into account. This makes the development of a theoreti-
cally valid bias correction challenging, in contrast to classical iid settings. Furthermore, 
the bias issue is even exacerbated in income data applications, traditionally affected by 
extreme values (Van Kerm 2007), since inequality measures are known to be highly 
unrobust to them (Cowell and Victoria-Feser 1996). This aspect depends clearly on the 
type of measure we are dealing with and it becomes even more cumbersome to handle in 
the case of small samples.

We investigate the nature of the bias and propose a methodological framework for 
bias correction. Our proposal constitutes a generalization of the framework of Breunig 
and Hutchinson (2008), developed for iid observations, to the finite population and 
design-based setting. At the same time, we extend the proposal to a wider set of measures 
from the Gini index to two parametric families of measures: the Atkinson and the 
Generalized Entropy family, commonly used to measure inequality (Daly and Valletta 
2006). We consider a wide variety of measures as the concurrent estimation of alternative 
indicators—as opposed to the more commonly used Gini Index—may bring to light a 
wider picture of the inequality phenomenon. This is motivated by their interesting prop-
erties such as the additive decomposability, for Generalized Entropy measures, and the 
explicit social welfare representation, for Atkinson measures. Moreover, all the measures 
considered pertain to the class of dispersion-based measures, sharing common features 
that enable the development of a general bias correction framework. To the best of our 
knowledge, this is the first proposal of bias correction for the Atkinson and Generalized 
Entropy indexes in the complex survey case, whereas it provides an extension for the 
Gini index case with respect to existing proposals as it is made clear in Section 4.

To our purpose, we take advantage of a methodology based on Taylor’s expansions, 
even if the same analytical results can be obtained through other types of linearization, 
such as the one proposed by Graf (2011). Our extension for complex designs is based on 
the introduction in the estimation strategy of (i) sampling weights, as to consider the 
unequal probabilities of selection and (ii) relevant design information, such as strata and 
clusters, to control for possible correlation among units. Other limitations associated 
with household surveys are related to non-sampling issues, such as non-response and 
non-representativeness, which may significantly impact the accuracy of estimates. The 
incorporation of sampling weights, if properly treated for non-response and calibrated to 
known population totals, may also protect against such issues. This is the case of the 
Italian EU-SILC survey data we employ in this paper (ISTAT 2021).

By considering a combination of stratified and multistage cluster sampling, the incor-
poration of weights is made explicit by adopting Horvitz-Thompson type estimators and 
the ultimate clusters technique for design variances and covariances estimation. An 
advantage of our proposal is that any parametric assumption on income distribution is 
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not required, providing a very flexible framework. Our bias correction proposal is evalu-
ated via simulations showing a noticeable bias reduction for all the measures and lead-
ing, in some cases, to approximately unbiased estimators. Results under different 
simulation scenarios confirm that the presence of extreme values does not seem to com-
promise the bias correction process. Lastly, we provide a small area estimation exercise 
that shows the risk of ignoring ex-ante bias correction.

The paper is organized as follows. The considered inequality measures are defined in 
Section 2, while the bias correction strategy is set out in Section 3 and the bias-correction 
estimation steps are detailed in Section 4. A design-based simulation study involving the 
European Statistics on Income and Living Condition (EU-SILC) income data is provided 
in Section 5 to evaluate the magnitude of the bias and the efficacy of our proposal. Lastly, 
a small area estimation exercise is carried out in Section 6, to highlight the utility of our 
proposal in practice. Conclusions are drawn in Section 7.

2. Inequality Measures

The most famous inequality measure is, indeed, the Gini concentration index, employed in 
social sciences for measuring concentration in the distribution of a positive random varia-
ble. Suppose we have a finite population U of N < ∞ elements labeled as {1, , } N . Let 
y∈ +R  be a continuous random variable denoting a characteristic of interest, in our case 
income, for all the units of the finite population and F y( )  its cumulative distribution 
function. The Gini index can be defined as

θ
µG yF y dF y=
2

( ) ( ) 1,
0

+∞

∫ −

with µ = ( )
0
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∫ ydF y  (Davidson 2009). However, the estimation of alternative meas-

ures, in addition to the Gini index, may enable a more meaningful assessment of different 
aspects of economic inequality. The Gini index is decomposable within and between 
groups only in very specific cases (Mookherjee and Shorrocks 1982). Moreover, it is 
positional (weakly) transfer sensitive, namely income transfers induce index variations 
depending on the ranks of the transfer donor and recipient.

An explicit incorporation of social welfare in inequality measurement is given by 
Atkinson indexes, which provide for a complete ranking among alternative distributions 
at the expense of more stringent assumptions as to how to represent social welfare (Bellu 
and Liberati 2006). Atkinson index has support [0, 1] and is defined as

θ ε µ
ε

µ

ε
ε

A

y dF y

y

( ) =
1
1

( ) 1

1
1

(

0

1
1/(1 )

0

− 





 ≠

−

+∞
−

−

+∞

∫

∫

for

exp log )) ( ) = 1.dF y
















 for ε

The parameter ε  expresses the level of inequality aversion: as ε  increases, the index 
becomes more sensitive to changes at the lower end of the income distribution.
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Besides, an additive decomposable family of inequality measures is the Generalized 
Entropy class. As opposed to the measures seen before, this class has the advantage of 
being strongly transfer-sensitive, meaning that it reacts to transfers depending on donor 
and recipient income levels. It is based on the concept of entropy which, when applied to 
income distributions, has the meaning of deviation from perfect equality:
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The parameter α  sets the sensitivity of the index: a large α  induces the index to be 
more sensitive to the upper tail, and vice versa a small α  to the lower tail. θGE (0)  is the 
Mean Log Deviation, while θGE (1)  is the well known Theil index. Atkinson and 
Generalized Entropy are two interrelated parametric families of measures, as a transfor-
mation of the Atkinson Index is a member of the GE class:

θ ε ε ε θ ε ε
A GE( ) = 1 [ ( 1) (1 ) 1] .1/(1 )− − ⋅ − + −

In this paper, we consider the estimation of both classes separately, since common 
parameter values used in one family do not correspond deterministically to parameter 
values commonly used for the other family. Lastly, we consider the coefficient of varia-
tion (CV) as an inequality measure, being linked with a member of the GE family, namely 
θGE (2) = 22CV / . Its square has been used in some income distribution analyses, includ-

ing OECD (2011), even though it seems to be very sensitive to top outliers (Cowell and 
Victoria-Feser 1996).

3. Bias Correction Proposal

The bias of inequality estimators in small samples can be due to the structure of inequality 
measures as a non-linear function of estimators. The bias can be either positive or negative, 
depending on the characteristics of the reference variable distribution, except for the Mean 
Log Deviation which has a structurally negative bias as shown further on in this section. 
Among the measures with non-predictable bias direction, Breunig (2001) shows that the 
bias of CV and GE (2) is negatively related to the skewness of income distribution. This 
aspect could be analyzed in-depth by imposing a distributional assumption on the income 
variable, but this is beyond the scope of this paper. For GE and Atkinson measures, the 
limiting behavior of their bias is described in the following proposition.

Proposition 1. For the measures belonging to the GE and Atkinson families, the 
expectation of their sample estimator θ, considering its true population value as θ , 
can be expressed as:
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E[ ] =
1

,θ θ +








O

niid

with niid  denoting the sample size in the iid case.

Proof. In appendix.

We are interested in a variety of non-linear functions of income values as inequality 
measures are. Let denote with s  a sample of size n , drawn using a complex sampling 
design, with p s( )  the probability of selecting the particular sample s ⊂ U  out of the set 
of all possible samples Q thus p s( ) 0≥  and ∑ ∈s p sQ ( ) = 1 . The inclusion probability of 
unit k  is denoted with pk, being π k s

k
p s= ( )∑ ∈Q  with Qk  the set of all possible sam-

ples including unit k .
We consider the generic inequality measure written as a function of the mean m and 

γ = [ ( )]E g y , with g( )⋅  a generic monotone transformation of the income variable. The 
population value for the generic inequality measure is

θ µ γ= ( , ),f

with f ( )⋅  a twice-differentiable function. The related estimator in our complex survey 
framework is θ µ γ� � �= ( , )f  in which Horvitz-Thompson estimators of m and γ  are 
plugged in, that is,
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where N  is the population size and w = ( , , ) = (1/1w wn p1,...,1/pn) or a transformation 
of it after a non-response treatment and calibration. Note that m is unbiased and that the 
results of this section hold also for Hájek type estimators, that is, with denominator 
N wi

n
i

 = =1Σ , since it is approximately unbiased (Särndal et al. 2003). Kakwani (1990) 
uses a similar approach to express inequality indices to derive their asymptotic standard 
error. By simply applying a second-order Taylor’s series expansion of the sample estima-
tor around the population values and evaluating its expected value, the bias can be 
expressed as
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In Table 1, we detail the survey estimators for each inequality measure and their bias 
formulation based on Equation (1) along with all relevant quantities. The complex sur-
vey estimators of Atkinson and Generalized Entropy measures come from Biewen and 
Jenkins (2006), while as for the Gini index, we employ the alternative formulation 
defined by Sen (1997) and the complex survey estimator proposed by Langel and Tillé 
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(2013). Let denote with n n/ ( 1)−  the standard bias-correction adjustment for the 
weighted variance; lastly consider N w n ni k s k k i

 = 1( )Σ ∈ ≤  with ni  denoting the rank of 
i−th unit. The notation 1( )A  defines an indicator function, assuming value 1 if A  is 
observed and 0 otherwise.

Let us denote the Gini index estimator with θG, its approximate bias in small samples is
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with γ  and γ  as defined in Table 1 and θG  denoting the true value. The derivation of 
the approximate bias related to the weighted estimator γ  is not trivial. As explained by 
Langel and Tillé (2013), its numerator is not composed of two simple sums. Indeed the 
quantity Nk , an estimator of the rank of unit k , is random since its value depends on the 
selected sample. One solution is to consider the approximate bias of the corresponding 
iid estimator, that is, E[ ] = 1/ ( / 2)γ γ γ µ − − −n  as derived by Davidson (2009), so that:

E V[ ] =
2 2
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3 2

θ θ
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G G
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This correction is in line with Davidson (2009) and Fabrizi and Trivisano (2016) propos-
als. However these are based on a first-order Taylor’s expansions and thus limited to the 
first term of the right-hand side Equation (2), ours extends it to a second-order expan-
sion. This translates into the fact that, while Jasso (1979), Deltas (2003), and Davidson 
(2009) proposals identify the adjusted Gini in iid context as n n G( 1) 1− − θ , our correction 
reconsiders the shape of the adjusted estimator with a further order of approximation as

n

n
aG

−
−

2
( ),θ  (4)

with a  equals the sum of the second and third terms of (3).
Note that the bias formulas of Table 1 can also be reached differently, namely by 

applying the linearization proposed by Graf (2011) and extended by Vallée and Tillé 
(2019), as made explicit in the Appendix. Graf’s methodology requires a separate deriva-
tion for each measure. In contrast, Equation (1) defines a general bias formulation of the 
bias that applies to the entire set of considered measures, isolating its components and 
easing a general interpretation. This is one of the pros of our methodology, together with 
the fact that it is a distribution-free procedure, not requiring any parametric assumption 
on income distribution. Another pro that is worth mentioning is that Taylor’s expansion 
in Equation (1) relies on design variance and covariances. Since uncertainty estimation 
of complex design estimators is of great interest, such quantities can safely be estimated 
in a complex survey context as several variance estimation techniques have been pro-
posed and tested in literature. On the contrary, other methodologies, such as small-sigma 
or Edgeworth expansions, may require parametric assumptions on income distribution 
and/or the estimation of moments up to higher orders, which may be unreliable in the 
case of complex design data.
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As is clear from Table 1, the bias correction of GE(2) does not include the coefficient 
of skewness of the income distribution, as shown by Breunig (2001). A reliable estima-
tion of that quantity, while being straightforward in the iid case, appears cumbersome in 
the case of weighted data being defined on a discrete grid of values. This adds up to 
another aspect: their estimators may be particularly unstable in small samples (Joanes 
and Gill 1998). This leads to the non-applicability of Breunig (2001) result in our case.

4. Bias Estimation

In this section, we detail the estimation of the approximate bias defined in Table 1 for 
each measure. Such estimation is not trivial considering that the mentioned expressions 

depend on design variances and covariances V[ ]m , V[ ]γ , and Cov[ , ]µ γ� � . We consider a 
complex survey design involving stratification and multi-stage selection, with both Self-
Representing (SR) strata, that is, included at the first sampling stage with probability 
one, and Non-Self-Representing (NSR) strata. This design is consistent with the majority 
of income survey designs and, in general, with official statistics household surveys.

We define an unbiased estimator for the variance of Horvitz-Thompson estimators, 
such as m , when wi =1/pi as
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with pik , ∀ ∈ ≠i k i k, ,U  denoting the second-order inclusion probabilities that is, the 
probability that the sample includes both i−th and k−th units (Arnab 2017). However 
generally (a) wi i≠ 1/π  and (b) pik , ∀ ∈ ≠i k i k, ,U  are difficult to calculate under com-
plex sampling designs.

Therefore, the variance estimator to be considered constitutes an approximation that 
relies on simplified assumptions. Firstly, we assume that Primary Sampling Units (PSU) 
are sampled with replacement, and secondly, we reduce multi-stage sampling into a sin-
gle-stage process by relying on the Ultimate Clusters technique (Kalton 1979). Moreover, 
we take into account the hybrid nature of the probability scheme, blending a variance 
estimator for stratified design associated with the SR strata, including a finite population 
correction factor, and a typical Ultimate Cluster variance estimator for multi-stage 
schemes associated with the NSR strata. The latter one is widely used in official statis-
tics, see Osier et al. (2013) for Eurostat procedures. Without loss of generality, let us 
consider a two-stage scheme, where µ = /Σ Σ Σh d i hdi hdiw y N  is a linear estimator of m, 
with h  the stratum indicator, d  the Primary Sampling Unit (PSU) indicator, and i  the 
secondary sampling unit (household) indicator. Its variance estimator is as follows:
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with HSR  Self-Representing and HNSR  non Self-Representing strata, Mh  the number of 
resident households in strata h , mh  the number of sample households in strata h, 
f m Mh h h= /  a finite population correction factor, nh  the number of PSUs in strata h. 

Consider, moreover, that y y mh i

m
h

hi h= /
=1

Σ , µ hd i

m
d

hdi hdiw y N= /
=1

Σ  with i  denoting the 
household label and md  the number of sample households in PSU d , lastly 
µ µh d

n
h

hd hn= /
=1

Σ  , with nh  being the number of PSU in stratum h. Obviously, if nh =1  
for some strata, the estimator (5) cannot be used. A solution is to collapse strata to create 
“pseudo-strata” so that each pseudo-stratum has at least two PSUs. Common practice is 
to collapse a stratum with another one that is similar with respect to some survey target 
variables (Rust and Kalton 1987).

An estimator of V[ ]γ  can be obtained by adopting the same strategy used for V[ ]m  in 
(5). Whereas, regarding the estimation of the design covariance, consider that

Cov[ , ] =
1

2
[ ] [ ] [ ] .γ µ γ µ γ µ� � � � � �V V V+ − −( )

Thus, a possible estimator Cov� � �[ , ]γ µ  would be simply obtained by plugging in the 

variance estimators previously mentioned, while V[ ]γ µ� �+  is estimated by considering 
γ µ� �+ +∈= ( ( ) ) /Σi s i i iw g y y N . The estimation procedure is completed by replacing m 

and γ  with m  and γ .
The Gini index estimator differs from the other indexes since γ  is a non-linear statistic. 

Thus, a linearization of γ  is needed to make it tractable and carry on variance estimation 
with the procedure described above. We consider again the linearization proposed by Graf 
(2011) with the practical adaptation of Graf and Tillé (2014) for inequality estimators. In 
such adaptation, the linearized variable is merely a function of the partial derivatives with 
respect to the weights, that in the case of γ  defined for Gini index in Table 1 is

v
w N

y N w w yk
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k k k
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∂
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∈
∑γ� �


for a generic unit k  where Sk i ki s n n= { , > }∈ . In this way, the estimator can be re-

expressed through a linear approximation, namely γ ≈ ∈Σi s i iw v , and it becomes possi-
ble to perform variance estimation of linear statistics.

In this section, we have detailed the estimation of each quantity that contributes to the 
definition of the bias-corrected estimator of inequality measures. Note that the issues 
related to the sampling variance of bias-corrected estimators and its estimation are 
addressed later on in Section 6.

5. Design-Based Simulation

A design-based simulation study has been conducted to evaluate our bias correction pro-
posal. In this simulation, the cross-section Italian EU-SILC sample (2017 wave) has been 
assumed as pseudo-population and the twenty-one NUTS-2 regions have been consid-
ered as target domains. The study is based on real income data, in order to check whether 
this specific framework works with close-to-reality data, affected by peculiar problems, 
for example, extreme values and skewness.
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For comparison purposes, two simulation scenarios have been carried out. In the first 
one, the original income data are employed as pseudo-population. In the second one, an 
extreme values treatment is performed concerning both upper and lower tails, to circum-
vent non-robustness problems. The issue of robust estimation of economic indicators 
through an extreme values treatment in the upper tail of income distribution is well-
established in the literature. See Brzezinski (2016) for a review and Alfons et al. (2013) 
for a suitable specification for survey data. On the contrary, the issue of treatment of 
extreme values in the lower tail of income distribution appears less established (Hlasny 
et al. 2022; Masseran et al. 2019; Van Kerm 2007).

The treatment is done at a regional level to the original EU-SILC sample and the 
detection of outlier is carried out by using the Generalized Boxplot procedure for skewed 
or heavy-tailed distributions (Bruffaerts et al. 2014). Outliers are defined as the observed 
values that exceed certain bounds computed by directly taking into account the skewness 
and tail heaviness of the distribution. Such outliers, once identified, are randomly 
replaced by draws from Pareto or inverse Pareto tails. On the upper tail, we operate a 
semi-parametric Pareto-tail modeling procedure using the Probability Integral Transform 
Statistic Estimator (PITSE) proposed by Finkelstein et al. (2006), which blends very 
good performances in small samples and fast computational implementation, as sug-
gested by Brzezinski (2016). As regards the lower tail, we use an inverse Pareto modifi-
cation of the PITSE estimator suggested by Masseran et al. (2019). The resulting dataset 
is specified as an alternative (hereafter, treated) pseudo-population. The number of 
treated observations, together with some summary statistics about survey data, can be 
found in the Appendix.

From both pseudo-populations, we repeatedly select 1,000 two-stage stratified sam-
ples, mimicking the sampling strategy adopted in the survey itself. In the EU-SILC sur-
vey, the first-stage is characterized by a stratified sampling of municipalities according 
to NUTS-2 region and population sizes. In the second-stage, households are selected 
within each PSU through systematic sampling. The simulation study mimics this design 
by approximating strata to NUTS-2 regions. We repeated the drawing for both scenarios 
involving different sampling rates, 1.5% and 3% respectively. Results before/after treat-
ment are compared to isolate the effect of extreme values when evaluating bias-correc-
tion performances.

The Relative Bias (RB), Mean Square Error (MSE), its variance component percent-
age (%VAR) and the Root Mean Square Error (RMSE) are calculated for each region r  
using the one thousand iterations as:
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where θr  is the population value for region r , θ p r,  its estimate at iteration p  and θ r  is 
its mean value over all iterations. In our simulation setting, the regional sample sizes 
range from six to ninety-six individuals (from six to thirty-two households) on average 
over the simulated samples for the 1.5% sampling rate, and from 11 to 196 individuals 
(ten to seventy-four households) for the 3% sampling rate.

Concerning the treated pseudo-population scenario, Figure 1 illustrates the relative 
bias for each domain of non-corrected measures (gray line) and of corrected measures 
(blue line) in 3% samples versus the (average) sample size. The negative relation between 
sample size and average relative bias is clear for both the survey estimator θ  and the 

bias-corrected estimator θ
corr

. This confirms the nature of the bias as a small sample 
bias and shows the effectiveness of the correction, even if based on a large-n approxima-
tion as the Taylor’s expansion. The bias reduction is noticeable for all measures, leading 
to slightly biased estimates depending on the measure. Notice that the bias correction 
works well for measures that are not particularly sensitive to extreme observations such 
as the Gini index, GE (0) , Atk (0.5)  and Atk (1) . In the case of CV and GE (2) , the cor-
rection provides good results, but it seems, however, not to capture all the bias compo-
nents. This may confirm the results of Breunig (2001), suggesting that the coefficient of 
variation squared and GE(2) bias depends on the coefficient of skewness of the income 
distribution, not considered in our bias correction. A general recommendation, therefore, 
is to avoid the use of such measures when facing strong income skewness.

Bias and error averaged across all areas for each scenario, sampling rate and estimator 
are shown in Table 2. By still focusing on treated population results, the correction 
induces a reduction of the RB spanning from 5% (CV, 3% rate) to 14% (Gini, 1.5% rate) 
approximately by considering both sampling rates. When the sample size is greater than 
20 n ≥( )20 , the bias-corrected estimators seem to be approximately unbiased. 
Furthermore, it is important to note that the bias correction induces a slight but negligible 
error (RMSE) increase for every measure, except for the Gini index which presents a 
relevant increase. This exception may be explained by the shape of the unbiased estima-
tors, as described by (4), where a sum of estimators is multiplied by a factor n n/ ( 2)− , 
which inherently inflates the variance by its square.

Note that the variance component percentage of MSE (%VAR) for the corrected esti-
mators is always greater than for the non-corrected counterparts, and it reaches the 100% 
of MSE in some cases. This means that the error is largely due to estimators variance, 
while the bias has a minimal component. The price to pay for a bias correction procedure 
is an increase in variance; this bias-variance trade-off pushes us to a reflection. Since we 
are in a small sample context, both corrected and uncorrected estimators are strongly 
unreliable, requiring a variance reduction step. To undertake this step, the corrected esti-
mators are preferable as their error is largely due to estimator variability > 95%( ). 
Instead, variance reduction techniques could not be applied to uncorrected estimates as a 
great source of error is their bias. In that case, such techniques may induce further bias 
that, depending on the sign, can lead to deteriorated estimates.

Let us focus on comparing the treated population scenario with the non-treated one. 
In the latter case, bias and error increase dramatically both for θ  and for θ

corr
. In par-

ticular, the bias is great for some measures estimated on the non-treated scenario due to 
their non-robustness properties to extreme values. It is the case of Atk ε = 2( ) , extremely 
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sensitive to low-income values (under 100  euro per year) which is −48% biased on aver-
age for the scenario with the smallest sample sizes. Also, GE with α  equal to 1 and 2 are 
highly sensitive to high-income values being −18% and −23% biased. However, the cor-
rection leads to a bias reduction comparable to the one discussed for the treated pseudo-
population: it seems not to change in magnitude with respect to sample size and extreme 
values presence. Therefore, the presence of extreme values does not seem to compromise 
the bias correction process, implying only a slight error increase in resulting estimators.

To summarize, our results highlight that in the case of populations that are not affected 
by income extreme values, the bias correction may provide approximately unbiased esti-
mates for a large class of measures at the expense of, in most cases, only a slight error 
increase. Vice versa, it might be necessary to restrict the attention to the most robust 
measures such as GE with α = 0 , Atkinson index with ε =1 , and Gini Index to obtain 
estimates affected by a negligible bias.

6. A Small Area Estimation Exercise

In the previous sections, we propose a method to correct the small sample bias of ine-
quality estimators in complex surveys. Even if bias-corrected, such estimators are still 
unreliable due to the high variability induced by the small sample size: this means that 
estimates cannot be released or used for further inference. As a consequence, when 
measuring inequality at a fine-grained level, it becomes necessary to rely on Small Area 
Estimation (SAE) techniques. Such estimation techniques take advantage of available 
auxiliary information to produce estimates with acceptable uncertainty. More specifi-
cally, the model-based SAE techniques employ hierarchical models which can be defined 
both at area-level, linking area-defined survey estimates with areal covariates, or at unit 
(individual) level, linking individual income data with individual covariates. See Tzavidis 
et al. (2018) for an up-to-date review.
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Figure 1. Relative Bias of non-corrected measures (gray line), and corrected measures  
(blue line) in 3% samples after extreme value treatment versus the (average) sample size.
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In this context, area-level models appear to be less demanding in terms of data require-
ments and enable the incorporation of design-based properties. Such models constitute a 
typical framework for the application of our bias-correction proposal, as they assume the 
unbiasedness of survey estimators used as input. As a consequence, their applicability to 
the estimation of inequality measures is inevitably tied to a preliminary bias correction, 
in contrast with unit-level models that do not involve survey estimators.

In this section, we perform an SAE exercise by measuring inequality in specific small 
domains through the 2017 Italian EU-SILC data, already employed in Section 5. The 
domains considered are the interaction between five NUTS-1 regions (North-East, 
North-West, Center, South, Insular), three DEGURBA classification types (Urban, Peri-
urban, and Rural), and six household types (one-member households, lone parents with 
one or two dependent children, lone parents with three or more dependent children, cou-
ples with one or two dependent children, couples with three or more dependent children, 
households without dependent children). As dependent children, we mean sons/daugh-
ters aged less than twenty-five. This allows the estimation of inequality for geographics 
domains and specific sub-population of interest such as household types.

The purpose is not to propose a small area estimation strategy but rather to illustrate 
the framework of application of our bias-correction proposal and, especially, to underline 
the risk of avoiding bias-correction when estimating inequality in small domains. Such 
exercise is carried out by applying the Fay-Herriot model (Fay and Herriot 1979), a land-
mark model in the small area literature, implemented through the package sae (Molina 
and Marhuenda 2015) to both uncorrected and corrected survey estimators. The objec-
tive is to check whether the inclusion of biased or bias-corrected survey estimates in the 
model may lead to different results. We perform the exercise on the most popular estima-
tors among the ones previously considered: the Theil index (Generalized Entropy with 
α =1), the Atkinson index with ε =1  and the Gini index.

Specifically, let us consider θ θ� … �1, , M  as the set of survey estimators referring to a 
generic inequality measure in M  small areas, with corresponding population values 
θ θ1, , M , and xm  the set of p  areal covariates for area m , m M=1, , . The classical 
area-level model is the Fay-Herriot one, specified as follows:

θ θ θ

m m m mD| ( , ), N  (6)

θ σm m
T m M N x ββ , , = 1, ,2( )  ,  (7)

where Dm  denotes the sampling variance of the survey estimator, usually assumed to be 
known to allow for identifiability, ββ  the set of regression coefficients and σ 2  the model 
variance. This clearly implies E( | ) =θ θ θ

m m m  ∀m, that is, the unbiasedness of survey 
estimators. As a consequence, neglecting the bias correction of survey estimators effec-
tively leads to model misspecification.

As mentioned above, the design variance is separately estimated from the data and 
given as input to the small area model: its estimation in real application is the crux of an 
SAE procedure. In the case of uncorrected inequality estimators, it may be easily carried 
out via linearization. Linearized variables for each measure could be derived consistently 
with Langel and Tillé (2013) for the Gini index and Biewen and Jenkins (2006) for the 
Generalized Entropy and the Atkinson indexes. On the other hand, the variance of 
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bias-corrected estimators adds a new level of complexity since the estimator formula is 
no longer the classical one. Indeed, it comprises a bias correction component that appears 
cumbersome to estimate via linearization since it is inherently a result of several lineari-
zations. Therefore, we recommend relying on resampling methods; a comprehensive 
review of the use of bootstrap methods for survey data can be found in Lahiri (2003). In 
this case, we employed the design-aware bootstrap procedure as presented by Fabrizi 
et al. (2011, 2020). The algorithm involves both a drawing procedure that considers the 
multi-stage selection process and a calibration procedure, applied to each bootstrap sam-
ple, that adjusts weights with respect to known totals. A similar process is performed to 
the original EU-SILC sample by national statistical offices.

The comparison between uncorrected and corrected survey estimates for all three 
measures is displayed in relative differences, that is, ( ) /θ θ θ  

m
corr

m m− , ∀m, in Figure 2. 
Corrected estimates show, in most cases, higher values of inequality in comparison with 
the uncorrected ones; the highest increase reaches almost 25%. This is in accordance 
with the underestimation highlighted by simulation results of Section 5. The sampling 
coefficients of variation of both estimators range from 0.06 to 0.65 for the Theil index, 
from 0.05 to 0.50 for the Atkinson index and, lastly from 0.03 to 1.35 for the Gini index 
depending on the domain. Such values point out the need for SAE techniques.

We separately fit the Fay-Herriot model for both corrected and uncorrected estimators 
by using the same set of covariates. We consider only covariates defined for the geo-
graphical area of interest of the domains: the aged dependency ratios from census data 
and the average values and incidence by income source from tax forms data. Indeed, due 
to data disclosure issues, it is not possible to retrieve the disaggregated information by 
household type. Such covariates are subjected to variable selection to avoid multicol-
linearity and to neglect irrelevant regressors. The final set includes (i) the age depend-
ency ratio, measuring the population aged between zero and fourteen over the total 
population, being positively related to inequality, (ii) the average income declared by 
entrepreneurs, and (iii) the employee income incidence, both negatively related to ine-
quality. The model-based (or EBLUP, Empirical Best Linear Unbiased Predictor) 

Atk(1)

Gini

Theil

0.0 0.1 0.2
relative differences between corrected and uncorrected direct estimates

Figure 2. Relative differences between corrected and uncorrected direct estimates for each 
measure.
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estimates in both cases are compared in terms of relative differences in Figure 3. The 
inequality levels estimated by the misspecified model are lower in most of the cases, 
resulting in a misleading inference. The greatest divergences show that the model-based 
estimate resulting from an ex-ante bias correction is 11.4% higher than the one without 
correction. This confirms the risk of underestimation of inequality when neglecting such 
an issue. As expected, the divergences between model-based estimates in both cases 
decrease to zero at increasing sample sizes.

By focusing only on EBLUP results based on corrected estimates, the decrease in 
terms of error induced by the model is depicted in Figure 4. The reduction is relevant and 
testifies that the variance reduction procedure, put in place by the SAE model, is effec-
tive. As a consequence, such model-based estimates result to be reliable and ready to be 
used for further analysis or mapping.
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Figure 3. Sample sizes versus relative differences between model-based estimates based on 
corrected survey estimates and model-based estimates based on uncorrected ones.
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7. Conclusions

A strategy based on Taylor’s expansion has been proposed to correct the small sample bias 
of inequality estimators. The inequality measures considered are several, as the comparison 
of diverse measures may enable us to enlighten the specific point of view that each measure 
provides, like single tiles in a mosaic. Indeed, the well-known Gini and Theil indexes are 
widely applied in several fields for inequality and concentration estimation.

A sensitivity analysis with respect to outliers and a simulation study have been con-
ducted to study the estimator behavior to extreme values and the performance of the 
proposed correction. Results show that survey-based estimators may be biased in small 
samples, inducing an underestimation that is even greater in the case of populations 
affected by extreme values. Moreover, simulation results validate the correction proposal 
as effective, consistently reducing the bias and leading in some cases to approximately 
unbiased estimators.

An underlined heterogeneity of sensitivities and bias is recorded across measures. As 
a consequence, our results may help in choosing the most suitable inequality measure 
depending on the context. The measures that are structurally more sensitive to extreme 
values appear to be more biased, in particular, GE with α = 2  and Atkinson with ε = 2. 
Therefore, in the case of samples without extreme income values, the bias correction 
may provide approximately unbiased estimates. On the other hand, if extreme values are 
observed, it becomes necessary to focus on the most robust measures such as Mean Log 
Deviation, Atkinson index with ε =1  and Gini Index to be corrected.

An illustrative small-area application has been carried out to evaluate the effect of 
disregarding bias in a typical small-sized sample context. The results obtained show that 
neglecting it translates into a misleading inference and inequality underestimation. In 
such an application, we use a basic area-level model, the Gaussian one. Indeed, the pos-
sibly not-Gaussian sampling distributions of inequality estimators and the unit-interval 
support of Gini and Atkinson estimators might urge a more refined model, which may 
lead to model-based estimators with increased performances: this suggests an interesting 
direction for future research. Further directions also include the extension of this frame-
work to other widely used inequality measures, such as those based on quintiles and the 
development of a multivariate SAE framework.
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Appendix

Proof of Proposition 1

Proof.  Let us consider a sample with iid elements { , , }1y yn
iid

 , drawn from a population 

via simple random sampling, where yi  is the variable for the i−th  unit with expected 

value m and variance σ 2. Let us consider also { ( ), , ( )}1g y g yn
iid

  with g y( )  a generic 

monotone transformation of the income variable, induced by g( ) :⋅ →+R R , that changes 
for each measure, having expected value γ  and variance φ 2. Considering that a generic 

inequality measure can be expressed as θ µ γ= ( , )f  with f ( )⋅  a twice-differentiable 

function, µ = /
=1

Σ
i

n
iid

i iidy n  and γ = ( ) /
=1

Σ
i

n
iid

i iidg y n , we can easily obtain estimator 

moments as µ µ σ

 [ , / ]2 niid  and γ γ φ

 [ , / ]2 niid . Consider moreover that

Cov
n

y g y
Cov y g y

niid iid

[ , ] = [ ] =
1

[ ( )] =
[ , ( )]

.µ γ µγ µγ µγ� � � �E E− ⋅ −( )

Let us define the population value of a generic inequality measure θ  as f ( , )µ γ , with 
f ( )⋅  a generic twice-differentiable function. By expanding the inequality measure esti-
mator θ  as f ( , )µ γ� � , via Taylor’s expansion around the population values and consider-
ing its expected value:
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Reaching Results of Table 1 in a Different Way
By considering the linearization proposed by Graf (2011) and extended by Vallée and 
Tillé (2019), we can easily reach the same results set out in Table 1 in a different way. Let 
us recall the notation as U denoting a finite population of N (<∞) elements. Let yi  be the 
income of the i-th unit, where yi ∈

+R , ∀i N=1, ,  and y = ( , , )1y yN  its popula-
tion vector. A sample s  of size n  is drawn with a complex sampling design with prob-
ability of selection p s( )  such that p s( ) 0≥  and Σs p s⊂U ( ) = 1 . Let us define 
1 = (1 , ,1 )1  N  the vector of sampling indicator of unit i, taking value 1 if unit i  is in the 
sample and 0 otherwise. The first order inclusion probability of unit i  is pi, where 
pi = (1 )E i , that is, the expectation with respect to the sampling design and its population 
vector p = (p1,. . .,pN). pij denotes the second order inclusion probability for i ∙ j

Consider θ θ = ( , )1 y  an estimator of θ θ= ( )y  with θ( , )1 y  twice differentiable with 
respect to 1. Graf (2011) shows that an approximation for θ  is
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We can derive the approximation of the bias as
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In the following, we derive the bias for GE ( )α  with α ≠ 0,1 , however such a result can 
be extended to all the other measures considered.

Let us recall from the manuscript the survey estimator of GE α( )  as a function of two 
Horvitz-Thompson type estimators which, under the assumption of wi =1/pi, can be 
rewritten as
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By applying (A.1), its bias may be expressed with an approximate result as
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Considering that variance and covariance of the Horvitz-Thompson estimator are 
defined as
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as stated by Arnab (2017), (A.2) can be easily rewritten as
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Such analytical result coincides with the corresponding formula in Table 1 of the 
manuscript.

Additional Information on the Simulation Study

Table A1. Summary Statistics on 2017 Italian EU-SILC Data Related to the Equivalized 
Disposable Income (Min, Max, Weighted Median, and Mean), Sample Sizes, and Nr. of Treated 
Observations After Extreme Values Treatment by Region.

NUTS-1 region Equivalized disposable income Sample 
size

Nr. treated 
obs.

Min W. Median W. Mean Max

North-west −6,383 18,857 21,293 848,644 11,898 318
North-east −4,567 19,845 21,679 547,646 11,751 277
Central −12,809 17,519 20,017 439,366 11,713 344
South −2,138 12,829 14,598 178,318 9,570 321
Insular −5,397 12,030 13,678 107,178 3,818 155


