
Interactions between damaged hair keratin and juglone as a possible restoring agent: a vibrational and scanning electron microscopy study

Michele Di Foggia 1, Paola Taddei 1,*, Carla Boga 2, Benedetta Nocentini 3 and Gabriele Micheletti 2

- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum Università di Bologna, via Irnerio 48, 40126 Bologna, Italy; paola.taddei@unibo.it, michele.difoggia.2@unibo.it
- Department of Industrial Chemistry 'Toso Montanari', Alma Mater Studiorum Università di Bologna, via Piero Gobetti 85, 40129 Bologna, Italy; carla.boga@unibo.it, gabriele.micheletti3@unibo.it
- ³ Kemon S.p.A., Via Enrico Mattei 35, 06016 San Giustino (Perugia), Italy; Benedetta.nocentini@gmail.com
- * Correspondence: paola.taddei@unibo.it; Tel.: +39 051 2094280

Figure S1. IR spectra of brown hair lock before (black line) and after the treatment with aqueous KOH (pH 9) for 5 minutes (blue line) in the 3500-2800 and 1750-950 cm $^{-1}$ spectral ranges. The red line represents the difference spectrum. Abbreviations: β: β-sheet structure; Ser: Serine.

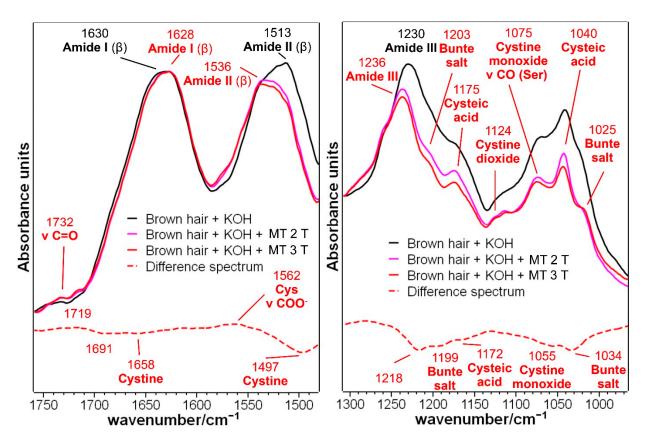


Figure S2. IR spectra of brown hair lock after the treatment with aqueous KOH (pH 9) for 5 minutes (black line) and the following reduction with methyl thioglycolate (MT) for two and three times (2 T and 3 T, magenta and red lines, respectively) in the 1760-1470 and 1310-950 cm⁻¹ spectral ranges. The difference spectrum (red dashed line) between the sample treated three times with MT and the control (KOH-treated brown hair) better shows the differences induced by the reducing treatment. Spectra are normalized to the Amide I band. Abbreviations: β: β-sheet structure; Ser: Serine.

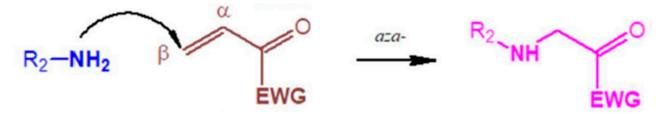


Figure S3. Scheme of the Michael addition reaction between the amino end of lysine and juglone (Chu et al., 2021).

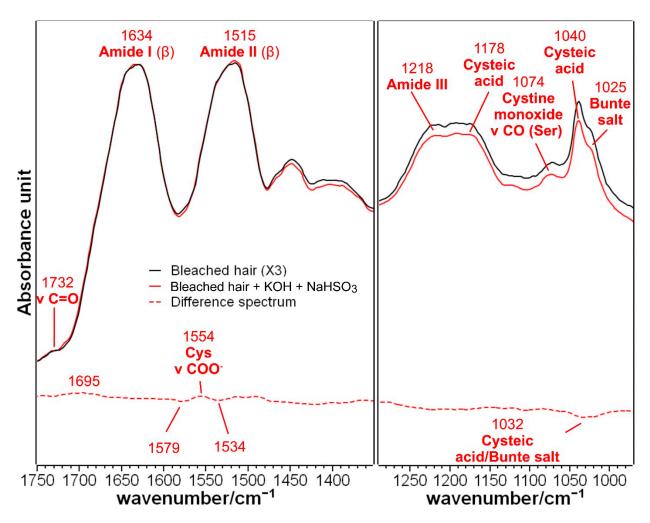
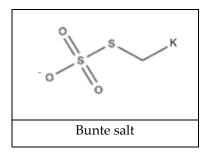


Figure S4. IR spectra of brown hair lock bleached three times (black line) and after an additional KOH + NaHSO3 treatment to simulate hair straightening (red line) in the 1750-1360 and 1300-950 cm $^{-1}$ spectral ranges. The difference spectrum (red dashed line) better shows the differences induced by the reducing treatment. Spectra are normalized to the Amide I band. Abbreviations: β : β -sheet structure; Ser: Serine.


Table S1. Assignments of the main IR bands of Juglone, N-acetyl-L-Cysteine and their adducts. Interpretation of vibrations: v = stretching, $\delta = \text{bending}$, ar = aromatic ring.

Band assignment	Band position/cm ⁻¹			
· ·	JUGLONE N-ACETYL-L-CYSTEINE ADDUCTS			
VNH free [27,29]		3374		
	3070			
VCH ar [19]	3060			
	3042			
vch [27,29]		2074	2960	
		2964	2917	
		2898	2849	
VSH H-bond [27,29]		2546		
VOH H-bond [29]		2430		
VC=O carboxylic [29]		1907		
VC=O carboxylic [29]			1732	
VC=O weak H-bond [27,29]		1713		
νc=0 free [19]	1662			
Amide I [29]			1648	
VC=0 quinone [19]			1620	
VC=O H-bond [19]	1638		<u> </u>	
	1591			
vc=c ar [25,32]	1572		1575	
Amide I [29]		1575		
			1554	
Amide II [29]		1530	1522	
νc=c [18]	1485		1522	
		1455	1452	
δс-н [20,27,31]	1448			
		1428	1418	
δс-н [20,27,31]; νсоо- [31]		1411	1396	
δс-н [22,27,34]	1363	1371	1367	
δо-н [24]	1334			
		1301		
δс-н [27]		1275		
νс-он [19]	1287			
Amide III [29]			1289	
		1252		
Amide III [27,29]		1226	1248	
δс-н [31]				
vc-o [34]			1248	
δс-он [19]	1220			
δс-н [31]			1226	
vc-o [27]		1197		
δс-н [31]			1167	
vc-c [25]	1153			
ν _{N-Cα} + ν _{C-O} [27]		1126		
δc-H ar [32]	1099			
νc-c [31]			=	
δc-H ar [32]			1097	
δc-H ar [32]	1078			

δс-н [31]			1042
δс-н [27]		1007	
δс-он [31]		1036	
δс-ѕн [27]		1008	
δс-н [27]		005	
vc-c [31]		987	
δс-н [25,32]			961
[27]		940	
vc-c [27]		902	
	936		855
δc-H ar [26,32]	857		826
	834		020
δс-ѕн [27]		793	
δс-н [27]		7/7	
δс-ѕн [31]		767	
δc-H ar [32]	744		
vc-s [34]			744
δc-H ar [34]			744
δ=С-Н [19]	698		
δc-n [31]		696	
δс-н [32]			694
vc-s [34]		675	669
δc-s [27,31]		649	653
δc-c ar [19]	626		
Amide VI [28]		559	
Amide IV [28]		538	538
δς-00- [28]		492	
δc-c ar [19]	461		458
ring torsion [22]	420		430

 Table S2. Chemical structure of sulfur compounds discussed in the main text.

K S S K	K S S K	K S S K	O
Cystine	Cystine monoxide	Cystine dioxide	Cysteic acid as
			sulphonate salt

