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The use of subdivision schemes in applied and real-world contexts requires the development 
of conceptually simple algorithms that can be converted into fast and efficient implementation 
procedures. In the domain of interpolatory subdivision schemes, there is a demand for developing 
an algorithm capable of (i) reproducing all types of conic sections whenever the input data 
(in our case point-normal pairs) are arbitrarily sampled from them, (ii) generating a visually 
pleasing limit curve without creating unwanted oscillations, and (iii) having the potential to be 
naturally and easily extended to the bivariate case. In this paper we focus on the construction of 
an interpolatory subdivision scheme that meets all these conditions simultaneously. At the centre

of our construction lies a conic fitting algorithm that requires as few as four point-normal pairs 
for finding new edge points (and associated normals) in a subdivision step. Several numerical 
results are included to showcase the validity of our algorithm.

1. Introduction

Subdivision schemes are efficient numerical methods for rapidly generating smooth curves/surfaces as the limit of an iterative 
process that starts from a given control polygon/mesh and recursively updates it by applying simple refinement rules. We refer the 
interested reader to Peters and Reif (2008); Sabin (2010); Warren and Weimer (2001) for a comprehensive treatment of univariate 
and bivariate subdivision schemes.

During the last thirty years, interpolatory subdivision schemes, i.e., schemes whose limit curves/surfaces interpolate the vertices 
of the input polygon/mesh, have been the subject of extensive research. This is due to the fact that many applications require the 
final shape to not merely approximate the input data, but exactly match them. However, despite this progress, we are still not aware 
of a conceptually simple subdivision scheme capable of efficiently producing a smooth interpolatory curve/surface that does not 
exhibit unwanted oscillations, fully respects the behaviour of the given polygon/mesh, and preserves conics/quadrics whenever the 
refinement process is applied to any arbitrarily-spaced samples of a quadratic shape.

In this paper, we aim to construct a univariate interpolatory subdivision scheme that:

• reproduces all types of conic sections whenever the starting data (point-normal pairs in our context) are arbitrarily sampled 
from them;
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• generates a visually pleasing limit curve which faithfully mimics the behaviour of the underlying control polygon without 
creating unwanted oscillations;

• can be easily implemented;

• and that prepares the ground for a natural extension to the bivariate case.

One of the potential applications of such a subdivision scheme would be the derivation of active contours (and successively of 
active surfaces) for segmenting shapes in biomedical images and volumetric structures in 3D biomedical data, improving what has 
already been done in Badoual et al. (2017, 2021); Conti et al. (2015).

The remainder of this article is organized as follows. In Section 2 we review several existing univariate subdivision schemes, 
paying special attention to the interpolatory ones. Next, in Section 3, we introduce our new interpolatory subdivision scheme. The 
results and properties of the new scheme are evaluated in Section 4. Finally, we provide concluding remarks and directions for future 
investigations in Section 5.

2. Related work

In this section, we briefly review existing univariate subdivision schemes that are relevant to our work. We start with an overview 
of univariate interpolatory schemes with various shape-preserving properties (Section 2.1), and then continue by illustrating the 
conic-preserving schemes that are known to us (Section 2.2).

2.1. Interpolatory versus approximating univariate subdivision schemes

Univariate subdivision schemes can broadly be classified as interpolatory or approximating according to whether they generate 
a limit curve that passes through all the vertices of the control polygon or not. At each refinement step, approximating schemes, 
in addition to inserting new edge points, also update the location of the old vertex points. A prime example are the subdivision 
schemes derived from uniform B-splines. Because of this, approximating schemes tend to require smaller local support compared to 
interpolatory ones. And although approximating schemes often rely on simple rules for positioning new vertices, they are able to 
ensure smooth limit curves, which usually turn out to be much smoother than those provided by interpolatory schemes with the same 
support. However, while approximating subdivision methods tend to produce smoother curves (Pan et al., 2012), the resulting shapes 
might not be an accurate representation of the original control polygon due to the significant shrinkage effect, which is unacceptable 
in applications where the limit curve has to pass through the original sample points/vertices.

In contrast, interpolatory subdivision schemes produce limit curves that pass through the vertices of their control polygon, which 
is simply achieved by leaving these points at their original location as subdivision proceeds. And although these limit curves can be 
expected to give users intuitive and direct control over their final shape, they very often suffer from undesired artefacts since they 
tend to exhibit more convexity changes than the underlying control polygon, especially when its edges have highly non-uniform 
lengths.

To alleviate this, the research of the last three decades has focused on developing algorithms capable of ensuring shape-preserving 
(i.e., convexity preserving as well as artefact free) interpolants, with many valuable schemes (Albrecht and Romani, 2012; Bebarta 
and Jena, 2021, 2023; Cai, 2009; Dyn et al., 1992; Goodman and Ong, 2005; Jena, 2021; Kuijt and Van Damme, 2002; Marinov et 
al., 2005; Novara and Romani, 2018; Yang, 2006). However, except for Albrecht and Romani (2012) which we discuss further below, 
none of these schemes is capable of preserving all types of conic sections when applied to arbitrarily-spaced conic samples.

2.2. Conic-preserving interpolatory curve subdivision

As far as we are aware, the earliest reference to an interpolatory subdivision scheme capable of reproducing geometric entities 
other than lines, is the paper of Sabin and Dodgson (2004). It was designed as a variant of the original four-point subdivision 
scheme (Dyn et al., 1987), with the rule to insert the new edge vertices constructed in such a way that the curvature at each new 
vertex equals the mean of the curvatures at the adjacent old vertices. The resulting limit curve reproduces circles and is almost 𝐶2-

continuous. While Sabin and Dodgson’s method is capable of reproducing circles from any arbitrary sequence of points sampled from 
them, other types of conic sections are not explicitly preserved. The same applies to several other successively proposed subdivision 
schemes, including Aihua et al. (2016); Chalmovianský and Jüttler (2007); Conti et al. (2015); Deng and Ma (2014); Deng and Wang 
(2010); Hernández-Mederos et al. (2013); Lipovetsky and Dyn (2016); Romani (2010); Song et al. (2013); Yang (2023), which are 
able to reproduce (only) circles and in some cases also ellipses.

In contrast, the interpolatory subdivision schemes proposed in Beccari et al. (2007, 2009); Donat and López-Ureña (2019); Novara 
and Romani (2015); Romani (2009) are able to reproduce all types of conic sections, but reproduction is guaranteed only when the 
vertices of the control polygon are uniformly sampled on the desired conic.

Differently from the above-mentioned schemes, the interpolatory subdivision scheme introduced in Albrecht and Romani (2012)

reproduces conic sections also when the starting data are irregularly distributed. For every edge, it first calculates the tangents at its 
endpoints using a conic tangent estimator. Then, the two vertices of each edge and their two tangent lines are used to construct a conic 
and insert a new edge point lying on it by exploiting a result from projective geometry. As non-convex curves cannot be approximated 
by a second-order curve, non-convex data are first segmented into convex segments in order to be handled independently as convex-
2

only parts. The examples provided in Albrecht and Romani (2012) suggest that the generated limit curve is at least 𝐶1 continuous, 
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Fig. 1. The local neighbourhood of the edge p𝑖p𝑖+1 and the insertion rule of the edge point p
edge

𝑖 .

but due to the complexity of the method, a mathematical proof is lacking. Another limitation of Albrecht and Romani (2012) is that it 
is difficult to extend the method to the bivariate setting, i.e., when control polygons are replaced by quadrilateral/triangular control 
meshes and quadric-preservation is desired.

To the best of our knowledge, there are no bivariate interpolatory subdivision schemes capable of reproducing quadrics when the 
vertices of the control mesh are arbitrarily-spaced samples coming from a quadric. The problem we aim to solve in this paper is thus 
to construct a simple and efficient interpolatory scheme for preserving conics, with an eye towards a natural bivariate extension with 
reproduction of quadrics.

3. Conic subdivision

In order to derive an interpolatory subdivision scheme for curves, we need to design a rule that governs the insertion of new 
edge points (and associated normals) at each subdivision step (as the vertex points and their normals stay fixed) so that conics are 
preserved. More precisely, given an edge and a local neighbourhood with point-normal pairs sampled from a certain conic, the new 
edge point of said edge (and the associated normal) should also come from this conic (see Fig. 1). This problem can be divided 
into two parts. First, a conic is constructed that fits the local neighbourhood (Section 3.1). Second, a point-normal pair is sampled 
from the found conic to determine the location of the new edge point and its associated normal (Section 3.2). We then discuss a 
modification to the scheme that allows it to work with non-convex input polygons (Section 3.3).

3.1. Conic fitting

A conic section (or simply a conic) in the (𝑥, 𝑦) plane can be described by the implicit equation 𝑓 (𝑥, 𝑦) = 0 where 𝑓 (𝑥, 𝑦) is defined 
as a quadratic polynomial:

𝑓 (𝑥, 𝑦) = 𝑞20𝑥
2 + 𝑞02𝑦

2 + 2𝑞11𝑥𝑦+ 2𝑞10𝑥+ 2𝑞01𝑦+ 𝑞00, (1)

where 𝑞00, 𝑞01, 𝑞10, 𝑞11, 𝑞02, 𝑞20 are real coefficients. The aim is to find a certain ‘best-fitting’ conic that is defined by the local neigh-

bourhood of an edge in a given control polygon. While there are synthetic methods that make use of projective geometry, such as the 
one proposed by Albrecht and Romani for conic sections (Albrecht and Romani, 2012), these methods are generally very complex 
and not flexible. As such, we opt for an analytical method that involves creating a system of linear equations based on (1) and solving 
for the coefficients.

To construct these linear equations, the coordinates of a number of points in ℝ2 are required. These can be obtained from 
the vertices in the neighbourhood of the edge in question. Given a sequence P = (p1, ..., p𝑛) of 𝑛 points with coordinates [𝑥𝑖, 𝑦𝑖]𝑇 , 
𝑖 = 1, … , 𝑛, one could construct the homogeneous linear system

Aq = 0, (2)

where

A =
⎡⎢⎢⎢⎣
𝑥21 𝑦21 2𝑥1𝑦1 2𝑥1 2𝑦1 1
𝑥22 𝑦22 2𝑥2𝑦2 2𝑥2 2𝑦2 1

⋮
𝑥2𝑛 𝑦2𝑛 2𝑥𝑛𝑦𝑛 2𝑥𝑛 2𝑦𝑛 1

⎤⎥⎥⎥⎦
𝑛×6

, q =
[
𝑞20 𝑞02 𝑞11 𝑞10 𝑞01 𝑞00

]𝑇
,

and attempt to solve it. However, there are two main issues with this strategy.

First, (1) has 5 degrees of freedom. Therefore, in general, 5 vertices are required to construct A such that the linear system can be 
solved. This is not ideal as it requires an asymmetrical neighbourhood around a given edge and many singular configurations exist. 
In the case that we opt for 6 points (so three on either side of the edge), the system is, in general, over-constrained and thus leads to 
no solutions.

Secondly, the resulting conic has to pass through all the given points exactly (since we are after an interpolatory scheme). As the 
3

size of the neighbourhood has to be relatively large, the chance of finding a good quality conic for arbitrary curves is relatively small. 
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Fig. 2. The found conic is a hyperbola where the vertices lie on different branches, resulting in no line-conic intersection solutions. This situation can be partially 
averted by growing the fitting neighbourhood when this situation occurs.

Additionally, the constructed conic could be a (two-branch) hyperbola with different parts of the neighbourhood being on different 
branches of said hyperbola (see Fig. 2). Preventing these undesirable cases is a challenging issue. Restricting the fitting process to 
certain classes of conics is not a valid strategy, since the conic itself is perfectly valid, provided that the entire neighbourhood lies 
on a single branch. As such, we cannot constrain the type of conic we obtain to a specific type, as done for example by Harker et al. 
(2008).

All in all, considering the local neighbourhood just as a point collection does not seem to lead to the desired results. We therefore 
augment the neighbourhood information with the (unit) normals of the vertices. Not only does this allow for a reduction in the 
neighbourhood size, but it also provides extra (implicit) information about local shape. We now leverage the strategy used by Birdal 
et al. (2020) to use this oriented point collection for conic fitting. While their method is intended for fitting quadrics to oriented 
point clouds, the method is easily adjusted to our setting.

Precisely, we augment the system in (2) by setting the gradient of the conic at each point p𝑖 equal to a multiple 𝛼𝑖 ∈ℝ ⧵ {0} of 
the normal n𝑖 = [𝑛𝑥𝑖 , 𝑛

𝑦
𝑖 ]

𝑇 at said point:

∇𝑓 (𝑥, 𝑦) =
[
2𝑞20𝑥+ 2𝑞11𝑦+ 2𝑞10
2𝑞02𝑦+ 2𝑞11𝑥+ 2𝑞01

]
= 𝛼𝑖

[
𝑛𝑥𝑖
𝑛𝑦𝑖

]
. (3)

This introduces a unique scaling factor 𝛼𝑖 for every normal. To include these equations in the conic fitting process, we change (2) to

A′q′ = 0

with

A′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥21 𝑦21 2𝑥1𝑦1 2𝑥1 2𝑦1 1 0 0 … 0
𝑥22 𝑦22 2𝑥2𝑦2 2𝑥2 2𝑦2 1 0 0 … 0

⋮
𝑥2𝑛 𝑦2𝑛 2𝑥𝑛𝑦𝑛 2𝑥𝑛 2𝑦𝑛 1 0 0 … 0

2𝑥1 0 2𝑦1 2 0 0 −𝑛𝑥1 0 … 0
0 2𝑦1 2𝑥1 0 2 0 −𝑛𝑦1 0 … 0
2𝑥2 0 2𝑦2 2 0 0 0 −𝑛𝑥2 … 0
0 2𝑦2 2𝑥2 0 2 0 0 −𝑛𝑦2 … 0

⋮
2𝑥𝑛 0 2𝑦𝑛 2 0 0 0 0 … −𝑛𝑥𝑛
0 2𝑦𝑛 2𝑥𝑛 0 2 0 0 0 … −𝑛𝑦𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3𝑛)×(𝑛+6)

, (4)

and

q′ =
[
𝑞20 𝑞02 𝑞11 𝑞10 𝑞01 𝑞00 𝛼1 … 𝛼𝑛

]𝑇
. (5)

The resulting homogeneous linear system is in general over-constrained, and thus cannot be solved directly. To circumvent this, 
we use the least-squares solution to A′q′ = 0 that can be found using Singular Value Decomposition (SVD):

A′ = U𝚺V𝑇 ,

where U is a 3𝑛 × 3𝑛 orthogonal matrix, 𝚺 is a 3𝑛 × (𝑛 + 6) matrix with non-negative real numbers on the diagonal (the so-called 
singular values of A′), and V is a (𝑛 + 6) × (𝑛 + 6) orthogonal matrix.

The best-fitting solution for q′ (i.e., the vector q′ that minimizes the 2-norm of A′q′ under the constraint ||q′|| = 1) is the right-
4

singular vector of A′ corresponding to the smallest singular value. In other words, the sought solution turns out to be the vector 
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from the columns of V (i.e., the right-singular vectors) that corresponds to the smallest singular value of 𝚺. The advantage of this 
approach is that with the introduction of normals, the neighbourhood generally needs to be no larger than 4 point-normal pairs, i.e., 
two on either side of the processed edge (see Fig. 1). It also points to a bivariate generalisation.

Due to the approximating nature of the above method, the found conics are no longer guaranteed to interpolate the two vertices 
of the edge. In order to tackle this interpolation problem, we introduce a diagonal weight matrix W to steer the solution to better 
fit certain equations in the system. The matrix W contains as its diagonal elements the weights for each equation. With this, the 
homogeneous linear system becomes

WA′q′ = 0,

and the best-fitting solution for q′ becomes the right-singular vector of WA′ that corresponds to the smallest singular value.

While we could introduce different weights for each equation, we found that it is sufficient to differentiate between only four 
different weights: the edge weights 𝑤𝑣

𝑒 and 𝑤𝑛
𝑒 for the edge vertices and normals respectively, and the ‘outer’ weights 𝑤𝑣

𝑜 and 𝑤𝑛
𝑜

for the outer vertices and normals. By setting 𝑤𝑣
𝑒 to a large value, the system will find solutions that favour the interpolation of the 

edge vertices. In addition to interpolating the edge vertices, we found that interpolating the corresponding two normals produces 
better results, as the found conic better fits the local shape. Additionally, for the outer vertices and normals, more emphasis is 
put on the vertices as opposed to the normals. This ensures that large variations in the curvature around the local shape do not 
disproportionately affect the conic. As such, we set

𝑤𝑣
𝑜 = 𝜏𝑤𝑛

𝑜 with 𝜏 > 1. (6)

We have found that 𝜏 = 100 works well (see Section 4 and Fig. 6) and it is the default setting in all our examples.

3.2. Edge point and normal computation

Having constructed a locally best-fitting conic, the location of the new edge point needs to be determined. Ideally, the edge point 
should be close to the midpoint pmid

𝑖 of the edge to promote evenly spaced geometry and prevent unnecessary curvature oscillations. 
Given an edge defined by two points p𝑖 = [𝑥𝑖, 𝑦𝑖]𝑇 and p𝑖+1 = [𝑥𝑖+1, 𝑦𝑖+1]𝑇 , we calculate its midpoint

pmid
𝑖 =

p𝑖 + p𝑖+1
2

.

Next, we construct the exact normal of the edge nedge

𝑖 as

n
edge

𝑖 = [𝑦𝑖 − 𝑦𝑖+1, 𝑥𝑖+1 − 𝑥𝑖]𝑇 .

We now construct the line 𝐥(𝑡) that is perpendicular to the edge and passes through its midpoint:

𝐥(𝑡) = pmid
𝑖 + 𝑡n

edge

𝑖 , 𝑡 ∈ℝ. (7)

Using this, we find the line-conic intersections by rewriting (1) in matrix form 𝑓 (x) = 0, where

𝑓 (x) = x𝑇 Qx (8)

with

x =
⎡⎢⎢⎣
𝑥
𝑦
1

⎤⎥⎥⎦ , Q =
⎡⎢⎢⎣
𝑞20 𝑞11 𝑞10
𝑞11 𝑞02 𝑞01
𝑞10 𝑞01 𝑞00

⎤⎥⎥⎦ .
We can find the solutions for 𝑡 that describe the line-conic intersection by evaluating:

𝑓 (𝐥(𝑡)) = 0 (9)

as described by Trettner and Kobbelt (2021). Since conics are defined by a quadratic polynomial, there will be generically at most 
two real intersection points, corresponding to 𝑡1 and 𝑡2. The location of the new edge point pedge

𝑖 is determined by:

p
edge

𝑖 =

{
𝐥(𝑡1), if

||||||pmid
𝑖 − 𝐥(𝑡1)

|||||| ≤ ||||||pmid
𝑖 − 𝐥(𝑡2)

|||||| ,
𝐥(𝑡2), otherwise.

(10)

This describes that the location of the new edge point is the intersection point closest to the midpoint. We have also considered 
setting the new edge point as the geodesic mid-point on the found conic between the two vertices of the edge in question. While this 
is arguably the best solution as far as geometry and uniformity are concerned, it comes with a non-trivial computational effort, and 
we thus did not pursue this further. The (new) normal associated with pedge

𝑖 is also sampled from the fitted conic.

Despite the various techniques described here, the undesirable case of the conic being a (two-branch) hyperbola can still occur. 
5

This can result in no solutions being found; see Fig. 2. If this is the case, we incrementally increase the neighbourhood size until 
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Fig. 3. A non-convex curve segment with the corresponding inflection point pinfl .

a solution is found. If no solution is found and it is not possible to add points to the neighbourhood without breaking the global 
convexity property, then we set pedge

𝑖 = pmid
𝑖 . This situation occurs only extremely rarely.

3.3. Modification for non-convex input polygons

As we have introduced a separate scaling factor for each normal, we have added a significant number of extra degrees of freedom. 
This, combined with the fact that conics do not possess, and thus cannot represent, inflection points, may lead to poor quality results 
for non-convex input polygons, as already observed by Birdal et al. (2020) when fitting quadrics to oriented point clouds. Their 
solution for a smoother surface is to enforce 𝛼 = 1 for each normal, which forces the system to find quadrics whose gradients match 
the unit normals. However, this unit normal constraint results in the system not being able to reproduce all conics. As such, we use 
a different approach to ensure smooth curves in the case of non-convex input polygons.

We follow the idea proposed by Albrecht and Romani (2012) to split the control polygon into a collection of globally convex 
sub-polygons before starting the subdivision process. We do this by first identifying the inflection edges. In their paper, an inflection 
edge is described as an edge p𝑖p𝑖+1 for which the points p𝑖−1 and p𝑖+2 lie on different half planes with respect to this edge. For each 
inflection edge, we introduce a new point, called the inflection point pinfl. We set the location of pinfl to be the midpoint of the edge; 
see Fig. 3.

In places where these inflection points are inserted, we observe that the neighbourhood would have three consecutive points 
that are collinear. This configuration causes the system to find undesirable (singular) conics, so instead we opt to remove the 
outer collinear point for any given neighbourhood surrounding an inflection point. For example, point p𝑖 is not included in the 
neighbourhood of edge pinflp𝑖+1.

As our method uses both points and normals to find a conic, the normal ninfl at the inflection point also needs to be set appropri-

ately as it influences the resulting curve. If ninfl is chosen to be close to orthogonal with respect to the edge p𝑖p𝑖+1, the curve at the 
inflection point should be close to flat. In contrast, if ninfl points in the same direction as the edge, then there will be a ‘wiggle’ in 
the curve. In our case, a normal that is parallel to the edge is undesirable, as this does not produce good quality conics. As such, we 
restrict the angle between ninfl and the direction nedge

𝑖 perpendicular to the edge to be between 0 and 14𝜋. To ensure this, we proceed 
as follows.

We wish to set a blending factor 0 ≤ 𝛾0 ≤ 0.5 to linearly blend between the normalised direction of p𝑖p𝑖+1 (denoted as ̂p𝑖+1 − p𝑖) 

and the normalised nedge

𝑖 (denoted as ̂nedge

𝑖 ) to obtain

n0
infl

= (1 − 𝛾0)
̂
n

edge

𝑖 + 𝛾0 ̂(p𝑖+1 − p𝑖). (11)

Although our method introduces a separate scaling factor per normal, making the (inflection) normals n0
infl

and −n0
infl

essentially 
equivalent, we flip nedge

𝑖 if nedge

𝑖 ⋅ (p𝑖+1 − p𝑖) < 0 for direction blending in (11). With 𝜙𝑖 = ∠p𝑖−1p𝑖p𝑖+1 the angle between p𝑖−1p𝑖 and 
p𝑖p𝑖+1, we set

𝛾0 =
1
2
−
||||𝜙𝑖

𝜋
− 1

2
|||| .

The resulting value for 𝛾0 is then used in (11) to obtain n0
infl

. Analogously, we compute 𝛾1 and n1
infl

based on 𝜙𝑖+1. The final normal 
ninfl at the inflection point is then set as

ninfl =

{
n0

infl
if ∠n0

infl
n

edge

𝑖 < ∠n1
infl

n
edge

𝑖 ,

n1
infl

otherwise.
(12)
6

This ensures good behaviour in case of flat sections or sharp edges near the inflection points.
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Fig. 4. Results using our subdivision scheme. In (a), (c), and (e) the normals at the control points are given by simply averaging the adjacent edge normals of the 
control polygon. In (b) and (d) the averaging of the normals at control points takes into account the length of the two incident edges at each vertex. Due to the 
symmetry of the star control polygon (e), both options lead to the same normals and thus the same subdivision curve.

Fig. 5. The effect of adjusting the normal of the top control point. The regular pentagonal control polygon is initially equipped with normals sampled from its 
circumscribed circle. From left to right: The normal is adjusted in uniform steps from its original vertical position (far left) all the way to being orthogonal to one of 
the edges of the polygon (far right). The other normals and all points stay fixed.

Fig. 6. The influence of parameter 𝜏 ; see (6). Low and high values of 𝜏 lead to suboptimal results, whereas 𝜏 ∈ [10, 150] provides good and nearly indistinguishable 
limit curves and curvature behaviour. We have thus made 𝜏 = 100 our default setting.

4. Results and evaluation

We start by showing several examples of limit curves generated by our subdivision scheme in Fig. 4. The normals at the control 
points were set automatically from the geometry of the control polygon by (edge-length-adjusted) averaging of edge normals. The 
change of the normal direction influences the subdivision curves in a natural way. This is further investigated in Fig. 5, where a single 
normal is adjusted. Note that the first configuration results in the exact circle the data was sampled from. The figure also shows the 
reasonable range for setting normals at a vertex: the normal should be set within the angle bounded by orthogonal directions to 
the two edges incident with the vertex under consideration. Given the geometric construction of the scheme and the fact the conics 
cannot capture inflection points, other configurations cannot be expected to lead to reasonable results.

Further examples are provided in Fig. 7, some of which include challenging configurations, such as with non-uniform distributions 
of points, a double loop, with inflection points, and with a sharp corner and three collinear points. In the figure, top row, we also 
show the curvature combs of the curves. The middle row plots the angle between consecutive segments along the curve, and the 
bottom row shows corresponding curvature plots (estimated using osculating circles passing through three consecutive points).

The angle variation plots suggest that our scheme produces tangent-line, i.e., 𝐺1, continuous limit curves (unless sharp corners are 
explicitly desired). The corresponding curvature plots provide an insight into the second-order behaviour of the scheme. While the 
scheme does not, in general, produce curvature-continuous results, some of the less challenging configurations of control polygons 
and normals seem to lead to near-curvature-continuous results. An investigation into how to set the normals to achieve curvature 
continuity or to at least minimise the curvature jumps is beyond the scope of the present paper.

We now discuss the choice of parameter 𝜏 in (6); see Fig. 6 for an example. Other tested input data exhibited similar behaviour. 
Although 𝜏 has little influence on the general shape of the limit curve with the exception of 𝜏 values close to one, it has a noticeable 
effect on curvature behaviour. Low 𝜏 values put too much emphasis on outer normals, whereas high 𝜏 values start introducing 
numerical instabilities due to a wide range of values in the system. We have thus set 𝜏 = 100 as our default setting. Note that 
(similar) numerical instabilities can occur when the range of the input data spans many orders of magnitude. This is not limited to 
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our scheme; it applies to all (geometric) subdivision schemes.
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Fig. 7. Top row: Control polygon (dashed black) with control normals (black), limit curve (red; after 6 subdivision steps), and curvature comb (green and blue). Middle 
row: Angle variation along the subdivision curve. Bottom row: Curvature plot (discrete estimate using an osculating circle passing through three consecutive points). 
Following Albrecht and Romani (2012), we use counter-clockwise chordal parametrisations along the curves for the angle and curvature plots. (For interpretation of 
the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 8. Preservation of conics. Left: Circle (green) and parabola (blue). Right: Ellipse (green) and hyperbola (blue). Our scheme preserves conics when consecutive 
point-normal pairs are sampled from them. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Finally, we focus on the conic-preservation property of our scheme; see Fig. 8. On the left, we show an example with a control 
polygon with a sequence of points and normals sampled from a circle, followed by a sequence of points and normals coming from 
a parabola. On the right, points and normals have been sampled from an ellipse and a hyperbola. Both examples confirm that our 
scheme reproduces conics when sufficiently many consecutive point-normal pairs come from a single conic. They also show that our 
scheme produces good transitions between conic arcs.

5. Conclusion

We have presented a new conic-preserving, interpolatory subdivision scheme that is based on a simple geometric construction 
with the advantage of being extendable to the bivariate case. The proposed construction relies on a small local neighbourhood of each 
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edge and allows the user to insert edge points (and associated normals) in such a way that all types of conic sections are preserved. 
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To the best of our knowledge such an interpolatory subdivision scheme has no competitors in the existing literature. Indeed, none of 
the univariate schemes proposed so far is able to satisfy all the properties listed above.

In our future work, we plan to attack the difficult problem of establishing formal conditions on 𝐺1 continuity of the scheme 
with accompanying proofs, in the spirit of Ewald et al. (2015). We also believe that our current handling of inflection points leaves 
room for improvement. Another focus point could be to improve the efficiency of our implementation, which has so far not been 
considered. Finally, we will explore the extension of our scheme to the bivariate setting. While this is often difficult for geometric 
subdivision schemes due to the number of configurations that need to be considered, we believe that our scheme opens the door for 
a generalisation as the locally fitted conic can be replaced by a locally fitted quadric at a mesh vertex.
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