
Future Generation Computer Systems 159 (2024) 423–431

A
0
n

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Parallel intersection counting on shared-memory multiprocessors and GPUs
Moreno Marzolla a,c ,∗, Giovanni Birolo b , Gabriele D’Angelo a,c , Piero Fariselli b

a Dipartimento di Informatica–Scienza e Ingegneria (DISI), Università di Bologna, Mura Anteo Zamboni, 7, Bologna, I-40126, Italy
b Dipartimento di Scienze Mediche, Università di Torino, Corso Dogliotti, 14, Torino, I-10124, Italy
c Center for Inter-Department Industrial Research ICT, Università di Bologna, Bologna, I-40126, Italy

A R T I C L E I N F O

Dataset link: https://github.com/mmarzolla/pa
rallel-intersections

Keywords:
Intersection counting
Parallel algorithms
GPU programming
Shared-memory algorithm
Bioinformatics

A B S T R A C T

Computing intersections among sets of one-dimensional intervals is an ubiquitous problem in computational
geometry with important applications in bioinformatics, where the size of typical inputs is large and it is
therefore important to use efficient algorithms. In this paper we propose a parallel algorithm for the 1D
intersection-counting problem, that is, the problem of counting the number of intersections between each
interval in a given set 𝐴 and every interval in a set 𝐵. Our algorithm is suitable for shared-memory architectures
(e.g., multicore CPUs) and GPUs. The algorithm is work-efficient because it performs the same amount of work
as the best serial algorithm for this kind of problem. Our algorithm has been implemented in C++ using the
Thrust parallel algorithms library, enabling the generation of optimized programs for multicore CPUs and GPUs
from the same source code. The performance of our algorithm is evaluated on synthetic and real datasets,
showing good scalability on different generations of hardware.
1. Introduction

Counting or enumerating intersections among sets of one-dimens-
ional intervals is a recurrent problem in many application domains
such as computer graphics [1, Ch. 42], distributed simulation [2], and
bioinformatics [3]. Given two real values 𝑙𝑒𝑓 𝑡 ≤ 𝑟𝑖𝑔ℎ𝑡, the closed inter-
val 𝑎 = [𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡] denotes the set of values between 𝑙𝑒𝑓 𝑡 and 𝑟𝑖𝑔ℎ𝑡,
inclusive. We say that two intervals 𝑎, 𝑏 overlap iff their intersection is
not empty, i.e., 𝑎 ∩ 𝑏 ≠ ∅.

Different types of interval intersection problems have been consid-
ered in the literature. The intersection enumeration problem consists on
enumerating all pairs of overlapping intervals (𝑎, 𝑏), 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. Fig. 1
shows an example of two sets of closed intervals 𝐴,𝐵, the intersections
being:

{(𝑎0, 𝑏0), (𝑎0, 𝑏1), (𝑎1, 𝑏1), (𝑎1, 𝑏2), (𝑎2, 𝑏3), (𝑎2, 𝑏4), (𝑎2, 𝑏5)}

The intersection counting problem consists on computing the number
of intervals in 𝐵 that overlap with each interval 𝑎 ∈ 𝐴. More formally,
given two sets of intervals 𝐴,𝐵 with |𝐴| = 𝑛, |𝐵| = 𝑚, the goal is to
compute a function 𝑐 ∶ 𝐴 → N that maps each interval 𝑎 ∈ 𝐴 to the
number of intervals 𝑏 ∈ 𝐵 that overlap with 𝑎:

𝑐(𝑎) = |

|

{𝑏 ∈ 𝐵 | 𝑎 ∩ 𝑏 ≠ ∅}|
|

(1)

For the example of Fig. 1, we have 𝑐(𝑎0) = 2, 𝑐(𝑎1) = 2, 𝑐(𝑎2) = 3.

∗ Correspondence to: Department of Computer Science and Engineering (DISI), University of Bologna, Cesena Campus, via dell’Università 50, I-
47521 Cesena, Italy.

E-mail addresses: moreno.marzolla@unibo.it (M. Marzolla), giovanni.birolo@unito.it (G. Birolo), g.dangelo@unibo.it (G. D’Angelo), piero.fariselli@unito.it
(P. Fariselli).

Finally, the all-intersections counting problem consists on computing
the total number of intersections between two sets of intervals 𝐴,𝐵.
The total number of intersections is the summation of the number of
intersections per interval, i.e., ∑

𝑎∈𝐴 𝑐(𝑎). For the scenario shown in
Fig. 1, there is a total of 7 overlaps.

In this paper we consider the one-dimensional intersection counting
problem, which enables us to also solve the all-intersections counting
problem as a special case. Our interest stems from their important
applications in bioinformatics: finding overlaps of genetic features,
computing coverage of aligned reads in DNA sequencing, and ex-
pression quantification in RNA sequencing are only some examples
of analyses that need some intersection-finding algorithms at their
core. The sets of intervals involved are often quite large; for instance,
the number of exons (a commonly used genetic feature) in the hu-
man genome is around 180,000. DNA sequencing of a whole human
genome can yield several billions of reads. Moreover, while the human
genome has three billion bases and is quite long and complex, longer
genomes abound in nature. As a consequence, efficiency becomes a
major concern.

Most genomic analyses are performed on workstations or High-
Performance Computing (HPC) infrastructures normally equipped with
multicore processors and GPUs. Many sequential tasks can be run in
parallel by splitting the data into independent chunks, for instance, by
vailable online 20 May 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.future.2024.05.039
Received 16 October 2023; Received in revised form 15 February 2024; Accepted 1
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

7 May 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0002-2151-5287
https://orcid.org/0000-0003-0160-9312
https://orcid.org/0000-0002-3690-6651
https://orcid.org/0000-0003-1811-4762
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
https://github.com/mmarzolla/parallel-intersections
mailto:moreno.marzolla@unibo.it
mailto:giovanni.birolo@unito.it
mailto:g.dangelo@unibo.it
mailto:piero.fariselli@unito.it
https://doi.org/10.1016/j.future.2024.05.039
https://doi.org/10.1016/j.future.2024.05.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.05.039&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Future Generation Computer Systems 159 (2024) 423–431M. Marzolla et al.

i
o
a
v
t
s
a

t
p
i
a
t

t
s
n
s
i
o
i
i
a
a
p
a
p
t
t
G

r
c
t
r
d
o
a

2

d
f
s
𝑂
m
l
s

c
g
a
i
b
s
w

t
l
r
s
a
(
i

h
l
a
a

l
c
g
n
i
w
s
m

a
l
o
c
a
a
a
a
a
b
e
e

s
f
d
t
p

3

g
w
i
b

w
a
o
t

Fig. 1. Example of overlapping sets of intervals.

ndividual or by chromosome. However, this approach is not always
ptimal or even feasible, so having inherently parallel and efficient
lgorithms is a big advantage. Also, GPUs, when available, can pro-
ide substantial boosts in computing speed for software that can use
hem. For these reasons, we developed an inherently parallel inter-
ection counting algorithm implemented for both multicore and GPU
rchitectures.

Counting intersections among two sets of intervals plays an impor-
ant role in supporting range queries in temporal databases [4]. Tem-
oral databases store information that are associated to some instant
n time or time interval; queries involve the computation of overlaps
mong sets of time intervals, which could be answered efficiently using
he algorithm described in the following.

In this paper we propose a work-efficient, parallel algorithm for
he one-dimensional intersection-counting problem that is suitable for
hared-memory architectures and GPUs. Our algorithm is based on a
ovel parallel implementation of the sweep-line technique that repre-
ents the state of the art sequential solution. The sweep-line technique
nvolves the traversal of the sorted list of endpoints, keeping track
f which intervals are active at each step (details will be provided
n Section 3). Unfortunately, the sweep-line algorithm does not lend
tself to a parallel realization due to its intrinsically serial nature. We
ddress this problem by casting the core of the serial algorithm into
sequence of parallel scans with an ad-hoc associative operator. The

arallel algorithm is work-efficient, since it performs the same total
mount of work as the sequential algorithm. We implemented the
arallel intersection-counting algorithm using the Thrust library that
argets both multicore CPU and GPUs. This allows the same code base
o be used to generate efficient parallel code for multicore CPU and
PUs.

This paper is organized as follows. In Section 2 we review the
elevant scientific literature. In Section 3 we describe a parallel interse-
tion-counting algorithm based on the sweep-line technique and show
hat the algorithm is work-efficient. Section 4 describes performance
esults of CPU and GPU-based implementations, on real and simulated
atasets; the source code of our implementation is freely available
nline at the URL provided at the end of this paper. Finally, conclusions
re discussed in Section 5.

. Related works

Intersection counting and enumeration problems have been tra-
itionally studied in the computational geometry research area. The
irst efficient solution was proposed by [5] who developed a one-pass
olution to the intersection-enumeration problem that requires time
((𝑛 + 𝑚) log(𝑛 + 𝑚) +𝐾), where 𝐾 is the number of intersections. The
ethod is based on the sweep-line technique [6]: the idea is to sort the

ist of endpoints of the intervals in non-decreasing order, and scan the
orted list to keep track of which intervals are still open at each point.

Recent developments in this area have been carried out in the
ontext of bioinformatics. Indeed, the fast development of the field of
enetics and the many advances that it spurred in medicine, agriculture
nd many other disciplines, is largely dependent on the ability of ‘‘read-
ng’’ DNA, the molecules that carry the genetic information in all living
eings. Thanks to its molecular structure, DNA (and similar molecules
uch as RNA) can encode arbitrary strings of a four-element alphabet,
hose ‘‘letters’’ are called ‘‘bases’’. In humans, for instance, the genetic
424
information that defines our species and each individual is divided into
23 DNA molecules called ‘‘chromosomes’’ for a total of three billion
bases. It is therefore, not surprising that the need to process large
datasets has driven the development of parallel algorithms for counting
and enumerating intersections.

BEDOPS [7] is a suite of tools for computing overlap and proximity
relations between genomic datasets. BEDOPS uses the sweep-line tech-
nique to compute the genomic space that is common to two datasets,
from which it is possible to count the number of intersections. Although
some of BEDOPS components support parallel processing, the program
that computes intersections does not yet.

BEDTK [8] is a software package that is specialized for solving the
intersection enumeration problem. It uses the interval tree data struc-
ure, a balanced search tree that stores a set of intervals sorted on the
eft endpoint. The interval tree is optimized for listing the intersections
ather than just counting them. A variation of the interval tree, called
egment tree forest, is proposed in [9] for finding overlapping intervals
cross 𝑛 sets. The authors developed a tool called Joint Overlap Analysis
JOA) that can compute intersections efficiently by traversing the forest
n parallel.

Another tree-based data structure, called two-dimensional range tree,
as been proposed by [10] for querying multiple types of predicates on
arge interval sets. All types of relationships defined by Allen’s interval
lgebra [11] are transformed into two-dimensional range queries that
re answered efficiently through 2D range trees.

All approaches above deal with the intersection-enumeration prob-
em. Enumerating intersections is intuitively ‘‘more difficult’’ than
ounting them, since the computational cost of any enumeration al-
orithm must grow at least linearly with the output size 𝐾, the
umber of intersections to be reported. Since the maximum number of
ntersections is 𝑂(𝑛𝑚), every intersection-enumeration algorithm has a
orst-case cost that is proportional to the product of the sizes of the two

ets of intervals. In applications where intersection counting suffices,
ore efficient solutions are desirable.

Binary Interval Search (BITS) [3] has been proposed as an efficient
lgorithm for counting intersections, although it can also report the
ist of overlaps. BITS operates by sorting the left and right endpoints
f 𝐵 into two separate lists, and performs two binary searches to
ount the number of intersections between a test interval 𝑎𝑖 ∈ 𝐴
nd 𝐵. The number of intersections between all intervals in two sets 𝐴
nd 𝐵 can therefore be computed using 2𝑛 binary searches on 𝐵. The
lgorithm naturally leads to a parallel version, since the 2𝑛 searches
re independent and can be done in parallel. In [3] it is claimed that
purely sweep-based parallel intersection-counting algorithm would

e inefficient, since it would require either to partition 𝐴 among the
xecution units, leading to load imbalance, or to frequent information
xchange between threads.

In this paper we disprove the claim above by showing a parallel
weep-based algorithm that is optimal (i.e., work-efficient), as it per-
orms the same amount of work of the sequential algorithm. We first
escribe a serial intersection-counting algorithm, and then show that
he steps it performs are instances of known parallel programming
atterns that naturally lead to an efficient parallel algorithm.

. Parallel intersection counting

In this section we describe a novel parallel intersection-counting al-
orithm based on the sweep-line technique. For the sake of readability,
e break the description into two steps: the parallel algorithm is first

ntroduced in sequential form, and then we show how the key steps can
e executed on a shared-memory parallel architecture.

Given two sets 𝐴,𝐵 of 1D intervals of cardinality |𝐴| = 𝑛, |𝐵| = 𝑚,
e follow the idea from [5] of sorting the list 𝑇 of the endpoints of 𝐴
nd 𝐵 in non-decreasing order, and scan the sorted list to keep track
f which intervals are active (i.e., still open) at each point. We say
hat endpoint 𝑥 precedes 𝑦 if either (i) 𝑥 < 𝑦, or (ii) 𝑥 = 𝑦 and 𝑥

Future Generation Computer Systems 159 (2024) 423–431M. Marzolla et al.

1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2

2
2
2

l
e
h
m
s
l
i
o
l
a

o
t
b
e
t
(
𝑂

t
w

is a left endpoint and 𝑦 is a right endpoint. This criterion will be
used to compare and sort endpoints in the rest of this paper. We also
denote with 𝑎.𝑙𝑒𝑓 𝑡 and 𝑎.𝑟𝑖𝑔ℎ𝑡 the left and right endpoints of interval 𝑎,
respectively.

Let L =
[

L0,… ,L𝑛−1
]

and  =
[

0,… ,𝑛−1
]

be two arrays of sets
of intervals, i.e., each 𝑖 and L𝑖 is a set of intervals where:

L𝑖 ∶= set of intervals in 𝐵 whose left endpoint appears before
the right endpoint of 𝑎𝑖 in 𝑇

𝑖 ∶= set of intervals in 𝐵 whose right endpoint appears
before the left endpoint of 𝑎𝑖 in 𝑇

Then, the set difference L𝑖 ⧵𝑖 is by definition the set of intervals
in 𝐵 that intersect 𝑎𝑖. For example, considering Fig. 1 we have:

L0 = {𝑏0, 𝑏1} 0 = ∅

L1 = {𝑏0, 𝑏1, 𝑏2} 1 = {𝑏0}

L2 = {𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5} 2 = {𝑏0, 𝑏1, 𝑏2}

from which we get that the intervals in 𝐵 that intersect, e.g., 𝑎1 are
1 ⧵ L1 = {𝑏0, 𝑏1, 𝑏2} ⧵ {𝑏0} = {𝑏1, 𝑏2}.

Since we are only interested in the number of intervals overlapping
each 𝑎𝑖, we can replace the sets L𝑖 and 𝑖 with the scalar values
𝐿𝑖 = |L𝑖| and 𝑅𝑖 = |𝑖|, respectively. 𝐿𝑖 is the number of intervals in 𝐵
whose left endpoint appears before the right endpoint of 𝑎𝑖, while 𝑅𝑖 is
the number of intervals in 𝐵 whose right endpoint appears before the
right endpoint of 𝑎𝑖. In the case of Fig. 1 we have:

𝐿0 = 2 𝑅0 = 0

𝐿1 = 3 𝑅1 = 1

𝐿2 = 6 𝑅2 = 3

from which we see that the number of intervals in 𝐵 that overlap 𝑎𝑖 ∈ 𝐴
is

𝑐(𝑖) = 𝐿𝑖 − 𝑅𝑖 (2)

The observations above lead to the sequential Algorithm 1. The
endpoints are stored in the array 𝑇 of length (𝑛 + 𝑚), where each
interval 𝑥 has two attributes 𝑥.𝑙𝑒𝑓 𝑡 and 𝑥.𝑟𝑖𝑔ℎ𝑡 of type real representing
the left and right endpoint of 𝑥, respectively. After 𝑇 is sorted in
non-decreasing order, the counts of left and right endpoints can be
computed by the loops on lines 1.11 and 1.20.

The loop 1.11 initializes two arrays 𝑛𝑙𝑒𝑓𝑡[𝑖] and 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] that satisfy
the following properties:

𝑛𝑙𝑒𝑓𝑡[𝑖] ∶= Number of 𝑙𝑒𝑓 𝑡 endpoints of 𝐵
that appear in 𝑇 [0..𝑖]

(3)

𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] ∶= Number of 𝑟𝑖𝑔ℎ𝑡 endpoints of 𝐵
that appear in 𝑇 [0..𝑖]

(4)

Note that 𝑛𝑙𝑒𝑓𝑡[𝑖] and 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] are not the values 𝐿𝑖 and 𝑅𝑖 that
are required to compute the counts; instead, 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡 contain
a permutation of the arrays 𝐿 and 𝑅. To compute 𝐿𝑖 and 𝑅𝑖 efficiently
(i.e., in constant time) we define two additional arrays 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥 and
𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥 of length (𝑛+𝑚) that map positions (indexes) in 𝑇 to positions
in 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡. Specifically, if an endpoint 𝑡𝑖 ∈ 𝑇 is the left
(resp. right) endpoint of interval 𝑎𝑘 ∈ 𝐴, then 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[𝑘] = 𝑖 (resp.
𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[𝑘] = 𝑖). Therefore, 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥 and 𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥 map the index of an
interval to the position (index) of the left and right endpoints of that
interval in 𝑇 . At the end of the loop 1.20, the following identities hold:

𝑛𝑙𝑒𝑓𝑡[𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[𝑖]] = 𝐿𝑖𝑛𝑟𝑖𝑔ℎ𝑡[𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[𝑖]] = 𝑅𝑖 (5)

that, combined with (2), yields

𝑐(𝑖) = 𝑛𝑙𝑒𝑓𝑡[𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[𝑖]] − 𝑛𝑟𝑖𝑔ℎ𝑡[𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[𝑖]] (6)

(line 1.28).
Fig. 2 2⃝ and 3⃝ shows the behavior of Algorithm 1 on sets 𝐴

⃝

425

and 𝐵 from Fig. 1 (the portion labeled 1 will be explained later on). u
Algorithm 1 Intersection-Counting(𝐴,𝐵)
1: 𝑛 ← |𝐴|, 𝑚 ← |𝐵|
2: 𝑇 ← ∅
3: 𝑛𝑙𝑒𝑓𝑡 ← 0𝑛+𝑚, 𝑛𝑟𝑖𝑔ℎ𝑡 ← 0𝑛+𝑚 ⊳ Arrays of length 𝑛 + 𝑚
4: 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥 ← 0𝑛, 𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥 ← 0𝑛 ⊳ Arrays of length 𝑛

// Initialization
5: for all intervals 𝑥 ∈ 𝐴 ∪ 𝐵 do
6: Insert 𝑥.left and 𝑥.right in 𝑇
7: end for

// Sort the endpoints in non-decreasing order
8: Sort𝑇

// Initialize the nleft[] and nright[] arrays
9: 𝑛𝑙 ← 0 ⊳ Number of left endpoints of 𝐵 seen so far
0: 𝑛𝑟 ← 0 ⊳ Number of right endpoints of 𝐵 seen so far
1: for all endpoints 𝑡𝑖 ∈ 𝑇 in non-decreasing order do
2: if 𝑡𝑖 is the left endpoint of an interval 𝑏 ∈ 𝐵 then
3: 𝑛𝑙 ← 𝑛𝑙 + 1
4: else if 𝑡𝑖 is the right endpoint of an interval 𝑏 ∈ 𝐵 then
5: 𝑛𝑟 ← 𝑛𝑟 + 1
6: end if
7: 𝑛𝑙𝑒𝑓𝑡[𝑖] ← 𝑛𝑙
8: 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] ← 𝑛𝑟
9: end for

// Build index arrays
0: for all endpoints 𝑡𝑖 ∈ 𝑇 in non-decreasing order do
1: if 𝑡𝑖 is the left endpoint of 𝑎𝑘 ∈ 𝐴 then
2: 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[𝑘] ← 𝑖
3: else if 𝑡𝑖 is the right endpoint of 𝑎𝑘 ∈ 𝐴 then
4: 𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[𝑘] ← 𝑖
5: end if
6: end for

// Compute final result
7: for all 𝑎𝑖 ∈ 𝐴 do
8: 𝑐(𝑖) ← 𝑛𝑙𝑒𝑓𝑡[𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[𝑖]] − 𝑛𝑟𝑖𝑔ℎ𝑡[𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[𝑖]]
9: end for

Fig. 2 2⃝ shows the content of the nleft and nright arrays at the end
of the loop 1.11; 𝑛𝑙𝑒𝑓𝑡[𝑖] and 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] are the number of left and
right endpoints in 𝐵, respectively, that appear in 𝑇 [0..𝑖]. Therefore,
𝑛𝑙𝑒𝑓𝑡[12] = 5 and 𝑛𝑟𝑖𝑔ℎ𝑡[12] = 3 since in 𝑇 [0..12] there are five
eft endpoints in 𝐵, namely, those of 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4, and three right
ndpoints in 𝐵, namely, those of 𝑏0, 𝑏1, 𝑏2. Note that one must always
ave 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] ≤ 𝑛𝑙𝑒𝑓𝑡[𝑖] since at any given point there cannot be
ore right endpoints than left endpoints of intervals in 𝐵. Fig. 2 3⃝

hows the values of 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥 and 𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥 computed at the end of the
oop 1.20. 𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[𝑘] is the position (index) of the right endpoint of
nterval 𝑎𝑘 ∈ 𝐴; similarly, 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[𝑘] is the position of the left endpoint
f 𝑎𝑘. We see that 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[1] = 5 and 𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[1] = 9, since the
eft and right endpoints of 𝑎1 occupy the slots 𝑇 [𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[1]] = 𝑇 [5]
nd 𝑇 [𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[1]] = 𝑇 [9] in the sorted array 𝑇 .

Algorithm 1 uses an array 𝑇 of length (𝑛 + 𝑚), nleft and nright
f length (𝑛 + 𝑚), and 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥 and 𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥 of length 𝑛. Therefore,
he space requirement is 𝛩(𝑛 + 𝑚). The execution time is dominated
y the time required to sort 𝑇 , which is 𝑂 ((𝑛 + 𝑚) log(𝑛 + 𝑚)) using
fficient comparison-based sorting,1. All other phases require linear
ime in either (𝑛 + 𝑚) (initialization of 𝑇 , loops 1.11, 1.20), or 𝑛
loop 1.27). Therefore, the total execution time of Algorithm 1 is
((𝑛 + 𝑚) log(𝑛 + 𝑚)).

1 Should the endpoints be integers, as assumed in bioinformatics applica-
ions, sorting could be done in linear time; however, for the sake of generality
e assume comparison-based sorting so that the proposed algorithm can be
sed with endpoints with real values.

Future Generation Computer Systems 159 (2024) 423–431M. Marzolla et al.
Fig. 2. Example of execution the intersection counting algorithm. 1⃝: 𝑛𝑙𝑒𝑓𝑡[𝑖] = 1 (resp. 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] = 1) if 𝑡𝑖 is the left (resp. right) endpoint of some interval in 𝐵. 2⃝ The left and
right arrays after application of the inclusive-scan operation. 3⃝ left_idx and right_idx point to the positions of the left and right endpoints of the intervals in 𝐴, so that Eq. (5)
holds. At the end, the number of intervals in 𝐵 that overlap with interval 𝑎𝑖 ∈ 𝐴 is 𝑛𝑙𝑒𝑓𝑡[𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[𝑖]] − 𝑛𝑟𝑖𝑔ℎ𝑡[𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[𝑖]].
Algorithm 1 is the most efficient known solution of the intersection
counting problem. We now illustrate how it can be parallelized on a
shared-memory architecture or GPU. In doing so, our goal is to make
the parallel version work-efficient, meaning that the total amount of
work performed by all execution units shall be equal to the work
performed by the serial version, namely, 𝑂 ((𝑛 + 𝑚) log(𝑛 + 𝑚)). As will
be shown below, this goal has been achieved up to an additional
overhead 𝑂(log log(𝑛 + 𝑚)) which is negligible in practice.

We observe that some of the steps are either embarrassingly parallel,
or rely on known parallel algorithms (e.g., sorting). Unfortunately, the
loop starting at line 1.11 cannot be parallelized due to loop-carried
dependencies: indeed, the loop body depends on the values of 𝑛𝑙𝑒𝑓𝑡 and
𝑛𝑟𝑖𝑔ℎ𝑡 that might be updated during previous iterations. However, it
turns out that the loop can be expressed as a prefix computation.

A general (inclusive) prefix computation takes as input an array
𝑥0,… , 𝑥𝑛−1 and an associative operator ⊕, and produces another array
𝑦0,… , 𝑦𝑛−1 such that 𝑦𝑖 = 𝑥0 ⊕ ⋯ ⊕ 𝑥𝑖. Prefix computations can be
parallelized efficiently [12].

Let us rewrite the loop 1.11 as follows:
for all endpoints 𝑡𝑖 ∈ 𝑇 in non-decreasing order do

if 𝑡𝑖 is the left endpoint of an interval 𝑏 ∈ 𝐵 then
𝑛𝑙𝑒𝑓𝑡[𝑖] ← 1

else if 𝑡𝑖 is the right endpoint of an interval 𝑏 ∈ 𝐵 then
𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] ← 1

end if
end for
for 𝑖 ← 1,… , 𝑛 − 1 do

𝑛𝑙𝑒𝑓𝑡[𝑖] ← 𝑛𝑙𝑒𝑓𝑡[𝑖 − 1] + 𝑛𝑙𝑒𝑓𝑡[𝑖]
𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] ← 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖 − 1] + 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖]

end for
The idea is to initialize 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡 as binary vectors where

𝑛𝑙𝑒𝑓𝑡[𝑖] = 1 (resp., 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] = 1) if and only if 𝑡𝑖 is the left (resp.,
right) endpoint of some interval in 𝐵. We assume that each element
in the list of endpoints 𝑇 also contains the unique identifier of the
interval it is part of, so this information can be obtained in constant
time. The result is illustrated by the arrays 1⃝ in Fig. 2. This step is
embarrassingly parallel, since the loop iterations are independent. The
second loop computes the prefix sums of 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡 so that, at
426
the end, 𝑛𝑙𝑒𝑓𝑡[𝑖] is the number of left endpoints of intervals in 𝐵 up to
and including 𝑡𝑖 (similarly for 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖]). This step can be realized using
a parallel prefix sum algorithm [12].

The Full Algorithm Algorithm 2 is the parallel version of the
intersection-counting algorithm 1. The main steps of the parallel algo-
rithm are the following:

• The initialization of the list of endpoints 𝑇 (line 2.5) can be
parallelized by implementing 𝑇 as an array of length 2(𝑛 + 𝑚).
The first 𝑛 elements are the left endpoints of the intervals in 𝐴,
followed by the 𝑛 right endpoints in 𝐴, followed by the 𝑚 left
endpoints in 𝐵, followed by the 𝑚 right endpoints in 𝐵. This
makes it possible to place each endpoint into a position in 𝑇
that is pre-determined, so no race conditions are possible. Each
element of 𝑇 is a tuple ⟨𝑥, 𝑠𝑖𝑑𝑒, 𝑠𝑒𝑡, 𝑘⟩ where 𝑥 is the position of
the endpoint, side denotes whether it is a left or right endpoint,
set is the name of the set it belongs to (either 𝐴 or 𝐵), and 𝑘
is the unique identifier (index) of the interval within the set the
endpoint belongs to. For example, the endpoints of 𝑎2 = [−3, 7]
are represented by the tuples ⟨−3, 𝑙𝑒𝑓 𝑡, 𝐴, 2⟩ and ⟨7, 𝑟𝑖𝑔ℎ𝑡, 𝐴, 2⟩.

• Sorting the array of endpoints by nondecreasing position (line 2.8)
requires a parallel sorting algorithms such as Parallel Radix
Sort [12], Parallel Merge Sort [13] or Parallel Quicksort [14,15].

• The initialization of the arrays nleft and nright (Eqs. (3) and (4))
is done in two separate steps as discussed above. The first step
involves an embarrassingly parallel loop (lines 2.9–2.15) that sets
𝑛𝑙𝑒𝑓𝑡[𝑖] = 1 (resp. 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] = 1) iff 𝑇 [𝑖] is a left (resp. right)
endpoint of some interval 𝑏 ∈ 𝐵. The second step consists of
two parallel prefix computations, where the call Parallel-Prefix-
Sum𝑣 replaces the input array 𝑣 with the array 𝑣′ of prefix sums,
i.e., 𝑣′[𝑖] ∶= ∑𝑖

𝑘=0 𝑣[𝑘].
• Building the index arrays left_idx and right_idx involves an embar-

rassingly parallel loop (line 2.18). Note that the tests in lines 2.19
and 2.21 can be done in constant time since the tuples in 𝑇
already contain the relevant information.

• Finally, the computation of the result 𝑐(𝑖), 𝑖 = 0,… , 𝑛 − 1 is again

embarrassingly parallel.

Future Generation Computer Systems 159 (2024) 423–431M. Marzolla et al.

1
1
1
1
1
1
1
1

1
1
2
2

2
2

2

o
o
W
w

Algorithm 2 Parallel-Intersection-Counting(𝐴,𝐵)
1: 𝑛 ← |𝐴|, 𝑚 ← |𝐵|
2: 𝑇 ← ∅
3: 𝑛𝑙𝑒𝑓𝑡 ← 0𝑛+𝑚, 𝑛𝑟𝑖𝑔ℎ𝑡 ← 0𝑛+𝑚

4: 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥 ← 0𝑛, 𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥 ← 0𝑛

// Initialization
5: for all intervals 𝑥 ∈ 𝐴 ∪ 𝐵 in parallel do
6: Insert 𝑥.left and 𝑥.right in 𝑇
7: end for

// Sort the endpoints in non-decreasing order
8: Parallel-Sort𝑇

// Initialize the nleft[] and nright[] arrays
9: for all endpoints 𝑡𝑖 ∈ 𝑇 in parallel do
0: if 𝑡𝑖 is the left endpoint of an interval 𝑏 ∈ 𝐵 then
1: 𝑛𝑙𝑒𝑓𝑡[𝑖] ← 1
2: else if 𝑡𝑖 is the right endpoint of an interval 𝑏 ∈ 𝐵 then
3: 𝑛𝑟𝑖𝑔ℎ𝑡[𝑖] ← 1
4: end if
5: end for
6: Parallel-Prefix-Sumnleft
7: Parallel-Prefix-Sumnright

// Build index arrays
8: for all endpoints 𝑡𝑖 ∈ 𝑇 in parallel do
9: if 𝑡𝑖 is the left endpoint of 𝑎𝑘 ∈ 𝐴 then
0: 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[𝑘] ← 𝑖
1: else if 𝑡𝑖 is the right endpoint of 𝑎𝑘 ∈ 𝐴 then

22: 𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[𝑘] ← 𝑖
3: end if
4: end for

// Compute final result
5: for all 𝑎𝑖 ∈ 𝐴 in parallel do

26: 𝑐(𝑖) ← 𝑛𝑙𝑒𝑓𝑡[𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥[𝑖]] − 𝑛𝑟𝑖𝑔ℎ𝑡[𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥[𝑖]]
27: end for

Analysis The computational cost of Algorithm 2 depends on the cost
f sorting and prefix computations. Let 𝑁 = 𝑛+𝑚 be the sum of the sizes
f 𝐴 and 𝐵; then, for the CRCW-PRAM (Concurrent-Read, Concurrent-
rite, Parallel Random Access Machine) model [16] with 𝑝 processors
e have:

• The initialization of 𝑇 (line 2.5) is embarrassingly parallel and
requires time 𝑂(𝑁∕𝑝).

• Sorting 𝑇 (line 2.8) requires time 𝑂
(

𝑁 log𝑁
𝑝 + log log𝑁

)

using
Parallel Merge Sort [13].

• Prefix computations of 𝑛𝑙𝑒𝑓𝑡 and 𝑛𝑟𝑖𝑔ℎ𝑡 (lines 2.16, 2.17) require
time 𝑂(𝑁∕𝑝+log 𝑝) using 𝑝 processors [12], which is optimal when
𝑁 > 𝑝 log 𝑝.

• The initialization of 𝑙𝑒𝑓 𝑡_𝑖𝑑𝑥 and 𝑟𝑖𝑔ℎ𝑡_𝑖𝑑𝑥 (line 2.18) is embar-
rassingly parallel and requires time 𝑂(𝑁∕𝑝).

• The computation of 𝑐(𝑖) (line 2.25) is embarrassingly parallel and
requires time 𝑂(𝑁∕𝑝).

Algorithm 2 has the desirable property that, when executed serially
(i.e., with 𝑝 = 1 processors) it has the same computational complexity
of the serial algorithm 1 since they perform the same computations.
The algorithm is only 𝑂(log log𝑁) away from being work-efficient; this
small overhead comes from the parallel sorting algorithm.

4. Implementation and experimental evaluation

We implemented the parallel intersection-counting algorithm in
C++ using the Thrust library [17]. Thrust provides efficient parallel
implementations of several high-level algorithms (copy, sort, merge,
427
Fig. 3. Wall-clock time as a function of the total number of intervals 𝑁 , log scale,
synthetic workload, lower is better; best viewed in color.

prefix computations, reductions, and others). Using template metapro-
gramming, applications using Thrust can be compiled with minimal
modifications for serial or parallel execution, the latter using either
OpenMP or CUDA. OpenMP [18] is an open interface for shared-
memory parallelism based on the C, C++ and FORTRAN programming
languages. OpenMP relies on user-supplied source code annotations
based on standard preprocessor directive to generate parallel code
mainly for loops, although general task parallelism is also supported.
CUDA [19] (Compute Unified Device Architecture) is NVidia’s propri-
etary technology for general-purpose GPU programming; it leverages
a special C/C++ compiler that interprets non-standard language ex-
tensions, plus library functions that are tailored to the data-parallel
programming paradigm of supported GPUs.

Thrust is appealing because it allows programs to be written in
an architecture-agnostic way. Our implementation consists of a single
source file that can be compiled for sequential execution, parallel
execution on multi-core CPUs, and parallel execution on CUDA-capable
devices. This enhances code portability and maintainability, since a
single code base is shared across different implementations. Our source
program does not use conditional preprocessor directives (#ifdef’s),
apart from a few CUDA keywords that must be enabled only when
producing CUDA code.

We tested the implementations on three machines whose hardware
configurations are listed in Table 1. All machines are running the
Ubuntu/Linux operating system; we used the GCC compiler provided
by the OS with the -O2 -fopenmp flags to enable optimization and
OpenMP support; the C compiler and CUDA SDK versions are reported
in the table. We used the latest version of the Thrust library available
at the time of writing.

Some of our machines have processors that use Intel’s propri-
etary HyperThreading (HT) technology [20]. HyperThreading provides
two logical processors for each physical core. The two logical processors
share part of the hardware resources; studies from Intel and others have
shown that in typical applications HT contributes a performance boost
between 16–28% [20].

Fig. 3 shows the wall-clock time of all realizations of our parallel al-
gorithm (serial, OpenMP, and CUDA) on all machines under a synthetic
workload. We generated 𝑁 random intervals, 𝑁 ∈ [1 × 106, 80 × 106],
half of which are assigned to set 𝐴 and the other half to 𝐵 (i.e., |𝐴| =
|𝐵| = 𝑁∕2). The performance of our algorithm does not depend on the
number of intersections, so no special care has been taken to constrain
the number of overlaps. The OpenMP versions have been executed by
setting the number of threads equal to the number of (virtual) CPU
cores. All data points are the average of five independent executions.

Note that, since the sequential realization of the parallel algorithm 2

Future Generation Computer Systems 159 (2024) 423–431M. Marzolla et al.

o
n
p
M
(

d
p

𝑆

w
c
𝑆
p
i

m
M
i
M
d
t
e
L

Table 1
Hardware used for the experimental evaluation.

Machine A Machine B Machine C

CPU Model i7-9800X Xeon E5–2603 i7-5820K
Clock rate (GHz) 3.80 GHz 1.70 GHz 3.30 GHz
Cores (physical/virtual) 8/16 12 6/12
RAM 32 GB 64 GB 64 GB
L2 cache (per core) 8 MB 3 MB 1.5 MB
L3 cache 16.5 MB 30 MB 15 MB
Operating System Ubuntu/Linux 22.04 Ubuntu/Linux 20.04 Ubuntu/Linux 22.04
GCC version 11.4.0 9.4.0 11.4.0

GPU Model Quadro RTX 4000 GeForce GTX 1070 GeForce GTX TITAN X
CUDA capability 7.5 6.1 5.2
CUDA cores 2304 1920 3072
GPU clock rate 1.54 GHz 1.80 GHz 1.08 GHz
Global memory 7965 MB 8114 MB 12206 MB
Memory clock rate 6.5 GHz 4.0 GHz 3.5 GHz
CUDA SDK version 12.3 12.2 12.3
4
𝛼
n
t
o
t
p
b

t
t
r
T

has the same complexity of the state-of-the-art solution, in the following
we are comparing the parallel programs with the fastest serial solution
known.

Looking at the serial execution time, we observe that Machines A
and C are more or less equivalent, while Machine B is considerably
slower. The explanation is that both machines have approximately
the same clock rate, which is considerably higher than that of Ma-
chine B. The presence of a larger Level 2 cache on Machine A does
not appear to produce a significant reduction of the wall-clock-time,
which is expected since Algorithm 2 exhibits a linear memory access
pattern without significant data reuse. The same is observed on the
Thrust/OpenMP implementations: Machines A is slightly faster than C
since it has a higher number of cores, while Machine B lags behind due
to the lower clock rate.

Finally, the fastest Thrust/CUDA implementation is the one running
on Machine A since it runs on a more recent GPU; note that the clock
rate of Quadro RTX 4000 is lower than the GTX 1070, but Algorithm 2
is memory-bound so it benefits from the higher memory clock rate of
the Quadro GPU.

On each machine the throughput improves by about an order of
magnitude by going from OpenMP to CUDA. A lower speedup is
observed when moving from serial to OpenMP implementations. The
results show that CUDA outperform CPU-based implementations by
a significant margin, the only exception being when the number 𝑁
f intervals is low, due to the overhead of GPU initialization. As the
umber of intervals increases, the performance gap between the serial,
arallel, and CUDA versions widens. Indeed, the slowest GPU (on
achine B) is about one order of magnitude faster than the faster CPU

Machine A).
We now discuss the scalability of the OpenMP implementation,

efined in term of the relative speedup. The relative speedup 𝑆(𝑝) of a
arallel program executed on 𝑝 processors is defined as:

(𝑝) =
𝑇parallel(1)
𝑇parallel(𝑝)

(7)

here 𝑇parallel(𝑝) is the wall-clock time of the parallel program exe-
uted on 𝑝 processors. The relative speedup satisfies the relation 0 ≤
(𝑝) ≤ 𝑝, 𝑆(𝑝) = 𝑝 being the case of perfect scalability. However, in
ractice 𝑆(𝑝) < 𝑝 due to intrinsically serial portions or parallelization
nefficiencies.

Fig. 4 shows the scalability of the Thrust/OpenMP versions. The
aximum speedup is between 2.5 and 4, depending on the hardware.
achine A exhibits a slightly better scalability, which is expected since

t has the highest CPU clock rate. A sharp drop in the speedup for
achine A is observed between 𝑝 = 8 and 𝑝 = 9 processors, and is

ue to the HT technology. Indeed, Machine A has eight physical cores
hat are truly independent: virtual cores mapped onto the same physical
xecution unit share resources and are therefore not independent. The
inux scheduler is HT-aware and assigns tasks to separate physical
428

e

Fig. 4. Scalability of the Thrust/OpenMP implementation; each data point is the
average of five independent runs. Synthetic workload (𝑁 = 50 × 106 intervals), higher
is better; best viewed in color.

cores as long as possible; when the number of tasks increases, virtual
cores are used. When two tasks are assigned to two virtual cores
from the same physical unit, the speedup is severely degraded due to
hardware contention.

From Fig. 4 we also observe that the speedup remains below the
theoretical maximum 𝑝 (dashed line) when the number of processors
increases. There are three explanations for this: (i) the presence of serial
bottlenecks (e.g., contention, intrinsically serial portions of the code)
and algorithmic limitations; (ii) OpenMP overheads; and (iii) limited
memory bandwidth. Amdahl’s Law [21] states that, under some sim-
plifying assumptions, the maximum achievable speedup is 1∕𝛼 where 𝛼
is the fraction of time spent in parts of the code that do not benefit
from additional computational resources. By solving 1∕𝛼 = 4 for 𝛼,

being the approximate maximum speedup, we get that a fraction
= 0.25 of the wall-clock time is spent in parts of the code that do

ot benefit from additional computational resources. We also observe
hat Algorithm 2 has low arithmetic intensity, defined as the ratio
f the number of arithmetic operations and the total amount of data
ransferred to/from memory. The roofline performance model [22]
redicts that applications with low arithmetic intensity are bounded
y the available DRAM bandwidth rather than processing power.

Further analysis reveals that a significant portion of the execution
ime of the Thrust/OpenMP version is spent sorting 𝑇 , which raises
he question whether a more efficient parallel sorting algorithm would
educe the wall-clock time. The GCC compiler ships with a Standard
emplate Library (STL) for the C++ language that conforms to the
xtensions for parallelism [23], and provides parallel implementations

Future Generation Computer Systems 159 (2024) 423–431M. Marzolla et al.
Table 2
Wall-clock times on real datasets, lower is better. Speedups are relative to the sequential program. For a graphical representation, see Fig. 6.

Dataset Program Machine A Machine B Machine C

𝑛, 𝑚 Time (s) Speedup Time (s) Speedup Time (s) Speedup

Chr21 Thrust/Sequential 0.87 1.00× 1.92 1.00× 0.93 1.00×
𝑛 = 509, 772 Thrust/OpenMP 0.38 2.26× 0.76 2.51× 0.42 2.20×
𝑚 = 4, 165, 891 Parallel STL 0.20 4.35× 0.43 4, 47× 0.19 4.89×

Thrust/CUDA 0.16 5.53× 0.40 4.71× 0.20 4.64×

Exome Thrust/Sequential 47.27 1.00× 100.28 1.00× 46.45 1.00×
𝑛 = 25, 712, 924 Thrust/OpenMP 17.62 2.68× 36.71 2.73× 19.54 2.38×
𝑚 = 192, 173, 832 Parallel STL 8.69 4.87× 20.34 4.93× 9.07 5.12×

Thrust/CUDA 1.75 27.01× 5.47 18.33× 3.89 11.94×
Fig. 5. Structure and derivation of the ‘‘Exome’’ and ‘‘Chr21’’ datasets.

of various algorithms (sorting, prefix computation) that are functionally
equivalent to their Thrust counterparts. To investigate the overhead
incurred by Thrust/OpenMP we realized a separate implementation
that relies on the STL only, with a few explicit OpenMP directive to
parallelize some loops that cannot be handled using STL constructs.
Note that the parallel STL relies on Intel’s Threading Building Blocks
(TBB)2, so there is no simple way to constrain the number of execution
units that are used.

We study the performance of the parallel algorithm on actual human
genetic data (Fig. 5). To create the first interval set, we downloaded the
aligned reads in BAM format from a publicly available whole-exome-
sequencing of the HG00258 individual performed in the 1000 Genomes
Project [24], which are already mapped to a unique region in the hg19
human reference genome. For each read, we extracted its start and end
genetic coordinates, yielding a total of 192,173,832 intervals.

We count the intersection of these intervals with a second set of
intervals, which was derived from the known coding genomic regions
in the hg19 reference genome, downloaded from the NCBI website.
We split these 152,502 regions into 1-base-sized intervals, for a total
of 25,712,924 intervals. The number of aligned reads overlapping
each 1-base interval is the per-base coverage on the coding regions, a
commonly used statistics in genomic analyses for quality control checks
and other purposes. These two sets are the first dataset, which we
call the ‘‘Exome’’ dataset. A second smaller dataset called ‘‘Chr21’’ was
obtained as a subset of the ‘‘Exome’’ dataset by taking only the intervals
on chromosome 21, comprising 4,165,871 alignments and 506,772
1-base intervals.

Table 2 shows the execution times of all instantiations of the parallel
algorithm 2 on the two datasets; the data is provided graphically
in Fig. 6 for better understanding. The results confirm our previous
findings: Thrust/OpenMP implementations are from 2 to 3 times faster
than the sequential program, while the CUDA implementations provide
a significant speedup (from 11× to 27× depending on the hardware) on
the ‘‘Exome’’ dataset, which drops to 3× – 5× on the ‘‘Chr21’’ dataset.

2 https://github.com/oneapi-src/oneTBB
429
Fig. 6. Wall-clock times on real datasets, lower is better. For the raw data, see Table 2.

The speedup achieved by Thrust/OpenMP is about the same across
all machines, despite the fact that the hardware spans different gen-
erations. This is expected, since the speedup is the ratio of the se-
rial execution time over the parallel execution time, and is therefore
independent of the CPU clock frequency. Although the speedup of
Thrust/OpenMP does in principle depend on the number of cores,
which is different across the test machines, Amdahl’s law constrains
the maximum speedup in the same way on all machines as we already
observed in Fig. 4. Interestingly, the implementation based on the
parallel STL is about twice as fast as Thrust/OpenMP. Again, this
improvement is about the same across all machines.

The speedup of Thrust/CUDA, on the other hand, varies consider-
ably on the larger Exome dataset from 11.94× of Machine C to 18.33×
of Machine B, up to 27.01× of Machine A. Care should be taken in
understanding these results, since these values depend on the CPU/GPU
combination which varies across the test hardware. It is therefore
more appropriate to consider the wall-clock time, according which

Machine A (1.75 s) is better than Machine C (3.89 s), which in turn

https://github.com/oneapi-src/oneTBB

Future Generation Computer Systems 159 (2024) 423–431M. Marzolla et al.

F
a
T
M
l

5

n
T
C
T
d
a

a
s
r
o
v
r

t
s
t
l
c
p
t

F

d
C
(
f
i
F
2

C

t
i
c
a
C

D

t
M
d
w
s
t
p
r

is better than Machine B (5.47 s). This is the same behavior observed in
ig. 3 and can be explained by observing that the application has low
rithmetic intensity and is therefore limited by the memory bandwidth.
he GPU on Machine A has the highest memory clock rate, while
achine C has significantly more CUDA cores than B, with only slightly

ess memory clock rate.

. Conclusions

In this paper we presented a parallel algorithm for counting the
umber of intersections between two sets of one-dimensional intervals.
he algorithm has been implemented on shared-memory processors and
UDA-capable GPUs using the Thrust parallel programming library.
hrust allows sequential, OpenMP, and CUDA executables to be pro-
uced from the same source code, therefore enabling users to take
dvantage of CPU or GPU parallelism.

We tested the program on different hardware platforms of different
ges using real datasets from the biocomputing domain, as well as on
ynthetic data. The Thrust/OpenMP version yields a speedup in the
ange 2×–4× with respect to the serial program, depending on the size
f the dataset. The GPU implementation improves upon the OpenMP
ersion, since it provides a speedup of up to 20× on large datasets with
espect to the serial implementation.

The performance of Thrust/OpenMP on this specific application
urns out to be less than what can be achieved by the parallel STL that
hips with the GNU C Compiler, although the latter is not portable to
he GPU. This suggests that either the current version of the Thrust
ibrary has room for improvements, or that code portability to multi-
ore CPUs and GPUs comes at a price. More research in the area of
arallel programming libraries for performance portability is required
o investigate these issues.

unding

Moreno Marzolla was partially supported by the Istituto Nazionale
i Alta Matematica ‘‘Francesco Severi’’ – Gruppo Nazionale per il
alcolo Scientifico (INdAM-GNCS), by the EuroHPC EU Regale project
grant number 956560) and by the ICSC National Research Centre
or High Performance Computing, Big Data and Quantum Comput-
ng within the NextGenerationEU program. Giovanni Birolo and Piero
ariselli were partially supported by the European Union’s Horizon
020 Brainteaser Project (grant number 101017598).

RediT authorship contribution statement

Moreno Marzolla: Conceptualization, Formal analysis, Investiga-
ion, Methodology, Resources, Software, Writing – original draft, Writ-
ng – review & editing. Giovanni Birolo: Conceptualization, Data
uration, Writing – review & editing. Gabriele D’Angelo: Conceptu-
lization, Methodology, Writing – review & editing. Piero Fariselli:
onceptualization, Resources, Writing – review & editing.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
oreno Marzolla reports financial support was provided by Ministero

ell’ Universite della Ricerca. Piero Fariselli reports financial support
as provided by European Union. Giovanni Birolo reports financial

upport was provided by European Union. If there are other authors,
hey declare that they have no known competing financial interests or
ersonal relationships that could have appeared to influence the work
eported in this paper.
430
Data availability

The source code of the algorithm described in this paper and the
datasets used in the performance evaluation are freely available at
https://github.com/mmarzolla/parallel-intersections.

References

[1] J.E. Goodman, J. O’Rourke, C.D. Tóth (Eds.), Handbook of Discrete and
Computational Geometry, third ed., CRC Press, 2018.

[2] M. Marzolla, G. D’Angelo, Parallel data distribution management on shared-
memory multiprocessors, ACM Trans. Model. Comput. Simul. 30 (1) (2020)
http://dx.doi.org/10.1145/3369759.

[3] R.M. Layer, K. Skadron, G. Robins, I.M. Hall, A.R. Quinlan, Binary Interval
Search: a scalable algorithm for counting interval intersections, Bioinformatics
29 (2013) 1–7, http://dx.doi.org/10.1093/bioinformatics/bts652.

[4] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26
(11) (1983) 832–843, http://dx.doi.org/10.1145/182.358434.

[5] H. Six, D. Wood, The rectangle intersection problem revisited, BIT 20 (1980)
426–433, http://dx.doi.org/10.1007/BF01933636.

[6] M.I. Shamos, D. Hoey, Geometric intersection problems, in: 17th Annual Sym-
posium on Foundations of Computer Science, SFCS 1976, 1976, pp. 208–215,
http://dx.doi.org/10.1109/SFCS.1976.16.

[7] S. Neph, M.S. Kuehn, A.P. Reynolds, E. Haugen, R.E. Thurman, A.K. Johnson,
E. Rynes, M.T. Maurano, J. Vierstra, S. Thomas, R. Sandstrom, R. Humbert,
J.A. Stamatoyannopoulos, BEDOPS: high-performance genomic feature opera-
tions, Bioinformatics 28 (14) (2012) 1919–1920, http://dx.doi.org/10.1093/
bioinformatics/bts277.

[8] H. Li, J. Rong, Bedtk: finding interval overlap with implicit interval tree, Bioin-
formatics 37 (9) (2020) 1315–1316, http://dx.doi.org/10.1093/bioinformatics/
btaa827.

[9] B. Otlu, T. Can, JOA: Joint overlap analysis of multiple genomic interval sets,
BMC Bioinformatics 20 (121) (2019) http://dx.doi.org/10.1186/s12859-019-
2698-4.

[10] C. Mao, A. Eran, Y. Luo, Efficient genomic interval queries using augmented
range trees, Sci. Rep. 9 (2019) http://dx.doi.org/10.1038/s41598-019-41451-3.

[11] J.F. Allen, Maintaining knowledge about temporal intervals, Commun. ACM 26
(11) (1983) 832–843, http://dx.doi.org/10.1145/182.358434.

[12] G. Blelloch, Scans as primitive parallel operations, IEEE Trans. Comput. 38 (11)
(1989) 1526–1538, http://dx.doi.org/10.1109/12.42122.

[13] R. Cole, Parallel merge sort, SIAM J. Comput. 17 (4) (1988) 770–785, http:
//dx.doi.org/10.1137/0217049.

[14] M. Wheat, D.J. Evans, An efficient parallel sorting algorithm for shared memory
multiprocessors, Parallel Comput. 18 (1) (1992) 91–102, http://dx.doi.org/10.
1016/0167-8191(92)90114-M.

[15] P. Tsigas, Y. Zhang, A simple, fast parallel implementation of quicksort and its
performance evaluation on SUN enterprise 10000, in: 11th Euromicro Workshop
on Parallel, Distributed and Network-Based Processing (PDP 2003), 5-7 February
2003, Genova, Italy, IEEE Computer Society, 2003, p. 372, http://dx.doi.org/10.
1109/EMPDP.2003.1183613.

[16] J.C. Wyllie, The Complexity of Parallel Computations (Ph.D. thesis), Cornell
University, USA, 1979, URL https://hdl.handle.net/1813/7502. AAI8004008.

[17] N. Bell, J. Hoberock, Chapter 26 - Thrust: A productivity-oriented library for
CUDA, in: W. mei W. Hwu (Ed.), GPU Computing Gems Jade Edition, in:
Applications of GPU Computing Series, Morgan Kaufmann, Boston, 2012, pp.
359–371, http://dx.doi.org/10.1016/B978-0-12-385963-1.00026-5.

[18] L. Dagum, R. Menon, OpenMP: An industry-standard API for shared-memory
programming, IEEE Comput. Sci. Eng. 5 (1998) 46–55, http://dx.doi.org/10.
1109/99.660313.

[19] NVidia CUDA home page, 2022, URL https://developer.nvidia.com/cuda-zone.
(Accessed 02 October 2022).

[20] D.T. Marr, F. Binns, D.L. Hill, G. Hinton, D.A. Koufaty, A.J. Miller, M. Upton,
Hyper-threading technology architecture and microarchitecture, Intel Technol. J.
6 (1) (2002).

[21] G.M. Amdahl, Validity of the single processor approach to achieving large
scale computing capabilities, in: Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, in: AFIPS ’67 (Spring), Association for Computing
Machinery, New York, NY, USA, 1967, pp. 483–485, http://dx.doi.org/10.1145/
1465482.1465560.

[22] S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual perfor-
mance model for multicore architectures, Commun. ACM 52 (4) (2009) 65–76,
http://dx.doi.org/10.1145/1498765.1498785.

[23] Programming languages – technical specification for C++ extensions for
parallelism, 2015, ISO/IEC TS 19570:2015.

[24] The 1000 Genomes Project Consortium, A global reference for human ge-
netic variation, Nature 526 (7571) (2015) 68–74, http://dx.doi.org/10.1038/
nature15393.

https://github.com/mmarzolla/parallel-intersections
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb1
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb1
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb1
http://dx.doi.org/10.1145/3369759
http://dx.doi.org/10.1093/bioinformatics/bts652
http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1007/BF01933636
http://dx.doi.org/10.1109/SFCS.1976.16
http://dx.doi.org/10.1093/bioinformatics/bts277
http://dx.doi.org/10.1093/bioinformatics/bts277
http://dx.doi.org/10.1093/bioinformatics/bts277
http://dx.doi.org/10.1093/bioinformatics/btaa827
http://dx.doi.org/10.1093/bioinformatics/btaa827
http://dx.doi.org/10.1093/bioinformatics/btaa827
http://dx.doi.org/10.1186/s12859-019-2698-4
http://dx.doi.org/10.1186/s12859-019-2698-4
http://dx.doi.org/10.1186/s12859-019-2698-4
http://dx.doi.org/10.1038/s41598-019-41451-3
http://dx.doi.org/10.1145/182.358434
http://dx.doi.org/10.1109/12.42122
http://dx.doi.org/10.1137/0217049
http://dx.doi.org/10.1137/0217049
http://dx.doi.org/10.1137/0217049
http://dx.doi.org/10.1016/0167-8191(92)90114-M
http://dx.doi.org/10.1016/0167-8191(92)90114-M
http://dx.doi.org/10.1016/0167-8191(92)90114-M
http://dx.doi.org/10.1109/EMPDP.2003.1183613
http://dx.doi.org/10.1109/EMPDP.2003.1183613
http://dx.doi.org/10.1109/EMPDP.2003.1183613
https://hdl.handle.net/1813/7502
http://dx.doi.org/10.1016/B978-0-12-385963-1.00026-5
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/99.660313
https://developer.nvidia.com/cuda-zone
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb20
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb20
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb20
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb20
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb20
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1465482.1465560
http://dx.doi.org/10.1145/1498765.1498785
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb23
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb23
http://refhub.elsevier.com/S0167-739X(24)00272-3/sb23
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.1038/nature15393

Future Generation Computer Systems 159 (2024) 423–431M. Marzolla et al.
Moreno Marzolla received the Ph.D. degree in computer
science from the Università Ca’ Foscari Venezia, Italy, in
2004. From 2004 to 2005, he was a Postdoctoral Researcher
with Università Ca’ Foscari di Venezia. From 2005 to 2009,
he was a Research Engineer with the Italian National
Institute for Nuclear Physics (INFN), supported by several
EU-funded projects in the area of grid and cloud computing.
In 2009, he joined the Department of Computer Science and
Engineering, University of Bologna, where he is currently
an Associate Professor of computer science. His research
interests include parallel algorithms, distributed systems,
performance modeling and analysis. He served as the Co-
Chair for the Production Grids Infrastructure (PGI) Working
Group, Open Grid Forum.
431
Giovanni Birolo is a staff scientist at the Department of Medical Sciences of the
University of Torino, Italy. His research interests are in bioinformatics, machine learning
and biomedical data analysis.

Gabriele D’Angelo received the Laurea (summa cum laude) and Ph. D. degrees in
computer science from the University of Bologna, Italy, in 2001 and 2005, respectively.
He is currently an Assistant Professor with the Department of Computer Science
and Engineering, University of Bologna. His research interests include parallel and
distributed simulation, distributed systems, and cybersecurity. Since 2011, he is in
the editorial board of the Simulation Modelling Practice and Theory (SIMPAT) journal
published by Elsevier.

Piero Fariselli is Full Professor at the Department of Medical Sciences of the University
of Torino, Italy. His research interests include bioinformatics, machine learning,
software development and modeling of biological systems.

	Parallel intersection counting on shared-memory multiprocessors and GPUs
	Introduction
	Related works
	Parallel intersection counting
	Implementation and Experimental Evaluation
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

