
12 September 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Moreno Marzolla, G.B. (2024). Parallel intersection counting on shared-memory multiprocessors and GPUs.
FUTURE GENERATION COMPUTER SYSTEMS, 159, 423-431 [10.1016/j.future.2024.05.039].

Published Version:

Parallel intersection counting on shared-memory multiprocessors and GPUs

Published:
DOI: http://doi.org/10.1016/j.future.2024.05.039

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/970606 since: 2024-06-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.future.2024.05.039
https://hdl.handle.net/11585/970606

Parallel Intersection Counting on Shared-Memory Multiprocessors and GPUs

Moreno Marzollaa,c,∗, Giovanni Birolob, Gabriele D’Angeloa,c, Piero Farisellib

aDipartimento di Informatica–Scienza e Ingegneria (DISI), Università di Bologna, Mura Anteo Zamboni, 7, Bologna, I-40126, Italy
bDipartimento di Scienze Mediche, Università di Torino, Corso Dogliotti, 14, Torino, I-10124, Italy

cCenter for Inter-Department Industrial Research ICT, Università di Bologna, Bologna, I-40126, Italy

Abstract

Computing intersections among sets of one-dimensional intervals is an ubiquitous problem in computational geometry with impor-
tant applications in bioinformatics, where the size of typical inputs is large and it is therefore important to use efficient algorithms.
In this paper we propose a parallel algorithm for the 1D intersection-counting problem, that is, the problem of counting the number
of intersections between each interval in a given set A and every interval in a set B. Our algorithm is suitable for shared-memory
architectures (e.g., multicore CPUs) and GPUs. The algorithm is work-efficient because it performs the same amount of work as
the best serial algorithm for this kind of problem. Our algorithm has been implemented in C++ using the Thrust parallel algorithms
library, enabling the generation of optimized programs for multicore CPUs and GPUs from the same source code. The performance
of our algorithm is evaluated on synthetic and real datasets, showing good scalability on different generations of hardware.

Keywords: Intersection counting, parallel algorithms, GPU programming, shared-memory algorithm, bioinformatics

1. Introduction

Counting or enumerating intersections among sets of one-
dimensional intervals is a recurrent problem in many applica-
tion domains such as computer graphics [1, Ch. 42], distributed
simulation [2], and bioinformatics [3]. Given two real values
left ≤ right, the closed interval a = [left, right] denotes the
set of values between left and right, inclusive. We say that
two intervals a, b overlap iff their intersection is not empty, i.e.,
a ∩ b , ∅.

Figure 1: Example of overlapping sets of intervals.

Different types of interval intersection problems have been
considered in the literature. The intersection enumeration prob-
lem consists on enumerating all pairs of overlapping intervals
(a, b), a ∈ A, b ∈ B. Figure 1 shows an example of two sets of
closed intervals A, B, the intersections being:

{(a0, b0), (a0, b1), (a1, b1), (a1, b2), (a2, b3), (a2, b4), (a2, b5)}

The intersection counting problem consists on computing
the number of intervals in B that overlap with each interval a ∈

∗Corresponding author, Department of Computer Science and Engineering
(DISI), University of Bologna, Cesena Campus, via dell’Università 50, I-47521
Cesena, Italy.

Email addresses: moreno.marzolla@unibo.it (Moreno Marzolla),
giovanni.birolo@unito.it (Giovanni Birolo), g.dangelo@unibo.it
(Gabriele D’Angelo), piero.fariselli@unito.it (Piero Fariselli)

A. More formally, given two sets of intervals A, B with |A| = n,
|B| = m, the goal is to compute a function c : A→ N that maps
each interval a ∈ A to the number of intervals b ∈ B that overlap
with a:

c(a) = |{b ∈ B | a ∩ b , ∅}| (1)

For the example of Figure 1, we have c(a0) = 2, c(a1) = 2,
c(a2) = 3.

Finally, the all-intersections counting problem consists on
computing the total number of intersections between two sets of
intervals A, B. The total number of intersections is the summa-
tion of the number of intersections per interval, i.e.,

∑
a∈A c(a).

For the scenario shown in Figure 1, there is a total of 7 overlaps.
In this paper we consider the one-dimensional intersection

counting problem, which enables us to also solve the all-
intersections counting problem as a special case. Our interest
stems from their important applications in bioinformatics:
finding overlaps of genetic features, computing coverage of
aligned reads in DNA sequencing, and expression quantifica-
tion in RNA sequencing are only some examples of analyses
that need some intersection-finding algorithms at their core.
The sets of intervals involved are often quite large; for instance,
the number of exons (a commonly used genetic feature) in the
human genome is around 180,000. DNA sequencing of a whole
human genome can yield several billions of reads. Moreover,
while the human genome has three billion bases and is quite
long and complex, longer genomes abound in nature. As a
consequence, efficiency becomes a major concern.

Most genomic analyses are performed on workstations or
High-Performance Computing (HPC) infrastructures normally
equipped with multicore processors and GPUs. Many sequen-
tial tasks can be run in parallel by splitting the data into inde-

Preprint submitted to Future Generation Computer Systems May 18, 2024

pendent chunks, for instance, by individual or by chromosome.
However, this approach is not always optimal or even feasible,
so having inherently parallel and efficient algorithms is a big ad-
vantage. Also, GPUs, when available, can provide substantial
boosts in computing speed for software that can use them. For
these reasons, we developed an inherently parallel intersection
counting algorithm implemented for both multicore and GPU
architectures.

Counting intersections among two sets of intervals plays
an important role in supporting range queries in temporal
databases [4]. Temporal databases store information that are
associated to some instant in time or time interval; queries
involve the computation of overlaps among sets of time inter-
vals, which could be answered efficiently using the algorithm
described in the following.

In this paper we propose a work-efficient, parallel algorithm
for the one-dimensional intersection-counting problem that is
suitable for shared-memory architectures and GPUs. Our algo-
rithm is based on a novel parallel implementation of the sweep-
line technique that represents the state of the art sequential so-
lution. The sweep-line technique involves the traversal of the
sorted list of endpoints, keeping track of which intervals are ac-
tive at each step (details will be provided in Section 3). Unfor-
tunately, the sweep-line algorithm does not lend itself to a par-
allel realization due to its intrinsically serial nature. We address
this problem by casting the core of the serial algorithm into a
sequence of parallel scans with an ad-hoc associative operator.
The parallel algorithm is work-efficient, since it performs the
same total amount of work as the sequential algorithm. We
implemented the parallel intersection-counting algorithm using
the Thrust library that targets both multicore CPU and GPUs.
This allows the same code base to be used to generate efficient
parallel code for multicore CPU and GPUs.

This paper is organized as follows. In section 2 we review
the relevant scientific literature. In section 3 we describe a
parallel intersection-counting algorithm based on the sweep-
line technique and show that the algorithm is work-efficient.
Section 4 describes performance results of CPU and GPU-
based implementations, on real and simulated datasets; the
source code of our implementation is freely available online at
the URL provided at the end of this paper. Finally, conclusions
are discussed in section 5.

2. Related works

Intersection counting and enumeration problems have been
traditionally studied in the computational geometry research
area. The first efficient solution was proposed by [5] who devel-
oped a one-pass solution to the intersection-enumeration prob-
lem that requires time O

(
(n + m) log(n + m) + K

)
, where K is

the number of intersections. The method is based on the sweep-
line technique [6]: the idea is to sort the list of endpoints of
the intervals in non-decreasing order, and scan the sorted list to
keep track of which intervals are still open at each point.

Recent developments in this area have been carried out in
the context of bioinformatics. Indeed, the fast development of
the field of genetics and the many advances that it spurred in

medicine, agriculture and many other disciplines, is largely de-
pendent on the ability of “reading” DNA, the molecules that
carry the genetic information in all living beings. Thanks to its
molecular structure, DNA (and similar molecules such as RNA)
can encode arbitrary strings of a four-element alphabet, whose
“letters” are called “bases”. In humans, for instance, the ge-
netic information that defines our species and each individual
is divided into 23 DNA molecules called “chromosomes” for
a total of three billion bases. It is therefore, not surprising that
the need to process large datasets has driven the development of
parallel algorithms for counting and enumerating intersections.

BEDOPS [7] is a suite of tools for computing overlap and
proximity relations between genomic datasets. BEDOPS uses
the sweep-line technique to compute the genomic space that is
common to two datasets, from which it is possible to count the
number of intersections. Although some of BEDOPS compo-
nents support parallel processing, the program that computes
intersections does not yet.

BEDTK [8] is a software package that is specialized for
solving the intersection enumeration problem. It uses the in-
terval tree data structure, a balanced search tree that stores a
set of intervals sorted on the left endpoint. The interval tree is
optimized for listing the intersections rather than just counting
them. A variation of the interval tree, called segment tree for-
est, is proposed in [9] for finding overlapping intervals across n
sets. The authors developed a tool called Joint Overlap Analysis
(JOA) that can compute intersections efficiently by traversing
the forest in parallel.

Another tree-based data structure, called two-dimensional
range tree, has been proposed by [10] for querying multiple
types of predicates on large interval sets. All types of relation-
ships defined by Allen’s interval algebra [11] are transformed
into two-dimensional range queries that are answered efficiently
through 2D range trees.

All approaches above deal with the intersection-enumeration
problem. Enumerating intersections is intuitively “more dif-
ficult” than counting them, since the computational cost of
any enumeration algorithm must grow at least linearly with
the output size K, the number of intersections to be reported.
Since the maximum number of intersections is O(nm), every
intersection-enumeration algorithm has a worst-case cost that
is proportional to the product of the sizes of the two sets of
intervals. In applications where intersection counting suffices,
more efficient solutions are desirable.

Binary Interval Search (BITS) [3] has been proposed as an
efficient algorithm for counting intersections, although it can
also report the list of overlaps. BITS operates by sorting the
left and right endpoints of B into two separate lists, and per-
forms two binary searches to count the number of intersections
between a test interval ai ∈ A and B. The number of intersec-
tions between all intervals in two sets A and B can therefore be
computed using 2n binary searches on B. The algorithm nat-
urally leads to a parallel version, since the 2n searches are in-
dependent and can be done in parallel. In [3] it is claimed that
a purely sweep-based parallel intersection-counting algorithm
would be inefficient, since it would require either to partition A
among the execution units, leading to load imbalance, or to fre-

2

quent information exchange between threads.
In this paper we disprove the claim above by showing

a parallel sweep-based algorithm that is optimal (i.e., work-
efficient), as it performs the same amount of work of the
sequential algorithm. We first describe a serial intersection-
counting algorithm, and then show that the steps it performs
are instances of known parallel programming patterns that
naturally lead to an efficient parallel algorithm.

3. Parallel intersection counting

In this section we describe a novel parallel intersection-
counting algorithm based on the the sweep-line technique. For
the sake of readability, we break the description into two steps:
the parallel algorithm is first introduced in sequential form, and
then we show how the key steps can be executed on a shared-
memory parallel architecture.

Given two sets A, B of 1D intervals of cardinality |A| = n,
|B| = m, we follow the idea from [5] of sorting the list T of
the endpoints of A and B in non-decreasing order, and scan the
sorted list to keep track of which intervals are active (i.e., still
open) at each point. We say that endpoint x precedes y if either
(i) x < y, or (ii) x = y and x is a left endpoint and y is a right
endpoint. This criterion will be used to compare and sort end-
points in the rest of this paper. We also denote with a.left and
a.right the left and right endpoints of interval a, respectively.

Let L = [L0, . . . ,Ln−1] and R = [R0, . . . ,Rn−1] be two ar-
rays of sets of intervals, i.e., each Ri and Li is a set of intervals
where:

Li := set of intervals in B whose left endpoint ap-
pears before the right endpoint of ai in T

Ri := set of intervals in B whose right endpoint ap-
pears before the left endpoint of ai in T

Then, the set differenceLi\Ri is by definition the set of intervals
in B that intersect ai. For example, considering Figure 1 we
have:

L0 = {b0, b1} R0 = ∅

L1 = {b0, b1, b2} R1 = {b0}

L2 = {b0, b1, b2, b3, b4, b5} R2 = {b0, b1, b2}

from which we get that the intervals in B that intersect, e.g., a1
are R1 \ L1 = {b0, b1, b2} \ {b0} = {b1, b2}.

Since we are only interested in the number of intervals over-
lapping each ai, we can replace the setsLi andRi with the scalar
values Li = |Li| and Ri = |Ri|, respectively. Li is the number of
intervals in B whose left endpoint appears before the right end-
point of ai, while Ri is the number of intervals in B whose right
endpoint appears before the right endpoint of ai. In the case of
Figure 1 we have:

L0 = 2 R0 = 0
L1 = 3 R1 = 1
L2 = 6 R2 = 3

Algorithm 1 Intersection-Counting(A, B)
1: n← |A|, m← |B|
2: T ← ∅
3: nleft ← 0n+m, nright ← 0n+m . Arrays of length n + m
4: left idx← 0n, right idx← 0n . Arrays of length n

// Initialization
5: for all intervals x ∈ A ∪ B do
6: Insert x.left and x.right in T
7: end for

// Sort the endpoints in non-decreasing order
8: Sort(T)

// Initialize the nleft[] and nright[] arrays
9: nl← 0 . Number of left endpoints of B seen so far

10: nr ← 0 . Number of right endpoints of B seen so far
11: for all endpoints ti ∈ T in non-decreasing order do
12: if ti is the left endpoint of an interval b ∈ B then
13: nl← nl + 1
14: else if ti is the right endpoint of an interval b ∈ B then
15: nr ← nr + 1
16: end if
17: nleft[i]← nl
18: nright[i]← nr
19: end for

// Build index arrays
20: for all endpoints ti ∈ T in non-decreasing order do
21: if ti is the left endpoint of ak ∈ A then
22: left idx[k]← i
23: else if ti is the right endpoint of ak ∈ A then
24: right idx[k]← i
25: end if
26: end for

// Compute final result
27: for all ai ∈ A do
28: c(i)← nleft[right idx[i]] − nright[left idx[i]]
29: end for

from which we see that the number of intervals in B that overlap
ai ∈ A is

c(i) = Li − Ri (2)

The observations above lead to the sequential Algorithm 1.
The endpoints are stored in the array T of length (n + m), where
each interval x has two attributes x.left and x.right of type real
representing the left and right endpoint of x, respectively. Af-
ter T is sorted in non-decreasing order, the counts of left and
right endpoints can be computed by the loops on lines 1.11
and 1.20

The loop 1.11 initializes two arrays nleft[i] and nright[i]
that satisfy the following properties:

nleft[i] := Number of left endpoints of B

that appear in T [0..i]
(3)

nright[i] := Number of right endpoints of B

that appear in T [0..i]
(4)

3

Note that nleft[i] and nright[i] are not the values Li and Ri

that are required to compute the counts; instead, nleft and nright
contain a permutation of the arrays L and R. To compute Li and
Ri efficiently (i.e., in constant time) we define two additional
arrays left idx and right idx of length (n+m) that map positions
(indexes) in T to positions in nleft and nright. Specifically, if
an endpoint ti ∈ T is the left (resp. right) endpoint of interval
ak ∈ A, then left idx[k] = i (resp. right idx[k] = i). Therefore,
left idx and right idx map the index of an interval to the position
(index) of the left and right endpoints of that interval in T . At
the end of the loop 1.20, the following identities hold:

nleft[right idx[i]] = Li nright[left idx[i]] = Ri (5)

that, combined with (2), yields

c(i) = nleft[right idx[i]] − nright[left idx[i]] (6)

(line 1.28).
Figure 2 2O and 3O shows the behavior of Algorithm 1 on

sets A and B from Figure 1 (the portion labeled 1O will be ex-
plained later on). R1.1

Algorithm 1 uses an array T of length (n + m), nleft
and nright of length (n + m), and left idx and right idx of
length n. Therefore, the space requirement is Θ(n + m). The
execution time is dominated by the time required to sort T ,
which is O

(
(n + m) log(n + m)

)
using efficient comparison-

based sorting1. All other phases require linear time in
either (n + m) (initialization of T , loops 1.11, 1.20), or n
(loop 1.27). Therefore, the total execution time of Algorithm 1
is O

(
(n + m) log(n + m)

)
.

Algorithm 1 is the most efficient known solution of the in-
tersection counting problem. We now illustrate how it can be
parallelized on a shared-memory architecture or GPU. In do-
ing so, our goal is to make the parallel version work-efficient,
meaning that the total amount of work performed by all exe-
cution units shall be equal to the work performed by the serial
version, namely, O

(
(n + m) log(n + m)

)
. As will be shown be-

low, this goal has been achieved up to an additional overhead
O(log log(n + m)) which is negligible in practice.

We observe that some of the steps are either embarrassingly
parallel, or rely on known parallel algorithms (e.g., sorting).
Unfortunately, the loop starting at line 1.11 can not be paral-
lelized due to loop-carried dependencies: indeed, the loop body
depends on the values of nleft and nright that might be updated
during previous iterations. However, it turns out that the loop
can be expressed as a prefix computation.

A general (inclusive) prefix computation takes as input an
array x0, . . . , xn−1 and an associative operator ⊕, and produces
another array y0, . . . , yn−1 such that yi = x0 ⊕ . . . ⊕ xi. Prefix
computations can be parallelized efficiently [12].

Let us rewrite the loop 1.11 as follows:

1Should the endpoints be integers, as assumed in bioinformatics applica-
tions, sorting could be done in linear time; however, for the sake of generality
we assume comparison-based sorting so that the proposed algorithm can be
used with endpoints with real values.

for all endpoints ti ∈ T in non-decreasing order do
if ti is the left endpoint of an interval b ∈ B then

nleft[i]← 1
else if ti is the right endpoint of an interval b ∈ B then

nright[i]← 1
end if

end for
for i← 1, . . . , n − 1 do

nleft[i]← nleft[i − 1] + nleft[i]
nright[i]← nright[i − 1] + nright[i]

end for

The idea is to initialize nleft and nright as binary vectors
where nleft[i] = 1 (resp., nright[i] = 1) if and only if ti is the
left (resp., right) endpoint of some interval in B. We assume
that each element in the list of endpoints T also contains the
unique identifier of the interval it is part of, so this information
can be obtained in constant time. The result is illustrated by the
arrays 1O in Figure 2. This step is embarrassingly parallel, since
the loop iterations are independent. The second loop computes
the prefix sums of nleft and nright so that, at the end, nleft[i] is
the number of left endpoints of intervals in B up to and includ-
ing ti (similarly for nright[i]). This step can be realized using a
parallel prefix sum algorithm [12].

The Full Algorithm Algorithm 2 is the parallel version of the
intersection-counting algorithm 1. The main steps of the paral-
lel algorithm are the following:

• The initialization of the list of endpoints T (line 2.5) can
be parallelized by implementing T as an array of length
2(n + m). The first n elements are the left endpoints of
the intervals in A, followed by the n right endpoints in A,
followed by the m left endpoints in B, followed by the m
right endpoints in B. This makes it possible to place each
endpoint into a position in T that is pre-determined, so no
race conditions are possible. Each element of T is a tuple
〈x, side, set, k〉 where x is the position of the endpoint,
side denotes whether it is a left or right endpoint, set is
the name of the set it belongs to (either A or B), and k is
the unique identifier (index) of the interval within the set
the endpoint belongs to. For example, the endpoints of
a2 = [−3, 7] are represented by the tuples 〈−3, left, A, 2〉
and 〈7, right, A, 2〉.

• Sorting the array of endpoints by nondecreasing position
(line 2.8) requires a parallel sorting algorithms such as
Parallel Radix Sort [12], Parallel Merge Sort [13] or Par-
allel Quicksort [14, 15].

• The initialization of the arrays nleft and nright (Eq. (3)
and (4)) is done in two separate steps as discussed above.
The first step involves an embarrassingly parallel loop
(lines 2.9–2.15) that sets nleft[i] = 1 (resp. nright[i] = 1)
iff T [i] is a left (resp. right) endpoint of some interval
b ∈ B. The second step consists of two parallel prefix
computations, where the call Parallel-Prefix-Sum(v) re-
places the input array v with the array v′ of prefix sums,
i.e., v′[i] :=

∑i
k=0 v[k].

4

Figure 2: Example of execution the intersection counting algorithm. 1O: nleft[i] = 1 (resp. nright[i] = 1) if ti is the left (resp. right) endpoint of some interval in B.
2O The left and right arrays after application of the inclusive-scan operation. 3O left idx and right idx point to the positions of the left and right endpoints of the
intervals in A, so that Eq. (5) holds. At the end, the number of intervals in B that overlap with interval ai ∈ A is nleft[right idx[i]] − nright[left idx[i]]

• Building the index arrays left idx and right idx involves
an embarrassingly parallel loop (line 2.18). Note that the
tests in lines 2.19 and 2.21 can be done in constant time
since the tuples in T already contain the relevant infor-
mation.

• Finally, the computation of the result c(i), i = 0, . . . , n−1
is again embarrassingly parallel.

Analysis The computational cost of Algorithm 2 depends on
the cost of sorting and prefix computations. Let N = n + m be
the sum of the sizes of A and B; then, for the CRCW-PRAM
(Concurrent-Read, Concurrent-Write, Parallel Random Access
Machine) model [16] with p processors we have:

• The initialization of T (line 2.5) is embarrassingly paral-
lel and requires time O(N/p).

• Sorting T (line 2.8) requires time O
(

N log N
p + log log N

)
using Parallel Merge Sort [13].

• Prefix computations of nleft and nright (lines 2.16, 2.17)
require time O(N/p + log p) using p processors [12],
which is optimal when N > p log p.

• The initialization of left idx and right idx (line 2.18) is
embarrassingly parallel and requires time O(N/p).

• The computation of c(i) (line 2.25) is embarrassingly par-
allel and requires time O(N/p).

Algorithm 2 has the desirable property that, when executed
serially (i.e., with p = 1 processors) it has the same computa-
tional complexity of the serial algorithm 1 since they perform
the same computations. The algorithm is only O(log log N)
away from being work-efficient; this small overhead comes
from the parallel sorting algorithm.

4. Implementation and Experimental Evaluation

We implemented the parallel intersection-counting algo-
rithm in C++ using the Thrust library [17]. Thrust provides
efficient parallel implementations of several high-level algo-
rithms (copy, sort, merge, prefix computations, reductions,
and others). Using template metaprogramming, applications
using Thrust can be compiled with minimal modifications for
serial or parallel execution, the latter using either OpenMP or
CUDA. OpenMP [18] is an open interface for shared-memory
parallelism based on the C, C++ and FORTRAN program-
ming languages. OpenMP relies on user-supplied source code
annotations based on standard preprocessor directive to gen-
erate parallel code mainly for loops, although general task
parallelism is also supported. CUDA [19] (Compute Unified
Device Architecture) is NVidia’s proprietary technology for
general-purpose GPU programming; it leverages a special
C/C++ compiler that interprets non-standard language exten-
sions, plus library functions that are tailored to the data-parallel
programming paradigm of supported GPUs.

Thrust is appealing because it allows programs to be written
in an architecture-agnostic way. Our implementation consists
of a single source file that can be compiled for sequential exe-
cution, parallel execution on multi-core CPUs, and parallel ex-

5

Algorithm 2 Parallel-Intersection-Counting(A, B)
1: n← |A|,m← |B|
2: T ← ∅
3: nleft ← 0n+m, nright ← 0n+m

4: left idx← 0n, right idx← 0n

// Initialization
5: for all intervals x ∈ A ∪ B in parallel do
6: Insert x.left and x.right in T
7: end for

// Sort the endpoints in non-decreasing order
8: Parallel-Sort(T)

// Initialize the nleft[] and nright[] arrays
9: for all endpoints ti ∈ T in parallel do

10: if ti is the left endpoint of an interval b ∈ B then
11: nleft[i]← 1
12: else if ti is the right endpoint of an interval b ∈ B then
13: nright[i]← 1
14: end if
15: end for
16: Parallel-Prefix-Sum(nleft)
17: Parallel-Prefix-Sum(nright)

// Build index arrays
18: for all endpoints ti ∈ T in parallel do
19: if ti is the left endpoint of ak ∈ A then
20: left idx[k]← i
21: else if ti is the right endpoint of ak ∈ A then
22: right idx[k]← i
23: end if
24: end for

// Compute final result
25: for all ai ∈ A in parallel do
26: c(i)← nleft[right idx[i]] − nright[left idx[i]]
27: end for

ecution on CUDA-capable devices. This enhances code porta-
bility and maintainability, since a single code base is shared
across different implementations. Our source program does not
use conditional preprocessor directives (#ifdef’s), apart from
a few CUDA keywords that must be enabled only when pro-
ducing CUDA code.

We tested the implementations on three machines whose
hardware configurations are listed in Table 1. All machines are
running the Ubuntu/Linux operating system; we used the GCC
compiler provided by the OS with the -O2 -fopenmp flags to
enable optimization and OpenMP support; the C compiler and
CUDA SDK versions are reported in the table. We used the lat-
est version of the Thrust library available at the time of writing.

Some of our machines have processors that use Intel’s pro-
prietary HyperThreading (HT) technology [20]. HyperThread-
ing provides two logical processors for each physical core. The
two logical processors share part of the hardware resources;
studies from Intel and others have shown that in typical ap-
plications HT contributes a performance boost between 16–
28% [20].

Figure 3 shows the wall-clock time of all realizations of
our parallel algorithm (serial, OpenMP, and CUDA) on all ma-

 0.01

 0.1

 1

 10

 100

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

 6x10
7

 7x10
7

 8x10
7

W
a
ll-

c
lo

c
k
 t
im

e
 (

s
)

Number of intervals (N)

Wall-clock time

CUDA
OpenMP

Serial

Machine A
Machine B
Machine C

Figure 3: Wall-clock time as a function of the total number of intervals N, log
scale, synthetic workload, lower is better; best viewed in color.

chines under a synthetic workload. We generated N random
intervals, N ∈ [1 × 106, 80 × 106], half of which are assigned to
set A and the other half to B (i.e., |A| = |B| = N/2). The per-
formance of our algorithm does not depend on the number of
intersections, so no special care has been taken to constrain the
number of overlaps. The OpenMP versions have been executed
by setting the number of threads equal to the number of (virtual)
CPU cores. All data points are the average of five independent
executions. R2.8

Looking at the serial execution time, we observe that Ma-
chines A and C are more or less equivalent, while Machine B
is considerably slower. The explanation is that both machines
have approximately the same clock rate, which is considerably
higher than that of Machine B. The presence of a larger Level 2
cache on Machine A does not appear to produce a significant
reduction of the wall-clock-time, which is expected since Algo-
rithm 2 exhibits a linear memory access pattern without signif-
icant data reuse. The same is observed on the Thrust/OpenMP
implementations: Machines A is slightly faster than C since it
has a higher number of cores, while Machine B lags behind due
to the lower clock rate.

Finally, the fastest Thrust/CUDA implementation is the one
running on Machine A since it runs on a more recent GPU;
note that the clock rate of Quadro RTX 4000 is lower than the
GTX 1070, but Algorithm 2 is memory-bound so it benefits
from the higher memory clock rate of the Quadro GPU.

On each machine the throughput improves by about an or-
der of magnitude by going from OpenMP to CUDA. A lower
speedup is observed when moving from serial to OpenMP im-
plementations. The results show that CUDA outperform CPU-
based implementations by a significant margin, the only excep-
tion being when the number N of intervals is low, due to the
overhead of GPU initialization. As the number of intervals in-
creases, the performance gap between the serial, parallel, and
CUDA versions widens. Indeed, the slowest GPU (on Machine
B) is about one order of magnitude faster than the faster CPU
(Machine A).

We now discuss the scalability of the OpenMP implemen-

6

Table 1: Hardware used for the experimental evaluation.

Machine A Machine B Machine C

CPU Model i7-9800X Xeon E5-2603 i7-5820K
Clock rate (GHz) 3.80 GHz 1.70 GHz 3.30 GHz
Cores (physical/virtual) 8/16 12 6/12
RAM 32 GB 64 GB 64 GB
L2 cache (per core) 8 MB 3 MB 1.5 MB
L3 cache 16.5 MB 30 MB 15 MB
Operating System Ubuntu/Linux 22.04 Ubuntu/Linux 20.04 Ubuntu/Linux 22.04
GCC version 11.4.0 9.4.0 11.4.0

GPU Model Quadro RTX 4000 GeForce GTX 1070 GeForce GTX TITAN X
CUDA capability 7.5 6.1 5.2
CUDA cores 2304 1920 3072
GPU clock rate 1.54 GHz 1.80 GHz 1.08 GHz
Global memory 7965 MB 8114 MB 12206 MB
Memory clock rate 6.5 GHz 4.0 GHz 3.5 GHz
CUDA SDK version 12.3 12.2 12.3

 1

 2

 3

 4

 5

 6

 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

Number of processors (P)

Scalability (N = 50 x 10
6
 intervals)

Machine A
Machine B
Machine C

Linear speedup

Figure 4: Scalability of the Thrust/OpenMP implementation; each data point
is the average of five independent runs. Synthetic workload (N = 50 × 106

intervals), higher is better; best viewed in color.

tation, defined in term of the relative speedup. The relative
speedup S (p) of a parallel program executed on p processors
is defined as:

S (p) =
Tparallel(1)
Tparallel(p)

(7)

where Tparallel(p) is the wall-clock time of the parallel program
executed on p processors. The relative speedup satisfies the
relation 0 ≤ S (p) ≤ p, S (p) = p being the case of perfect
scalability. However, in practice S (p) < p due to intrinsically
serial portions or parallelization inefficiencies.

Figure 4 shows the scalability of the Thrust/OpenMP ver-
sions. The maximum speedup is between 2.5 and 4, depending
on the hardware. Machine A exhibits a slightly better scalabil-
ity, which is expected since it has the highest CPU clock rate. A
sharp drop in the speedup for Machine A is observed between

p = 8 and p = 9 processors, and is due to the HT technol-
ogy. Indeed, Machine A has eight physical cores that are truly
independent: virtual cores mapped onto the same physical ex-
ecution unit share resources and are therefore not independent.
The Linux scheduler is HT-aware and assigns tasks to separate
physical cores as long as possible; when the number of tasks
increases, virtual cores are used. When two tasks are assigned
to two virtual cores from the same physical unit, the speedup is
severely degraded due to hardware contention.

From Figure 4 we also observe that the speedup remains be-
low the theoretical maximum p (dashed line) when the number
of processors increases. There are three explanations for this:
(i) the presence of serial bottlenecks (e.g., contention, intrin-
sically serial portions of the code) and algorithmic limitations;
(ii) OpenMP overheads; and (iii) limited memory bandwidth.
Amdahl’s Law [21] states that, under some simplifying assump-
tions, the maximum achievable speedup is 1/α where α is the
fraction of time spent in parts of the code that do not benefit
from additional computational resources. By solving 1/α = 4
for α, 4 being the approximate maximum speedup, we get that
a fraction α = 0.25 of the wall-clock time is spent in parts of
the code that do not benefit from additional computational re-
sources. We also observe that Algorithm 2 has low arithmetic
intensity, defined as the ratio of the number of arithmetic op-
erations and the total amount of data transferred to/from mem-
ory. The roofline performance model [22] predicts that applica-
tions with low arithmetic intensity are bounded by the available
DRAM bandwidth rather than processing power.

Further analysis reveals that a significant portion of the ex-
ecution time of the Thrust/OpenMP version is spent sorting T ,
which raises the question whether a more efficient parallel sort-
ing algorithm would reduce the wall-clock time. The GCC
compiler ships with a Standard Template Library (STL) for
the C++ language that conforms to the extensions for paral-
lelism [23], and provides parallel implementations of various
algorithms (sorting, prefix computation) that are functionally

7

Figure 5: Structure and derivation of the “Exome” and “Chr21” datasets.

equivalent to their Thrust counterparts. To investigate the
overhead incurred by Thrust/OpenMP we realized a separate
implementation that relies on the STL only, with a few explicit
OpenMP directive to parallelize some loops that can not be han-
dled using STL constructs. Note that the parallel STL relies on
Intel’s Threading Building Blocks (TBB)2, so there is no simple
way to constrain the number of execution units that are used.

We study the performance of the parallel algorithm on ac-
tual human genetic data (Figure 5). To create the first inter-
val set, we downloaded the aligned reads in BAM format from
a publicly available whole-exome-sequencing of the HG00258
individual performed in the 1000 Genomes Project [24], which
are already mapped to a unique region in the hg19 human ref-
erence genome. For each read, we extracted its start and end
genetic coordinates, yielding a total of 192,173,832 intervals.

We count the intersection of these intervals with a second
set of intervals, which was derived from the known coding ge-
nomic regions in the hg19 reference genome, downloaded from
the NCBI website. We split these 152,502 regions into 1-base-
sized intervals, for a total of 25,712,924 intervals. The num-
ber of aligned reads overlapping each 1-base interval is the per-
base coverage on the coding regions, a commonly used statis-
tics in genomic analyses for quality control checks and other
purposes. These two sets are the first dataset, which we call the
“Exome” dataset. A second smaller dataset called “Chr21” was
obtained as a subset of the “Exome” dataset by taking only the
intervals on chromosome 21, comprising 4,165,871 alignments
and 506,772 1-base intervals.

Table 2 shows the execution times of all instantiations of the
parallel algorithm 2 on the two datasets; the data is provided
graphically in Figure 6 for better understanding. The results
confirm our previous findings: Thrust/OpenMP implementa-
tions are from 2 to 3 times faster than the sequential program,
while the CUDA implementations provide a significant speedup
(from 11× to 27× depending on the hardware) on the “Exome”
dataset, which drops to 3× – 5× on the “Chr21” dataset.

The speedup achieved by Thrust/OpenMP is about the same
across all machines, despite the fact that the hardware spans dif-
ferent generations. This is expected, since the speedup is the ra-
tio of the serial execution time over the parallel execution time,
and is therefore independent of the CPU clock frequency. Al-
though the speedup of Thrust/OpenMP does in principle depend

2https://github.com/oneapi-src/oneTBB

Figure 6: Wall-clock times on real datasets, lower is better; raw data in Table 6.

on the number of cores, which is different across the test ma-
chines, Amdahl’s law constrains the maximum speedup in the
same way on all machines as we already observed in Figure 4.
Interestingly, the implementation based on the parallel STL is
about twice as fast as Thrust/OpenMP. Again, this improvement
is about the same across all machines.

The speedup of Thrust/CUDA, on the other hand, varies
considerably on the larger Exome dataset from 11.94× of
Machine C to 18.33× of Machine B, up to 27.01× of Machine
A. Care should be taken in understanding these results, since
these values depend on the CPU/GPU combination which
varies across the test hardware. It is therefore more appropriate
to consider the wall-clock time, according which Machine A
(1.75s) is better than Machine C (3.89s), which in turn is better
than Machine B (5.47s). This is the same behavior observed in
Figure 3 and can be explained by observing that the application
has low arithmetic intensity and is therefore limited by the
memory bandwidth. The GPU on Machine A has the highest
memory clock rate, while Machine C has significantly more
CUDA cores than B, with only slightly less memory clock
rate.

8

Table 2: Wall-clock times on real datasets, lower is better. Speedups are relative to the sequential program. For a graphical representation, see Figure 6.

Dataset Program Machine A Machine B Machine C

n,m Time (s) Speedup Time (s) Speedup Time (s) Speedup

Chr21 Thrust/Sequential 0.87 1.00× 1.92 1.00× 0.93 1.00×
n = 509, 772 Thrust/OpenMP 0.38 2.26× 0.76 2.51× 0.42 2.20×
m = 4, 165, 891 Parallel STL 0.20 4.35× 0.43 4, 47× 0.19 4.89×

Thrust/CUDA 0.16 5.53× 0.40 4.71× 0.20 4.64×

Exome Thrust/Sequential 47.27 1.00× 100.28 1.00× 46.45 1.00×
n = 25, 712, 924 Thrust/OpenMP 17.62 2.68× 36.71 2.73× 19.54 2.38×
m = 192, 173, 832 Parallel STL 8.69 4.87× 20.34 4.93× 9.07 5.12×

Thrust/CUDA 1.75 27.01× 5.47 18.33× 3.89 11.94×

5. Conclusions

In this paper we presented a parallel algorithm for count-
ing the number of intersections between two sets of one-
dimensional intervals. The algorithm has been implemented on
shared-memory processors and CUDA-capable GPUs using the
Thrust parallel programming library. Thrust allows sequential,
OpenMP, and CUDA executables to be produced from the
same source code, therefore enabling users to take advantage
of CPU or GPU parallelism.

We tested the program on different hardware platforms of
different ages using real datasets from the biocomputing do-
main, as well as on synthetic data. The Thrust/OpenMP ver-
sion yields a speedup in the range 2×–4× with respect to the
serial program, depending on the size of the dataset. The GPU
implementation improves upon the OpenMP version, since it
provides a speedup of up to 20× on large datasets with respect
to the serial implementation.

The performance of Thrust/OpenMP on this specific appli-
cation turns out to be less than what can be achieved by the
parallel STL that ships with the GNU C Compiler, although
the latter is not portable to the GPU. This suggests that either
the current version of the Thrust library has room for improve-
ments, or that code portability to multicore CPUs and GPUs
comes at a price. More research in the area of parallel pro-
gramming libraries for performance portability is required to
investigate these issues.

CRediT authorship contribution statement

Moreno Marzolla: Conceptualization, Formal Analysis,
Methodology, Software, Investigation, Resources, Writing–
Original Draft, Writing–Review & Editing; Giovanni Birolo:
Conceptualization, Data preparation, Writing–Review & Edit-
ing; Gabriele D’Angelo: Conceptualization, Methodology,
Writing–Review & Editing; Piero Fariselli: Conceptualiza-
tion, Resources, Writing–Review & Editing.

Declaration of competing interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Data Availability

The source code of the algorithm described in this pa-
per and the datasets used in the performance evaluation
are freely available at https://github.com/mmarzolla/

parallel-intersections.

Funding

Moreno Marzolla was partially supported by the Istituto
Nazionale di Alta Matematica “Francesco Severi” – Gruppo
Nazionale per il Calcolo Scientifico (INdAM-GNCS), by the
EuroHPC EU Regale project (grant number 956560) and by the
ICSC National Research Centre for High Performance Comput-
ing, Big Data and Quantum Computing within the NextGenera-
tionEU program. Giovanni Birolo and Piero Fariselli were par-
tially supported by the European Union’s Horizon 2020 Brain-
teaser Project (grant number 101017598).

References

[1] J. E. Goodman, J. O’Rourke, C. D. Tóth (Eds.), Handbook of discrete and
computational geometry, third edition Edition, CRC Press, 2018.

[2] M. Marzolla, G. D’Angelo, Parallel data distribution management on
shared-memory multiprocessors, ACM Trans. Model. Comput. Simul.
30 (1) (feb 2020). doi:10.1145/3369759.

[3] R. M. Layer, K. Skadron, G. Robins, I. M. Hall, A. R. Quinlan, Binary
interval search: a scalable algorithm for counting interval intersections,
Bioinformatics 29 (2013) 1–7. doi:10.1093/bioinformatics/bts652.

[4] J. F. Allen, Maintaining knowledge about temporal intervals, Commun.
ACM 26 (11) (1983) 832–843. doi:10.1145/182.358434.

[5] H. Six, D. Wood, The rectangle intersection problem revisited, BIT 20
(1980) 426–433. doi:10.1007/BF01933636.

[6] M. I. Shamos, D. Hoey, Geometric intersection problems, in: 17th Annual
Symposium on Foundations of Computer Science (SFCS 1976), 1976, pp.
208–215. doi:10.1109/SFCS.1976.16.

[7] S. Neph, M. S. Kuehn, A. P. Reynolds, E. Haugen, R. E. Thurman, A. K.
Johnson, E. Rynes, M. T. Maurano, J. Vierstra, S. Thomas, R. Sandstrom,
R. Humbert, J. A. Stamatoyannopoulos, BEDOPS: high-performance
genomic feature operations, Bioinformatics 28 (14) (2012) 1919–1920.
doi:10.1093/bioinformatics/bts277.

[8] H. Li, J. Rong, Bedtk: finding interval overlap with im-
plicit interval tree, Bioinformatics 37 (9) (2020) 1315–1316.
doi:10.1093/bioinformatics/btaa827.

[9] B. Otlu, T. Can, JOA: Joint overlap analysis of multiple genomic inter-
val sets, BMC Bioinformatics 20 (121) (2019). doi:10.1186/s12859-019-
2698-4.

9

[10] C. Mao, A. Eran, Y. Luo, Efficient genomic interval queries using aug-
mented range trees, Scientific Reports 9 (2019). doi:10.1038/s41598-019-
41451-3.

[11] J. F. Allen, Maintaining knowledge about temporal intervals, Commun.
ACM 26 (11) (1983) 832–843. doi:10.1145/182.358434.

[12] G. Blelloch, Scans as primitive parallel operations, IEEE Trans. Comput.
38 (11) (1989) 1526–1538. doi:10.1109/12.42122.

[13] R. Cole, Parallel merge sort, SIAM J. Comput. 17 (4) (1988) 770–785.
doi:10.1137/0217049.

[14] M. Wheat, D. J. Evans, An efficient parallel sorting algorithm for
shared memory multiprocessors, Parallel Comput. 18 (1) (1992) 91–102.
doi:10.1016/0167-8191(92)90114-M.

[15] P. Tsigas, Y. Zhang, A simple, fast parallel implementation of quicksort
and its performance evaluation on SUN enterprise 10000, in: 11th Eu-
romicro Workshop on Parallel, Distributed and Network-Based Process-
ing (PDP 2003), 5-7 February 2003, Genova, Italy, IEEE Computer Soci-
ety, 2003, p. 372. doi:10.1109/EMPDP.2003.1183613.

[16] J. C. Wyllie, The complexity of parallel computations, Ph.D. thesis, Cor-
nell University, USA, aAI8004008 (Aug. 1979).
URL https://hdl.handle.net/1813/7502

[17] N. Bell, J. Hoberock, Chapter 26 - Thrust: A productivity-oriented library
for CUDA, in: W. mei W. Hwu (Ed.), GPU Computing Gems Jade Edi-
tion, Applications of GPU Computing Series, Morgan Kaufmann, Boston,
2012, pp. 359–371. doi:10.1016/B978-0-12-385963-1.00026-5.

[18] L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-
memory programming, IEEE Comput. Sci. Eng. 5 (1998) 46–55.
doi:10.1109/99.660313.

[19] NVidia CUDA home page, accessed on 2022-10-02 (2022).
URL https://developer.nvidia.com/cuda-zone

[20] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, A. J. Miller,
M. Upton, Hyper-Threading Technology Architecture and Microarchitec-
ture, Intel Technology Journal 6 (1) (Feb. 2002).

[21] G. M. Amdahl, Validity of the single processor approach to achieving
large scale computing capabilities, in: Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), Associa-
tion for Computing Machinery, New York, NY, USA, 1967, p. 483–485.
doi:10.1145/1465482.1465560.

[22] S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual
performance model for multicore architectures, Commun. ACM 52 (4)
(2009) 65–76. doi:10.1145/1498765.1498785.

[23] Programming languages – technical specification for C++ extensions for
parallelism, ISO/IEC TS 19570:2015 (2015).

[24] The 1000 Genomes Project Consortium, A global reference
for human genetic variation, Nature 526 (7571) (2015) 68–74.
doi:10.1038/nature15393.

10

