
Future Generation Computer Systems 158 (2024) 11–27

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A general framework and decentralised algorithms for collective
computational processes
Giorgio Audrito a, Roberto Casadei b,∗, Gianluca Torta a

a Università di Torino, Italy
b Alma Mater Studiorum—Università di Bologna, Italy

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.8
310743

Keywords:
Collective adaptive systems
Collective computing
Dynamic ensembles
Aggregate processes
Decentralised systems
Distributed algorithms
Neighbourhood communications

A B S T R A C T

Recent research on collective adaptive systems and macro-programming has shown the importance of
programming abstractions for expressing the self-organising behaviour of ensembles, large and dynamic
sets of collaborating devices. These generally leverage the interplay between the execution model and the
program logic to steer the global-level emergent behaviour of the system. One notable example is the
aggregate process abstraction: in an asynchronous round-based computational model, it allows to specify
how aggregate-level computations are spawned, take form or spread on a domain of devices, and ultimately
quit. Previous presentations of aggregate processes, however, are given in the formal framework of the field
calculus, requiring knowledge of its syntax and articulated semantics. To provide a more accessible and
language-agnostic presentation of such an abstraction, in this paper we introduce a general formal framework
of collective computational processes (CCP). Specifically, as key contribution, we model and describe the
programming interface (spawn construct) and dynamics of CCPs on event structures. Furthermore, we also
propose novel algorithms for efficient propagation and termination of CCPs, based on statistics on the
information speed and a notion of progressive wave-like closure. Crucially, thanks to our theoretical framework,
we can provide optimality guarantees for the proposed algorithms, whose performance, superior to the state
of the art, is assessed by simulation. Finally, to show applicability of CCPs, we provide a case study of situated
service discovery in peer-to-peer networks.
1. Introduction

The Internet of Things (IoT) [1] and related trends suggest that
an important class of systems involves those featuring large num-
bers of situated devices that self-organise to provide collaborative
services. These are also known as collective adaptive systems (CASs) [2,
3]: groups of devices operating without a central coordinator and
reacting to environment and input change coherently as a whole. By
a programming perspective, there is a need for abstractions able to
define, structure, scope, and dynamically manage the collective-level
activities that are to be executed by such collectives of devices [2,4,5].
Abstractions and mechanisms for CASs engineering have been proposed
in the context of multiple research fields such as coordination [6],
multi-agent systems [7], self-organisation [8], swarm robotics [9], and
macro-programming [5,10]. Examples of abstractions include space–
time constructs [11], network-wide information flows [12], computa-
tional fields [13], and ensembles [8,14].

Indeed, a leitmotiv in these proposals is the definition of ways
to capture dynamic collectives, sometimes also called ensembles [8,14]

∗ Corresponding author.
E-mail addresses: giorgio.audrito@unito.it (G. Audrito), roby.casadei@unibo.it (R. Casadei), gianluca.torta@unito.it (G. Torta).

or aggregates [13]. Ensembles are groups of devices (whose members
can possibly change at runtime) used to denote, e.g., providers of
sensing data, executors of collective tasks, recipients for multicast
communications, and so on. These ensembles have proven crucial in
achieving collective and self-organising behaviours [8,14,15]. Dual to
the specification of ensembles is the definition of collective tasks [16,
17], namely tasks that are carried out collaboratively by groups of
devices. Examples of tasks carried out collectively include swarm activ-
ities [18], collective movement [19], crowd sensing [17], space-aware
coordination [20,21], estimation of spatio-temporal phenomena [22],
creation of dynamic system structures [23,24].

Traditional language-based solutions to collective computing in-
clude supporting ensembles as first-class values [25], using attributes
to denote groups of recipients of communication acts [26], and mech-
anisms for allocating and orchestrating tasks at the team level [18]. A
less studied problem, first considered in the context of field calculi [13]
with the aggregate process abstraction [15], revolves around how ensem-
bles and collective computations are related. In this paper, we consider the
vailable online 16 April 2024
167-739X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2024.04.020
Received 13 September 2023; Received in revised form 11 April 2024; Accepted 15
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

April 2024

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
mailto:giorgio.audrito@unito.it
mailto:roby.casadei@unibo.it
mailto:gianluca.torta@unito.it
https://doi.org/10.1016/j.future.2024.04.020
https://doi.org/10.1016/j.future.2024.04.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2024.04.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

f

w

r
d
w
c
c
A
t
o

a
O
g
c
t
v

f
i
o
e
s
a

n
o
i
e
p

i
a
s
t
‘
I
a
m

d
o
e

2

r
i
l
t
m
t
a
e
s
t
b
e
i

S

3
t

d
n
o
r
r

m
t
s
(
e

ensemble formation problem by an algorithmic perspective, assuming
systems modelled as networks of devices that compute in asynchronous
rounds. We take inspiration from the notion of aggregate processes and
introduce a theory of collective computational process (CCP), modelling
concurrent collective tasks running on dynamic domains of intercon-
nected devices. On this, we thoroughly study how dynamic ensembles
and CCPs could form, evolve, and cease to exist. We focus on a
programming perspective, proposing algorithms to control ensemble
dynamics.

The contribution is twofold.1 First, we provide a general formal
ramework, based on augmented event structures [29,30], for mod-

elling dynamically evolving ensembles on asynchronous networks of
neighbour-interacting devices. In this formal framework, we model
CCPs. Specifically, we model aggregate processes [31] denotationally,

ithout relying on specifics of field calculi [13], thus making their
characterisation more general and accessible. Second, we propose
new algorithms for controlling the evolution dynamics of CCPs. This
enables effective propagation and shrinking (up to extinction) across
a collective, regardless of network changes and disruptions. We build
our algorithms on information speed [32] statistics, a measure of space
covered by data (following connectivity structures) over time. The first
algorithm exploits these to guide process extinction, while the second
uses it to enact a wave-like propagation, shifting process boundaries
while the process is still active. This theoretical foundation allows us
to prove optimality guarantees for the proposed algorithms.

To also evaluate these techniques in practice, we simulate a message
delivery scenario (paradigmatic for several applications [15]). This
allows us to experimentally compare them against baseline algorithms
of signal-based termination. We test the algorithms in several network
configurations, and quantify the improvements in terms of success rate
and efficiency (i.e. number of rounds and bandwidth), showing benefits
w.r.t. solutions in previous work. Furthermore, to show applicability
on more complex scenarios, we describe a simulation-based case study
of situated service discovery in a peer-to-peer network. All the exper-
imental setup has been documented and archived on Zenodo [33] for
accessibility, reproducibility, and to stimulate further research on the
topic.

The paper is organised as follows. Section 2 provides motivation
for the work. Section 3 describes the formal framework for dynamic
collectives and CCPs. Section 4 covers algorithms for controlling the
lifecycle of CCPs, while providing optimality guarantees for them. Sec-
tion 5 systematically evaluates the proposed techniques by simulation.
Section 6 reports about the application of the proposed techniques to
a more complex case study of service discovery. Section 7 presents
related work. Section 8 summarises results and prospective work.

2. Motivation and high-level requirements

G. D. Abowd refers to collective computing as the next computing
evolution after ubiquitous computing [34]. This vision is based on
istributed computing and an interconnection of humans, the physical
orld, and computation. Accordingly, a prominent emerging viewpoint

onsiders a large network of computing devices as a single distributed
omputing platform [13], sometimes also called a social machine [35].
s a machine, it can be programmed as a whole, or be given a dis-

ributed or collective task for execution—which is essentially the idea
f macro-programming [5,10]. In this work, we consider the problem

1 This is the extended version of a short conference paper [27] presented
t the 3rd IEEE International Conference on Autonomic Computing and Self-
rganizing Systems (ACSOS’22) [28]. In this extended version, we (i) further
eneralise the model, (ii) extend the evaluation with more experiments, also
overing tree topologies, (iii) develop a case study of service discovery in peer-
o-peer networks, (iv) provide formal optimality results, and (v) compare with
12

arious threads of related work.
of running computational activities on such distributed machines. We
call these activities collective computational processes (CCPs) since they
(i) involve distributed computation; (ii) are collective in nature, meaning
that they are carried out collaboratively by multiple devices; and (iii)
are processes, in the sense that they involve multiple steps to complete.

We would also like such CCPs to be scalable and resilient. Thus, we
ocus on fully decentralised computations, with no central entities act-
ng as bottlenecks or single-points-of-failure. Moreover, devices would
perate locally : they would sense and act on a local portion of the
nvironment (partial observability), and would interact with a limited
ubset of other nearby devices. Robustness is achieved through locality
nd replication.

We remark that these high-level requirements, namely collective-
ess, progressiveness, decentralisation, scalability (e.g. to the number
f devices), and resilience, are shared by multiple application domains
ncluding sensor networks [36], swarm robotics [9,15], the IoT [1],
dge-fog-cloud ecosystems [37], crowds of wearable-augmented peo-
le, and the like [38].

As mentioned, CCPs are strictly related to ensembles. Examples of
nformal ensemble definitions include, e.g., ‘‘all the devices located in
spatial area’’, ‘‘all the devices that are equipped with a temperature

ensor’’, ‘‘all the devices that voluntarily provide resources for compu-
ation offloading’’, ‘‘all the devices that follow a given leader device’’, or
‘all the devices that are currently needed to solve a collaborative task’’.
n various applications, the shape and activity of a CCP may mutually
ffect each other: e.g., a leader that receives a large number of requests
ay want to enlarge the ensemble of its workers.

In the following, we introduce a running example of situated service
iscovery in a pervasive ecosystem like a smart city. It is representative
f the kind of collective and self-organising computations that can be
xpected in the aforementioned scenarios.

.1. Example: Situated service discovery

Consider a network of devices in a smart city that may offer and
equest services (e.g., computing services as in volunteer comput-
ng [39]). Interactions are limited to neighbours, e.g., for scalability,
atency, and privacy reasons. Service requests scan the surroundings of
he requester device for offers including cost and service-level agree-
ents (SLAs), so that the requester can choose and consume the offer

hat it deems best. The requester and service provider may be hops
way, thus other devices need to act as relays for data and results. Then,
ach request could be modelled as a separate CCP: the process would
pread from the requester outwards, handle the negotiation, manage
he requested task execution, and provide results. In principle, this can
e supported in an ad-hoc fashion, with no pre-existing infrastructure:
ach device must only be able to play its part in the computation and
nteract with neighbours.

This scenario is implemented in simulation in the case study of
ection 6.

. A general formal framework of dynamic collectives and collec-
ive tasks

In this section, we present a general formal framework for modelling
ynamic collectives and collective computational processes (CCPs) run-
ing on them. This framework can be considered as a generalisation
f the field-based approach of aggregate processes [15,31]. To facilitate
eading, a summary of the notation used throughout the paper is
eported in Table 1.

We present the framework in steps. First, we specify the system
odel (Section 3.1), describing the target systems we address and

he main underlying assumptions, using event structures to model
ystem executions (Section 3.1.1). Then, we provide a model of CCPs
Section 3.2), through a progressive coverage of their features, with
xamples.



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

c
c
a
c
b
t

e

q
m
g

3

⇝
e
f

R
r
c

T
r

m
a
a
t
i
e
t
s
a
a
a
a
s
w
d
b

𝑑

t
r
t
s
c
m
b
t

E
o
a
i
t
t
s
a
e

3.1. Collectives and collective computations: system model

Our target systems are collectives, i.e., groups of largely homo-
geneous devices situated in some environment and interacting in a
decentralised way. Examples could be swarms of robots, collections
of smart devices in a smart city, or ecosystems of IoT, edge, and fog
computing nodes.

Such collectives can be modelled as a dynamic graph where nodes
are devices (possibly equipped with sensors and actuators) and edges
denote neighbouring relationships. Only neighbour devices can directly
ommunicate. The neighbouring relationship may be based on logical
onnectivity (as in an overlay network) or physical connectivity (as in
ctual wireless range, so that only devices sufficiently close together
an directly communicate). Indirect communication may also be possi-
le through stigmergy, i.e., by perceiving and affecting the environment
hrough sensors and actuators.

We would like such systems to perform collective computations,
namely computations that are to be carried out by multiple devices.
Such computations may be long-running, require collaboration, and
require dealing with the environment. Examples of collective com-
putations include collective movement of robot groups [19], task al-
location [40], self-organisation activities [41], distributed situation
recognition and action [42], and so on.

Since computations are typically long-running, and need to adapt
to environmental change, we let devices operate in rounds. In general,
ach round happens asynchronously w.r.t. the rounds of the other

devices. Each round consists of the following steps.

(i) Context acquisition step: the device creates a snapshot of its local
context by loading its previous state, sampling sensors, and
retrieving the most recent message from each of its neighbours.

(ii) Computation step: the device evaluates the aggregate program
against its context, obtaining a result that contains (a) its local
output, and (b) a coordination message (exported data) to be
broadcast to all its neighbours.

(iii) Interaction step: the device broadcasts the coordination message
to all its neighbours and uses the output of the computation step
to drive actuators.

This is a general collective execution schema, whose details (like fre-
uency of rounds, retention of messages from neighbours, topology
anagement, delivery guarantees, etc.) are left to implementations and

enerally depend on available infrastructure and application goals [43].

.1.1. Augmented event structures
An overall collective execution can be modelled as an event struc-

ture [29], where each event denotes a round. Following the approach
of [30], we enrich an event structure with further information e.g. about
the device in which an event happens.

Definition 1 (Augmented Event Structure). An augmented event structure
is a 4-tuple 𝐄 = ⟨𝐸,⇝, 𝑑, 𝑠⟩ where 𝐸 is a countable set of events,

⊆ 𝐸 × 𝐸 is a messaging relation, 𝑑 ∶ 𝐸 → 𝛥 is a mapping from
vents to the devices where they happened, 𝑠 ∶ 𝐸 → 𝑆 is a mapping
rom events to (some representation of) sensors status, such that:

• for any device 𝛿 ∈ 𝛥, the set of events 𝐸𝛿 = {𝜖 ∈ 𝐸 ∣ 𝑑(𝜖) = 𝛿}
forms a sequence of chains, i.e., there are no distinct 𝜖, 𝜖1, 𝜖2 ∈ 𝐸𝛿
such that either 𝜖 ⇝ 𝜖𝑖 for 𝑖 = 1, 2 or 𝜖𝑖 ⇝ 𝜖 for 𝑖 = 1, 2;

• the transitive closure of ⇝ forms an irreflexive partial order < ⊆
𝐸 × 𝐸, called causality relation;

• the set 𝑋𝜖 =
{

𝜖′ ∈ 𝐸 ∣ 𝜖′ < 𝜖
}

∪
{

𝜖′ ∈ 𝐸 ∣ 𝜖 ⇝ 𝜖′
}

is finite for
all 𝜖 (i.e., ⇝ and < are locally finite).

Fig. 12 shows an example of an augmented event structure. We also
introduce the following concepts and notation:

2 We use the Viridis colour palette [44] to improve readability.
13

t

• 𝑝(𝜖) denotes the previous event at the same device, i.e., the unique
𝜖′ ∈ 𝐸 such that 𝜖′ ⇝ 𝜖, 𝑑(𝜖) = 𝑑(𝜖′);

• 𝑁(𝜖) denotes the neighbours of 𝜖, i.e., the set of events {𝜖′ ∈
𝐸 ∣ 𝜖′ ⇝ 𝜖};

• 𝑝𝑎𝑠𝑡(𝜖) denotes the set of past events for 𝜖, i.e., the set of events
{𝜖′ ∈ 𝐸 ∣ 𝜖′ < 𝜖};

• 𝑝𝑎𝑠𝑡𝛿(𝜖) denotes the set of past events for 𝜖 at the same device 𝛿,
i.e., the set {𝜖′ ∈ 𝐸 ∣ 𝜖′ < 𝜖 ∧ 𝑑(𝜖′) = 𝑑(𝜖)};

• given two events 𝜖, 𝜖′ ∈ 𝐸 such that 𝜖′ ⇝ 𝜖, their temporal
distance 𝑙𝑎𝑔(𝜖, 𝜖′) measures how much time has passed in 𝜖 since
the interaction with 𝜖′ happened;

• given two events 𝜖, 𝜖′ ∈ 𝐸 such that 𝜖′ ⇝ 𝜖, their spatial distance
𝑑𝑖𝑠𝑡(𝜖, 𝜖′) measures how much space is covered moving from 𝜖′ to
𝜖.

emark 1 (Measuring Spatio-Temporal Intervals). Estimating 𝑙𝑎𝑔 accu-
ately can be done by keeping either a global clock, or two relative
lock informations:

1. the interval in 𝛿′ between the reference time of 𝜖′ and the time
when the message to 𝜖 was sent through the network interface;
and

2. the interval in 𝛿 between the time when the message was re-
ceived and the reference time of 𝜖.

hese two intervals can be added (together with an estimate of the time
equired for sending the message) to obtain an accurate 𝑙𝑎𝑔.

On the other hand, estimating 𝑑𝑖𝑠𝑡 accurately in practical scenarios
ay be more difficult. If Global Positioning System (GPS) locations

re available, 𝑑𝑖𝑠𝑡 could be directly computed from them, but with
n uncertainty of a few meters. If GPS location is not available, or
oo energy intensive for the application, the receive signal strength
ndicator (RSSI) can also be used. This allows to obtain a reasonable
stimate of distance without increasing the energy requirements of
he application [45,46]. This gives more accurate results than GPS on
horter lengths, but it accumulates error over longer distances, eventu-
lly surpassing the GPS error. Furthermore, in this scenario, distances
re computed on message arrival, which is about 𝑙𝑎𝑔(𝜖, 𝜖′) before 𝜖,
nd during that time 𝛿 could have moved further away, increasing the
ctual distance. As distances will be used in minimisations to obtain the
hortest paths, it is necessary to avoid systematic underestimates, that
ould compound in large errors over multiple hops. If the measured
istance is 𝑑(𝜖, 𝜖′), and the movement speed of devices can be bounded
y 𝑣, we can use the overestimate:

𝑖𝑠𝑡(𝜖, 𝜖′) = 𝑑(𝜖, 𝜖′) + 𝑣 ⋅ 𝑙𝑎𝑔(𝜖, 𝜖′).

If the precision obtained through GPS or RSSI is not acceptable for
he application at hand, the most common alternative is using message
ound-trip time to compute a distance estimate with an uncertainty in
he order of the centimetre. In this setting, measurements have to be
cheduled with a limited frequency in order to avoid saturating the
ommunication medium and raising excessively the energy require-
ents. A similar correction of the estimated distance using the speed

ound 𝑣 and the lag since the last measurement has to be used also in
his context.

xample 1 (Gradient). A gradient [32] is a fundamental building block
f self-organising behaviours [47]. It denotes a class of decentralised
lgorithms for computing everywhere in a network of devices, the min-
mum distance from each device to its closest source device. We suppose
hat the information about whether a device is a source or not is local
o each device—e.g., it may be read through a local sensor. One of its
implest versions, the Adaptive Bellman–Ford (ABF) algorithm [48], only
ssumes that each device is able to get (an estimation of) its distance to
ach one of its neighbours. If we let 𝑆 denote the set of sources, 𝐷(𝛿, 𝛿′)

′
he estimated distance between devices 𝛿 and 𝛿 , and 𝑔(𝜖) the gradient



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

l

T
d
W
t

a

𝚎

c
a
c

Fig. 1. Example of an event structure modelling a distributed system execution. Nodes
labelled by 𝜖𝛿𝑘 denote the 𝑘th round of device 𝛿. The yellow background highlights a
reference event, from which its past (green) and future (blue) are identified through
the causal relationship implied by the arrows denoting neighbour events.

value computed at 𝜖, then the ABF algorithm on event structures can
be expressed as follows:

𝑔(𝜖) =

⎧

⎪

⎨

⎪

⎩

min
𝜖′∈𝑁(𝜖)⧵𝑝(𝜖)

{𝑔(𝜖′) +𝐷(𝑑(𝜖), 𝑑(𝜖′))} 𝑑(𝜖) ∉ 𝑆

0 𝑑(𝜖) ∈ 𝑆

By running such function in each event, the nodes will tend to adjust
their gradient value towards the ‘‘correct’’ distance value. Indeed, it
is proved that this algorithm is self-stabilising and, more than that,
globally asymptotically stable [48].

What can be done with gradients? A gradient computation induces
a minimum spanning tree that can be used to diffuse or collect informa-
tion hop-by-hop on shortest paths [12]. So, it is at the basis of multiple
patterns of self-organising behaviour [24,47,49].

3.2. Processes over event structures

A collective computational process (CCP) is a transient, concurrent,
computational activity carried out on a dynamic domain of devices. In
other words, it is a computation that spans multiple events in an event
structure. It is transient since it may terminate. It is concurrent since
multiple instances of a CCP may run over the same devices at the same
rounds. It is characterised by the following.

Collective processes vs. collective process instances. A CCP process type 𝑃 is
a function (computation) that expresses the behaviour and interaction
to be carried out in an event (i.e., a round of a device). It can be
instantiated to generate actual CCP instances 𝑃𝑖 that will dynamically
evolve accordingly to the rules introduced in this section. Any process
instance 𝑃𝑖 is assumed to be associated with a unique process identifier
(pid) 𝑖. With no loss of generality, we assume the pid also includes
construction parameters for a process instance, which may serve to
control aspects of their behaviour.

In the following, when clear from the context, we may use the
single-word term ‘‘process’’ to refer to either a CCP type or a CCP
instance; in any case, we consider processes (types and instances) to
be collective.

Generators and process spawning. New instances of a process 𝑃 can
be spawned through a generator . A generator 𝐺𝑃 is a function that
produces the set of identifiers 𝐺𝑃 (𝜖) = {𝑖, 𝑗,…}, in each event 𝜖, of
the process instances that need to be created, or spawned, in that event
𝜖 (which we call the initiator event at the initiator device for 𝑃𝑖). The
idea is that any device can apply the generator in any round to get the
identifiers and construction parameters of the processes to spawn.
14

a

Process execution, process output, and participation status. For each pro-
cess instance 𝑃𝑖, we use the Boolean predicate 𝜋𝑃𝑖 (𝜖) to denote whether
such instance is being executed at 𝜖 (either being initiated by 𝜖, or
through propagation from previous events).

Each process instance 𝑃𝑖, if active in an event 𝜖 (i.e., 𝜋𝑃𝑖 (𝜖) = ⊤),
ocally computes both an output 𝑂𝑃𝑖 (𝜖) (returned to the process caller)

and a status 𝑠𝑃𝑖 (𝜖) that can take the following values:

1. 𝚎𝚡𝚝𝚎𝚛𝚗𝚊𝚕: the event is not part of the process.
2. 𝚋𝚘𝚛𝚍𝚎𝚛: the event is at the boundary of the process.
3. 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕: the event is in the interior part of the process.

he operation through which 𝑃𝑖 produces its output and status is
efined by its program expression (associated to the process type 𝑃 ).
e do not cover languages for expressing process logic in this paper;

he interested reader may check out aggregate programming languages
like ScaFi [31,50] for details.

Contextual interaction and propagation of process instances to neighbours.
The status of a process at a given event affects two main aspects: (i)
the contextual interaction with other neighbours (e.g., a process may
prescribe a device to share a locally sensed value with the device’s
neighbours that run the same process instance); and specifically (ii)
the propagation of the process. An 𝚎𝚡𝚝𝚎𝚛𝚗𝚊𝚕 event will not interact
with other neighbours and will not propagate the process instance to
neighbours. A 𝚋𝚘𝚛𝚍𝚎𝚛 event will interact with other neighbours but will
not propagate the process instance further. A 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕 event will both
interact with other neighbours and propagate the process instance to
them.

More formally, a process instance 𝑃𝑖 active in an event 𝜖 automat-
ically propagates to any event 𝜖′ of which 𝜖 is a neighbour (𝜖 ⇝ 𝜖′) if
nd only if it returns 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕 status in 𝜖. In formulas:

𝜋𝑃𝑖 (𝜖) =

⎧

⎪

⎨

⎪

⎩

⊤ if 𝑖 ∈ 𝐺𝑃 (𝜖)
⊤ if ∃𝜖′ ⇝ 𝜖. 𝜋𝑃𝑖 (𝜖

′) ∧ 𝑠𝑃𝑖 (𝜖
′) = 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕

⊥ otherwise.

This mechanism allows devices to dynamically enter or leave the
process, which can expand or shrink in space, eventually ceasing to
exist when all devices quit. For instance, a device can call itself out
of a process if its hop-by-hop distance (a specific case of the gradient
described above) from the initiator of the process exceeds a certain
threshold. Although the decision of participating or not in a process in-
stance is ultimately local, that decision may also depend on information
computed collectively within the specific process instance.

An example of evolution dynamics of two concurrent processes is
provided in Fig. 2.

Process result and process status/shape computation. Since a process
instance computes both a status and an output for each event, a
process type 𝑃 can be programmed by specifying two (possibly inter-
dependent) parts: the part computing the ‘‘shape’’ (i.e., the evolving
domain of devices) of the process, and the part computing the output.
These two parts can be equally important for the functionality, since a
different domain of executing devices would provide a different set of
contributions, thereby affecting the overall result. Moreover, running
computations on a smaller domain of devices may also provide non-
functional benefits, by using fewer resources than those needed by a
larger system.

Process termination. A process is said to have terminated once it is
not run any more by any device. It means that all the devices that
previously were 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕 have switched their status to 𝚋𝚘𝚛𝚍𝚎𝚛 or
𝚡𝚝𝚎𝚛𝚗𝚊𝚕—hence preventing further automatic propagation of the pro-
ess to other devices. Closing a process is a matter of coordination
mong the devices that participate in the process. Various strategies
an be considered to coordinate a process shutdown.

Up to this point, we have discussed the ‘‘status computation’’ as
very basic mechanism to regulate the production of the process



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

b
e
t
p
p

s
i
t
c

E
t
d
d
m
h

c

A
e
S
n
d
c
i

Fig. 2. Example of evolution dynamics of two collective processes. Consider a process
𝑃 that propagates only within 1 hop from initiator events. Instance 1 (green) is initiated
y device 4, which keeps it alive until the end of the computation, by initiating it on
ach one of its events 𝜖41 to 𝜖46 . Instance 2 (blue) is initiated only in 𝜖22 and 𝜖23 , and
hus starts later and closes earlier. Notice that device 𝛿3 in events 𝜖32 and 𝜖33 runs two
rocess instances at the same time. This is possible since multiple instances of the same
rocess are allowed to overlap.

hape, i.e., to dynamically determine the set of devices that participate
n a process instance. Further techniques for shape regulation and
ermination of processes are covered in Section 4 and are another
ontribution of this manuscript.

xample 2 (Multi-Gradient). Consider the notion of a gradient, in-
roduced in Example 1. The proposed algorithm has a problem: each
evice only computes the minimum distance to the closest source
evice. Then, how could we produce a set of values denoting the
inimum distances to all source devices? This can be achieved by
aving a gradient process instance per source.

In particular, the CCP type corresponding to a ‘‘multi-gradient
omputation’’ could be defined as follows.

• Process identifier. The pid of process instances is the identifier of
the source from which the gradient has to be computed.

• Generation. The generator function yields in source devices a
singleton set with as sole element the discussed pid, and in
non-source devices an empty set.

• Computation. The computation is the gradient computation dis-
cussed in Example 1, where the source is the device whose
identifier equals the pid.

• Status. The kind of status computation depends on the desired
process shape—e.g., whether we would like the process to be
limited in space or not. In the latter case, the status is just the
‘𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕’ constant. In the former case, the status is ‘𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕’ if
the gradient value computed in the process instance domain (the
set of devices that run that very process instance) does not exceed
a certain threshold, and ‘𝚎𝚡𝚝𝚎𝚛𝚗𝚊𝚕’ otherwise.

• Termination. Termination should be initiated once the source
device in a process is not a source any more (e.g., because
the sources are determined by a dynamic leader election strat-
egy [51]). See Section 4 for possible strategies for organised
termination.

note on applicability. The proposed CCP abstraction can be gen-
rally applied on any system conforming to the model discussed in
ection 3.1. In particular, it is suitable whenever a distributed system
eeds to carry out long-running tasks requiring self-organisation or
ecentralised collaboration among sets of devices. Most specifically, it
an be applied to scenarios analogous to those addressed by sim-
lar abstractions (cf. Section 7), which include, e.g.: swarm rescue
15
Table 1
Summary of notation.

Symbol Description

𝛿 Device identifier
𝜖 Event (round) identifier
𝜖𝛿𝑘 The 𝑘th round of device 𝛿
𝑑(𝜖) Device at which event 𝜖 occurred
𝑝(𝜖) Previous event at the same device
𝑝𝑎𝑠𝑡(𝜖) Set of past events of 𝜖
𝑝𝑎𝑠𝑡𝛿 (𝜖) Set of past events of 𝜖 on device 𝛿
𝑁(𝜖) Neighbour past events of event 𝜖
𝑙𝑎𝑔(𝜖, 𝜖′) Temporal distance between events
𝑑𝑖𝑠𝑡(𝜖, 𝜖′) Spatial distance between events
𝑃 Aggregate process
𝑃𝑖 Aggregate process instance, identified by

pid 𝑖
𝐺𝑃 Generator producing pids {𝑖} for 𝑃
𝜋𝑃𝑖

(𝜖) Whether 𝑃𝑖 is active in event 𝜖
𝑂𝑃𝑖

(𝜖) Output of process instance 𝑃𝑖 in 𝜖
𝑠𝑃𝑖

(𝜖) Status of process instance 𝑃𝑖 in 𝜖
𝑠∗𝑃𝑖

(𝜖) Extended status returned by 𝑃𝑖 in 𝜖
𝚎𝚂𝚙𝚊𝚠𝚗𝑋
(𝑋 ∈ {𝐿,𝑆, 𝐼,𝑊 })

Extended 𝑠𝑝𝑎𝑤𝑛 construct (𝐿=legacy,
𝑆=share, 𝐼=ISPP, 𝑊 =WISPP)

𝑇𝐴𝑋 (𝜖) Termination awareness of event 𝜖 according
to 𝑠𝑝𝑎𝑤𝑛𝑋 (𝑋 ∈ {𝐿,𝑆, 𝐼,𝑊 })

𝑇𝐿(𝜖) Termination predicate on event 𝜖
𝐷𝑤(𝜖)
(𝑤 ∈ {𝑑𝑖𝑠𝑡, 𝑙𝑎𝑔})

Shortest-path distances based on weight
function 𝑤(𝜖, 𝜖′) and source predicate 𝑠𝑟𝑐(𝜖)

𝑆𝑙(𝜖) Slowness predicate on event 𝜖
𝜃 Minimum information speed allowed

scenarios [26], multi-robot exploration [15], smart warehouse manage-
ment [52], spatial coordination [21], e-vehicle fleet navigation [14],
and self-organised environmental monitoring for emergency manage-
ment [42].

3.2.1. A construct for spawning process instances (𝑠𝑝𝑎𝑤𝑛)
In [31], a functional language construct 𝑠𝑝𝑎𝑤𝑛(𝑃 ,𝐺𝑃 ) was intro-

duced to run independent instances of a process 𝑃 , where new instances
are locally generated according to the generator 𝐺𝑃 . A 𝑠𝑝𝑎𝑤𝑛 expres-
sion is evaluated round by round (cf. Section 3.1), and in different
rounds the set provided by 𝐺𝑃 may vary. In a round 𝜖 in which, e.g., 𝑖 ∈
𝐺𝑃 (𝜖), a new instance of 𝑃 with identifier 𝑖 will be spawned locally. We
remark that the computations of different instances 𝑃𝑖 and 𝑃𝑗 are fully
independent and do not share any data. Thus, they represent distinct
activities, each with its peculiar evolution and history.

The output of a 𝑠𝑝𝑎𝑤𝑛(𝑃 ,𝐺𝑃 ) expression in an event 𝜖 is the set
of pairs {(𝑖, 𝑂𝑃𝑖 (𝜖)),…} for which predicate 𝜋𝑃𝑖 (𝜖) returns true and
the output status 𝑠𝑃𝑖 (𝜖) is not 𝚎𝚡𝚝𝚎𝚛𝚗𝚊𝚕. In the rest of the paper, we
enhance this construct and propose algorithmic techniques to improve
the propagation/shrinking dynamics of processes.

Example 3 (Service Discovery). The logic of the service discovery pro-
cesses introduced in Section 2.1 can be expressed through a 𝑠𝑝𝑎𝑤𝑛
(𝑃 ,𝐺𝑃 ). In this case, the 𝐺𝑃 denotes the set of service requests to
be spawned, and 𝑃 is the collective computation to be run on the
corresponding domains. For instance, 𝑃 may denote a computation
that spreads the process in space until a certain distance threshold is
covered, through a gradient (cf. Example 1), and collects offers [49]
by aggregating them while descending the gradient-induced spanning
tree.

4. Techniques for dynamic ensembles

In this section, we describe novel techniques for dynamic ensemble
formation by means of extensions to the basic 𝑠𝑝𝑎𝑤𝑛 function covered
in Section 3.2. The extended spawn 𝚎𝚂𝚙𝚊𝚠𝚗 takes a function 𝑃 simi-
larly to 𝑠𝑝𝑎𝑤𝑛, but 𝑃 can return an extended status that can take the
additional value 𝚝𝚎𝚛𝚖𝚒𝚗𝚊𝚝𝚒𝚗𝚐 indicating that the process must be quit



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

o
t

4

L

e

D
t

i

b

i

𝑑
s
o
r
i
i
𝐷
e
e

D
i

𝑆

w
c
w

s

𝑠

n
F
i
d
c
t
a
l
t
t

not only by the current node but also by all the other devices running
it. In the following subsections, we shall propose four alternative
versions of 𝚎𝚂𝚙𝚊𝚠𝚗 that aim to achieve the best performance in terms
f minimising the (computational and networking) resources required
o guide process propagation and handle process termination.

.1. Baselines

egacy baseline (𝚎𝚂𝚙𝚊𝚠𝚗𝐿)
First, we consider the legacy version of 𝚎𝚂𝚙𝚊𝚠𝚗 from literature [31],

denoted as 𝚎𝚂𝚙𝚊𝚠𝚗𝐿, and describe it in terms of how it determines the
process status at each event. When a process instance 𝑃𝑖 is active in an
event 𝜖 (i.e., 𝜋𝑃𝑖 (𝜖) is 𝑡𝑟𝑢𝑒), an extended status 𝑠∗𝑃𝑖 (𝜖) is returned by 𝑃 ,
and it is interpreted into a ‘‘regular’’ status 𝑠𝑃𝑖 (𝜖) by 𝚎𝚂𝚙𝚊𝚠𝚗. Towards
this aim, we define termination awareness for a process instance 𝑃𝑖 and
vent 𝜖 as follows.

efinition 2. Predicate 𝑇𝐴𝐿(𝜖) denotes the fact that event 𝜖 is
ermination-aware, i.e., either 𝑠∗𝑃𝑖 demands termination in 𝜖, or some

neighbour event was termination-aware since its previous round. In
formulas:

𝑇𝐴𝐿(𝜖) ∶= 𝑠∗𝑃𝑖 (𝜖) = 𝚝𝚎𝚛𝚖𝚒𝚗𝚊𝚝𝚒𝚗𝚐 or ∃𝜖′ ∈ 𝑁 ′(𝜖). 𝑇𝐴𝐿(𝑝(𝜖′)). (1)

Above, 𝑁 ′(𝜖) = 𝑁(𝜖) − 𝑝(𝜖) ∪ {𝜖}, that is the replacement of 𝑝(𝜖) with 𝜖
n 𝑁(𝜖).

According to this definition, if 𝑇𝐴𝐿(𝜖) becomes 𝑡𝑟𝑢𝑒, it will not go
ack to 𝑓𝑎𝑙𝑠𝑒 in future events 𝜖′ on device 𝑑(𝜖) until 𝜋𝑃𝑖 (𝜖

′) becomes
𝑓𝑎𝑙𝑠𝑒. This has the purpose of keeping track in device 𝑑(𝜖), for some
rounds, that 𝑃 should terminate. Actual termination occurs when both
𝜖 and all its neighbours 𝑁(𝜖) agree that the process should terminate,
as computed by the termination predicate 𝑇𝐿(𝜖) defined by:

𝑇𝐿(𝜖) ∶= ∀𝜖′ ∈ 𝑁 ′(𝜖). 𝑇𝐴𝐿(𝜖′). (2)

When 𝑇𝐿(𝜖) becomes 𝑡𝑟𝑢𝑒, it is time for 𝑃𝑖 to terminate at device 𝑑(𝜖),
with 𝑠𝑃𝑖 (𝜖) taking value 𝚎𝚡𝚝𝚎𝚛𝚗𝚊𝚕 (regardless of 𝑠∗𝑃𝑖 (𝜖)). If this is not
the case, but 𝑠∗𝑃𝑖 (𝜖) = 𝚝𝚎𝚛𝚖𝚒𝚗𝚊𝚝𝚒𝚗𝚐, then 𝑠𝑃𝑖 (𝜖) = 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕, indicating
that 𝜖 is still within 𝑃𝑖 (in order to propagate termination). In all other
cases, 𝑠𝑃𝑖 (𝜖) = 𝑠∗𝑃𝑖 (𝜖).

Improved baseline (𝚎𝚂𝚙𝚊𝚠𝚗𝑆)
A significant improvement to 𝚎𝚂𝚙𝚊𝚠𝚗𝐿 can be easily obtained by

exploiting the semantics of the 𝑠ℎ𝑎𝑟𝑒 operator recently introduced in
field calculus (FC) [53], instead of the 𝑟𝑒𝑝 and 𝑛𝑏𝑟 operators used in
𝚎𝚂𝚙𝚊𝚠𝚗𝐿. In terms of computation on the event structure, the 𝚎𝚂𝚙𝚊𝚠𝚗𝑆
extension (subscript 𝑆 is for 𝑠ℎ𝑎𝑟𝑒) allows a more efficient definition of
predicate 𝑇𝐴𝑆 (𝜖) w.r.t. Eq. (1), by directly accessing the predicate in
neighbour events:

𝑇𝐴𝑆 (𝜖) ∶= 𝑠∗𝑃𝑖 (𝜖) = 𝚝𝚎𝚛𝚖𝚒𝚗𝚊𝚝𝚒𝚗𝚐 or ∃𝜖′ ∈ 𝑁(𝜖). 𝑇𝐴𝑆 (𝜖′). (3)

The propagation of termination awareness 𝑇𝐴𝑆 is clearly faster in this
case, since event 𝜖 directly exploits the values of 𝑇𝐴𝑆 of its neighbours
𝜖′, instead of that of their predecessors 𝑝(𝜖′). Actual termination 𝑇𝑆 (𝜖)
in 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 is defined as in Eq. (2), but based on the 𝑇𝐴𝑆 defined
by Eq. (3).

4.2. Exploiting information speed

One shortcoming of 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 is the possible resurgence of termi-
nated processes due to some isolated nodes not receiving the termina-
tion signal. The idea for fixing it, inspired by the BIS algorithm [32],
is that of estimating the spatial and temporal distances of each event 𝜖
from the initiator event 𝜖0 that has started the process. In case they cor-
respond to an information speed that is below a certain threshold (more
details below), it is taken as an indication of a likely disconnection from
16

the source, prompting the device 𝑑(𝜖) to leave the process. t
We call this extension 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 (subscript 𝐼 is for Information Speed-
based Process Propagation, or ISPP). In 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 , termination awareness
𝑇𝐴𝐼 is computed as 𝑇𝐴𝑆 in Eq. (3). Differently from 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 , though,
𝑇𝐴𝐼 becoming true implies a transformation in the returned status, so
that 𝑠∗𝑃𝑖 (𝜖) = 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕 gets converted to 𝑠𝑃𝑖 (𝜖) = 𝚋𝚘𝚛𝚍𝚎𝚛 (cf. Eq. (5)).
This implies that termination-aware nodes do not propagate the process
to their neighbours, slowing down the process expansion and helping
termination to catch up with it. Since termination-aware nodes do
not propagate the process (not even to their next event), once every
neighbour is termination-aware the process naturally stops. This makes
a termination predicate 𝑇𝐼 superfluous.

In addition to this difference, 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 also features another term
called 𝑆𝑙(𝜖) to detect a slow information propagation. Let us denote
with 𝐷𝑤(𝜖) a classic shortest-path distance function based on weights
𝑤(𝜖, 𝜖′) (where 𝜖′ ⇝ 𝜖) and a source predicate 𝑠𝑟𝑐(𝜖). In each event,
this distance estimate is updated to the smallest distance through a
neighbour event, as in a step of the Bellman–Ford algorithm on the
event structure:

𝐷𝑤(𝜖) = min{𝐷𝑤(𝜖′) +𝑤(𝜖, 𝜖′) ∶ 𝜖′ ∈ 𝑁(𝜖)}

starting with 𝐷𝑤(𝜖) = 0 where 𝑠𝑟𝑐(𝜖) holds. Through 𝐷𝑤, an estimation
of the spatial or temporal distance of events from sources can be
obtained after a few rounds of computation, even for those far from
sources. Assume that 𝑠𝑟𝑐(𝜖) is true in all events on the device that
spawned the process by providing pid 𝑖 in the generator 𝐺𝑃 , and 𝑤
s either the spatial distance 𝑑𝑖𝑠𝑡 or the temporal distance 𝑙𝑎𝑔 (cf.

Section 3.1.1). Assume also that devices move at a speed bounded by
a given 𝑣.

A key property of 𝐷𝑑𝑖𝑠𝑡 is that, since it is a minimisation and
𝑖𝑠𝑡(𝜖, 𝑝(𝜖)) cannot be more than 𝑣 ⋅ 𝑙𝑎𝑔(𝜖, 𝑝(𝜖)) (as 𝑣 is the maximum
peed for a device), it always increases with a speed below 𝑣 in events
n a same device 𝑑(𝜖): indeed, even if the values from other neighbours
aise significantly, 𝐷𝑑𝑖𝑠𝑡(𝜖) can still keep the previous value 𝐷𝑑𝑖𝑠𝑡(𝑝(𝜖))
ncremented by 𝑣 ⋅ 𝑙𝑎𝑔(𝜖, 𝑝(𝜖)). Instead, in 𝐷𝑙𝑎𝑔 , the weight 𝑙𝑎𝑔(𝜖, 𝑝(𝜖))
s the time interval between two rounds, hence it can be shown that
𝑙𝑎𝑔(𝜖) is always equal to the temporal distance between the current

vent 𝜖 and its most recent source event (modulo lag measurement
rrors). Thus, we define slowness as follows.

efinition 3. Predicate 𝑆𝑙(𝜖) (slowness) denotes the fact that the
nformation speed detected at event 𝜖 is too slow, i.e.:

𝑙(𝜖) ∶= 𝐷𝑑𝑖𝑠𝑡(𝜖) ≤ 𝜃(𝐷𝑙𝑎𝑔(𝜖) − 𝛥𝑡) (4)

here 𝛥𝑡 is the average time interval between rounds, and 𝜃 is a
onstant representing the minimum speed of information that we are
illing to allow.

When 𝑆𝑙(𝜖) becomes true, it causes an event to also enter the 𝚋𝚘𝚛𝚍𝚎𝚛

tate. Summarising, the status 𝑠𝑃𝑖 is computed as:

𝑃𝑖 (𝜖) ∶=

⎧

⎪

⎨

⎪

⎩

𝚎𝚡𝚝𝚎𝚛𝚗𝚊𝚕 if 𝑠∗𝑃𝑖 (𝜖) = 𝚎𝚡𝚝𝚎𝚛𝚗𝚊𝚕

𝚋𝚘𝚛𝚍𝚎𝚛 if 𝑠∗𝑃𝑖 (𝜖) = 𝚋𝚘𝚛𝚍𝚎𝚛 or 𝑇𝐴𝐼 (𝜖) or 𝑆𝑙(𝜖)

𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕 otherwise.

(5)

Consider a scenario where devices move, hence possibly discon-
ecting from the main part of the process originated from the source.
urthermore, assume that 𝜃 > 𝑣 and the actual speed of information
n the network is at least 𝜃. Events 𝜖 happening in the connected
evices are still not slow, because newer events happening in the source
ontinue to spread a 0 temporal distance that leads to 𝐷𝑙𝑎𝑔(𝜖) to be
oo low for Eq. (4), since the measured speed of information will be
t least 𝜃. However, events happening on the disconnected devices no
onger receive information from the source, so that their 𝐷𝑙𝑎𝑔 increases
ogether with time while their 𝐷𝑑𝑖𝑠𝑡 increases at speed 𝑣. Since 𝜃 > 𝑣,
he left-hand side of Eq. (4) increases faster than the right-hand side, so

hat 𝑆𝑙(𝜖) has to eventually become 𝑡𝑟𝑢𝑒, stopping process propagation



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

(
i
b
t
p
p
a

t
w
i
𝑖
d
c
d
e
i
t
o
a
i
t
l

4

t
t
𝜃
p
o
c
e

f
r
a
w
p
e

𝜃

𝑖
t
o
e
B
𝛿
h
𝜖
i
o
t
t
a
h

l
a
n

T
a
m
a
c
i

P
t
n
a
n
s
p
t

I
i
a
r
t
h
1
t

b
m
s

and terminating that disconnected part. Without the 𝑆𝑙 mechanism,
isolated groups of devices would continue to run the process, possibly
even resurrecting it by reconnecting to parts where it had already
terminated.

4.3. Wave-like propagation

The last extension of 𝑠𝑝𝑎𝑤𝑛 introduced in this paper is 𝚎𝚂𝚙𝚊𝚠𝚗𝑊
subscript 𝑊 is for Wave-like ISPP). Technically, this version is sim-
lar to 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 , but the two versions exhibit fundamentally different
ehaviours: while 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 aims at terminating isolated instances of
he process, 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 acts during a phase when the process is still
ropagating. Thus, it aims at modifying the dynamic evolution of alive
rocesses, by terminating them in selected devices that have already
cted as propagators, and are no longer required.

Specifically, the difference between 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 and 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 lies in
he definition of the 𝑠𝑟𝑐 predicate used by 𝐷𝑑𝑖𝑠𝑡 and 𝐷𝑙𝑎𝑔 to determine
hether an event 𝜖 is a source event. In 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 , 𝑠𝑟𝑐(𝜖) is only true

n the very first event when the process is generated by providing pid
in the generator 𝐺𝑃 , and not in the following events on the same
evice (unlike 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 ). This apparently minor difference has large
onsequences in the algorithm behaviour: as the source ephemerally
isappears, every event behaves as if being in a disconnected part,
ventually becoming slow and leaving the process (including the orig-
nal source itself). This leads to a wave of termination that starts from
he source device and propagates outwards, following the propagation
f the process itself with some lag. At any given time, the process is thus
ctive only on a set of events with similar spatial distances from the
nitiator 𝜖0, leading to a wave-like propagation. This allows the process
o travel far through the network, while keeping its spatial extension
ow at all times.

.4. Adapting to different scenarios

The newly introduced extensions both rely on a crucial parameter 𝜃,
he minimum information speed that we are willing to allow. Correctly
uning this parameter is crucial for obtaining the best performance. If
becomes higher than the average information speed in the network,

rocesses terminate prematurely, failing to accomplish their tasks. In
rder to avoid this scenario, the estimate of 𝜃 needs to be on the
onservative side: however, if it is too low, the behaviour of the new
xtensions will degenerate to be very similar to 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 .

Furthermore, a one-fits-all number for 𝜃 is impossible, as the in-
ormation speed depends on many parameters: time intervals between
ounds 𝑡 and their variance tvar, communication radius 𝑟, dimension-
lity of the space 𝑛, device density dens, movement speed speed and
hether propagation is allowed through a single path or multiple
aths. If the process is restricted to a single path, the theoretical-based
stimation in [32] of single-path information speed can be used:

𝑠𝑝 =
8𝑛(1 + 𝑡𝑣𝑎𝑟2)𝑟

4(𝑛 + 1)𝑡
+

𝑠𝑝𝑒𝑒𝑑
2

. (6)

For instance, this could apply to the tree topology scenario in the
experiments (cf. Section 5.2), although the peculiar way in which the
spanning tree is built may practically affect such speed. If instead the
propagation is allowed through multiple paths, the information speed
may increase depending on the network density.

In practice, empirical estimates (obtained through simulation tools
such as FCPP [54]) are the most useful. Given 𝑛 = 2 and for a wide
range of other network parameters, we found that 𝜃 = 2.5 behaved
reasonably well assuming that process propagation is allowed in every
direction. If instead process propagation is constrained to a spanning
tree, we found that 𝜃 = 0.3 ensures the best results across a spectrum
of network parameters.
17
4.5. Optimality guarantees

Before the experimental evaluation of performance that we will
carry out in Section 5, we investigate some formal properties of the pro-
posed techniques for dynamic ensembles, starting with process propa-
gation.

Theorem 1 (Optimal Propagation). Assume that 𝑃 is a process with
an expansion criterion that does not change over time. Assume that the
information speed that can be measured through 𝑙𝑎𝑔, 𝑑𝑖𝑠𝑡 in the network is
always higher than the threshold 𝜃. Then processes propagate at maximum
information speed, for every spawn variant 𝚎𝚂𝚙𝚊𝚠𝚗𝑋 .

Proof. First, notice that the process propagation logic as described in
Section 3.2 does not depend on the spawn variant of choice. Intuitively,
the propagation is as fast as possible since it follows a simple broadcast
strategy. More formally, consider an augmented event structure 𝐄 =
⟨𝐸,⇝, 𝑑, 𝑠⟩ and an event 𝜖 ∈ 𝐸 where a process instance 𝑃𝑖 is generated:
∈ 𝐺𝑃 (𝜖). Consider the sub-network of devices that eventually should

ake part in the process instance 𝑃𝑖, which induces a substructure 𝐄′

f events only on those devices. For any device 𝛿′, consider the first
vent 𝜖′ on 𝛿′ that is in the future of the generator event: 𝜖 < 𝜖′.
y induction on the hop-distance between 𝜖 and 𝜖′ for the various
′, we can prove that 𝑃𝑖 is run in 𝜖′ (i.e., 𝜋𝑃𝑖 (𝜖

′)). The base induction
olds trivially for 𝛿′ = 𝑑(𝜖). Consider now the shortest path of events
⇝ … ⇝ 𝜖′′ ⇝ 𝜖′. By inductive hypothesis, 𝑃𝑖 is run in the event 𝜖′′ that

mmediately precedes 𝜖′ (i.e., 𝜋𝑃𝑖 (𝜖
′′)). Since the expansion criterion

f 𝑃 does not depend on time, and 𝑑(𝜖′′) is going to eventually enter
he process, it must be that 𝑃𝑖 returns an 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕 status on 𝜖′′, thus
he process is expanded to every neighbour including 𝜖′. This happens
lso in 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 , 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 as the measured information speed has to be
igher than 𝜃, and thus the process state is not modified. □

Even though process propagation does not pose particular chal-
enges, handling termination is a more delicate matter. For legacy
pproaches, we can only get performance bounds for networks that do
ot experience any disconnection.

heorem 2 (Legacy Termination Speed). If a network is always connected
t all times, termination propagates in 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 at the maximum infor-
ation speed plus a lag of one round; while in 𝚎𝚂𝚙𝚊𝚠𝚗𝐿 it propagates at
third of the information speed plus a lag of three rounds. If a network

an be disconnected, 𝚎𝚂𝚙𝚊𝚠𝚗𝐿 and 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 may never terminate a process
nstance.

roof. If a network can be disconnected, a node that is not supposed
o terminate a process instance may enter a process, then be discon-
ected from the rest of the network, failing to receive the termination-
wareness signal and thus never fully terminating the process. This
ode may also occasionally re-connect to the rest of the network,
preading the process to other devices on periodic occasions, so that the
rocess can keep involving multiple devices for an indefinite amount of
ime.

Assume now instead that a network is always connected at all times.
n 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 , termination-awareness propagates with a broadcast at max-
mum information speed. Once a device is first reached by termination
wareness, in most cases it will not immediately terminate; but after a
ound of computation all its neighbours will become termination-aware
hus allowing termination with a minimal delay. A similar procedure
appens with 𝚎𝚂𝚙𝚊𝚠𝚗𝐿, but with information requiring an average of
.5 rounds to travel instead of 0.5 rounds, thus requiring three times
he time overall. □

In practice, temporary network disconnections are common in mo-
ile networks. They are enough to stop the propagation of termination,
aking the performance of legacy approaches very poor (as we will

how in Section 5). By adding the control on information speed, we



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

T
i
a
𝑣
i
r
p

i
d
O
b
w
a
d
c
t

𝑑

d
s

s
a
h
h

can guarantee process termination even in presence of disconnections,
with a speed that depends on the difference between device movement
𝑣 and the information speed bound 𝜃.

heorem 3 (Termination with Information Speed). Assume that the
nformation speed that can be measured through 𝑙𝑎𝑔, 𝑑𝑖𝑠𝑡 in the network is
lways higher than the threshold 𝜃, and that devices move at most at speed
< 𝜃. If a network is always connected at all times, termination propagates

n 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 , 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 at the maximum information speed plus a lag of one
ound. If a network can be disconnected, termination in 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 , 𝚎𝚂𝚙𝚊𝚠𝚗𝑊
ropagates with a minimum speed of 𝜃−𝑣 plus a lag of 𝜃

𝜃−𝑣 rounds, from the
moment when the process instance source first becomes termination-aware
(for 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 ), or from the moment when the process is first generated (for
𝚎𝚂𝚙𝚊𝚠𝚗𝑊 ).

Proof. If a network is always connected at all times, the termination
performance of 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 , 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 matches that of 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 as they
nclude the same termination-awareness predicate. If a network can be
isconnected, termination is still guaranteed by the slowness predicate.
nce the process instance source becomes termination-aware, it stops
eing a source for the 𝐷𝑤 computations, so that everywhere in the net-
ork (including disconnected parts) 𝐷𝑑𝑖𝑠𝑡 starts increasing by a speed
t most 𝑣 while 𝐷𝑙𝑎𝑔 starts increasing together with time. Consider a
evice at a spatial distance of 𝑑 from the source, and assume as worst
ase that its initial temporal distance from the source is zero. We can
hen compute after how much time 𝑡 Eq. (4) has to switch to false:

+ 𝑣 ⋅ 𝑡 = 𝜃(𝑡 − 𝛥𝑡) ⇔ 𝑑 + 𝜃𝛥𝑡 = (𝜃 − 𝑣)𝑡 ⇔ 𝑡 =
𝑑 + 𝜃𝛥𝑡
𝜃 − 𝑣

This gives us as an extra time before termination of 𝜃
𝜃−𝑣 rounds indepen-

ent of distance, and a termination propagation speed from the instance
ource of 𝑑∕𝑡 = 𝜃 − 𝑣. □

Even though the previous result only guarantees termination for 𝜃
ufficiently greater than 𝑣, we remark that this is a very reasonable
ssumption for real networks. In fact, if devices move faster than
ow fast information can travel between them, any sort of multi-
op coordination between them becomes impossible. For 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 , for

termination to start it is still required that termination-awareness first
reaches the instance source. Even though there are no guarantees on the
time required for it under disconnections, this is usually not a problem
for two reasons: (i) if the instance source experiences disconnections,
devices start to exit the process regardless of whether the source is
termination-aware; (ii) even though the disconnection of some device
is likely, the disconnection of a specific device is much less likely.

Finally, we can use the previous results to estimate how many
devices are part of an instance in 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 .

Corollary 1 (Wave Front Size). The radius of a process instance in
𝚎𝚂𝚙𝚊𝚠𝚗𝑊 starts from about one hop and increases at speed 𝜌−𝜃+𝑣, where
𝜌 is the true information speed in the network.

Proof. By Theorem 1, the outermost edge of the wave propagates with
the true information speed of the network 𝜌, so that at instant 𝑡 it has a
radius of 𝜌𝑡. By Theorem 3 the innermost edge of the wave has a radius
of 𝑑 = (𝜃 − 𝑣)𝑡 − 𝜃𝛥𝑡. This gives an overall active radius of the instance
of (𝜌 − 𝜃 + 𝑣)𝑡 + 𝜃𝛥𝑡, concluding the proof. □

Although the radius of the instance always tends to increase, if
𝑣 ≪ 𝜌 and the estimated 𝜃 is close to the real 𝜌, the increase speed
may be small enough to be negligible.

5. Evaluation

In this section, we evaluate the proposed algorithms through syn-
thetic experiments. First, we present the evaluation goals (Section 5.1)
and describe the simulation setup (Section 5.2). Then, we show and
18
discuss the results for the spherical (Section 5.3.1) and tree topology
(Section 5.3.2). According to modern scientific practice, the experi-
mental framework is publicly available3 and permanently archived on
Zenodo [33], with build infrastructure and instructions, for inspection
and reproducibility.

5.1. Goals

This evaluation aims to experimentally verify and analyse the algo-
rithms proposed in this paper. In particular, we consider the following
evaluations goals:

1. Correctness. The goal is to assess that the algorithms do provide
the desired process functionality, in terms of process propagation
and termination (as covered in Section 4).

2. Performance assessment. The goal is to compare the performance
of the proposed algorithms in accomplishing the task at hand,
w.r.t. the baseline 𝚎𝚂𝚙𝚊𝚠𝚗𝐿, in terms of convergence time and
resilience.

3. Efficiency. The goal is to get some insight about the cost or
overhead of the algorithms (e.g., in terms of bandwidth con-
sumption).

5.2. Experimental setup

5.2.1. Scenarios
The basic use case implemented by all the experiments is a network

of devices where, at some point in time, a source device 𝛿𝐹 (from)
sends a message through a process to reach a destination device 𝛿𝑇
(to). In order to reduce the variance across runs, we fix the source to
be at 25% towards the bottom left of the simulated space, and the
destination to be symmetrically at 75% towards the top right of the
simulated space. Note that, in the simulation, there is a global clock
(unlike in a real world scenario). However, it is not available to the
program run by individual nodes. Intervals between rounds are not
identical (see parameter tvar below), and the simulator provides to
each node the exact temporal distance 𝑙𝑎𝑔 between events, as well as
the spatial distance 𝑑𝑖𝑠𝑡 with a random Weibull-distributed error with
a standard deviation of 30%. These data are used for computing the
speed of information in 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 and 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 (see Section 4.2).

We distinguish between two scenarios based on the topology fol-
lowed by communications. In the 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 topology, messages origi-
nate in the 𝛿𝐹 device and spread radially in 3D trying to reach the 𝛿𝑇
device. In the 𝑡𝑟𝑒𝑒 topology, the devices are organised in a spanning
tree with a root at the middle of the simulated space, and communica-
tions follow the edges of the tree from 𝛿𝐹 to 𝛿𝑇 . In both scenarios,
the events happening at the 𝛿𝑇 device make the process function 𝑃
return status 𝚝𝚎𝚛𝚖𝚒𝚗𝚊𝚝𝚒𝚗𝚐, since the reception of the message implies
the termination of the process in the whole network. For simplicity,
in each run we generate only one process at time 𝑡 = 10 and wait
until time 𝑡 = 50 for its completion. We verified that results do not
change by generating several processes in each test, since processes are
independent of one another.

5.2.2. Parameters and executions
We consider a large number of different executions, based on the

variation of the following four parameters, that have been pointed out
to define the main characteristics of a peer-to-peer network [32]:

1. tvar (relative variance of round intervals as percentage of the
average), varying from 0% (quasi-synchronous rounds) to 40%
(highly asynchronous rounds), in steps of 1%;

3 https://github.com/fcpp-experiments/process-management

https://github.com/fcpp-experiments/process-management


Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

F
o

s
p
c
b
f
t
r
o
s
f

5

t
a
t
d

5

p
a
f
b
s
i
e
e

t
n
F
l
i
a
A
t
o

(
(
f
n
f
o
w
s
a
p
v
t
g
t
v
i
t
t
i

f

2. dens (average number of neighbour devices for a device), varying
from 8 (very sparse network) to 28 (very dense network), in steps
of 0.5;

3. hops (average diameter of the network in hops), varying from
4 (small networks) to 24 (relatively large networks), in steps of
0.5;

4. speed (movement speed as percentage of communication radius
over average round interval). varying from 0% (static nodes) to
40% (highly mobile nodes), in steps of 1%.

or each scenario and setting of the parameters, we averaged the results
ver 1000 randomised executions, also computing their variance.

The nodes are placed at random positions in a square area whose
ide, as well as the number of nodes itself, is determined from the
arameters above. We model movement as linear through randomly-
hosen waypoints in the square. We used a simple model of connection
etween devices, so that communication always succeeds within a
ixed radius and fails beyond it. We arbitrarily choose the spatial and
emporal units so that the communication radius is 100 and the average
ound interval is 1. We remark that this choice does not affect the results
f simulation and hence it is not useful to make it vary. The information
peed threshold 𝜃 was set to 2.5 for the spherical scenario and to 0.3
or the tree scenario, as reported in Section 4.4.

.2.3. Metrics
From each simulation run, the following metrics are extracted:

• Delivery count (dcount): the number of messages that have been
delivered (i.e., the number of processes carrying a message that
have reached their destination).

• Average running processes (aproc): the average number of active
process instances in the network.

• Average message size (asiz): the average size (in bytes) of the
messages exchanged in each round to spread and maintain pro-
cesses.

• Maximum message size (mmsiz): the maximum size (in bytes) of
the messages exchanged in each round to spread and maintain
processes.

• Average delay : (adel) the average time taken by a message to
travel from 𝛿𝐹 to 𝛿𝑇 .

We compare those metrics for each version of 𝚎𝚂𝚙𝚊𝚠𝚗: 𝚎𝚂𝚙𝚊𝚠𝚗𝐿 (legacy),
𝚎𝚂𝚙𝚊𝚠𝚗𝑆 (share), 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 (ispp), and 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 (wispp).

The metrics are connected to the goals as follows:

• dcount conveys how many messages are delivered, and by
comparing it to the number of sent messages (which is 1, set by
design of the simulated scenario) it provides empirical insights
about functional correctness;

• by considering the average delay adel (the lower the better), it
is possible to compare the relative performance of algorithms in
accomplishing the task at hand (i.e., delivering a message);

• finally, aproc, asiz , and mmsiz provide information about
the costs associated to the algorithm execution, hence supporting
assessment of efficiency.

5.3. Results

5.3.1. Spherical topology
Fig. 3 (left column) shows the average number of active processes

(aproc) for the spherical scenario, for each version of 𝚎𝚂𝚙𝚊𝚠𝚗 varying
time (row (a)), and averaged over the whole simulated time varying
the four chosen parameters (rows (b)–(e)).

In resource consumption, 𝚎𝚂𝚙𝚊𝚠𝚗𝐿 is much worse than its exten-
sions, while 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 and 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 outperform 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 , with 𝚎𝚂𝚙𝚊𝚠𝚗𝑊
having the lowest footprint of all. The gap between the four versions
increases especially with increasing hops. This is expected, as the wave
19
of terminating nodes (and information speed-driven termination) has
more time to be effective in large-diameter networks.

The average size of messages exchanged resulted in the same pattern
as that of aproc, despite 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 and 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 having a larger overhead
per process resulting in a maximum message size of 82 bytes while
𝚎𝚂𝚙𝚊𝚠𝚗𝐿 and 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 have a maximum message size of 59 bytes. All
he algorithms successfully deliver the message at about the same time,
nd all these observations are confirmed varying speed, dens, hops and
var. We thus omitted plots for the measures other than aproc as they
id not convey significant additional insight.4

.3.2. Tree topology
For the tree scenario, we implemented an adaptive algorithm com-

uting the spanning tree based on [55]. Then, we guide process prop-
gation by first following tree parents towards the root, and then
ollowing children that include the destination in their routing ta-
le (also computed through a literature adaptive algorithm, called
ingle-path collection [56]). We considered two possible approaches for
mplementing the routing table: as an unordered set of children for
very node of the tree, or as a 256-bit Bloom filter [57] to reduce the
xchanged message size.

Note that the formal results of Section 4.5 still hold with this
opology, assuming that the actual network is the spanning tree, i.e., ig-
oring the physical links between nodes that do not belong to the tree.
or instance, the (estimated) distance between two nodes refers to the
ength of the path connecting them on the tree, instead of their distance
n free space. Similarly, propagating the process by broadcast ends up in
ctivating the process in the nodes of the tree on the path from 𝛿𝐹 to 𝛿𝑇 .
n important consequence is that the tree topology is more fragile than

he spherical topology to network disconnections, for it is sufficient that
ne of the links in the tree is temporarily lost.

Fig. 3 (right column) shows the average number of active processes
aproc) for the tree topology, for each version of 𝚎𝚂𝚙𝚊𝚠𝚗 varying time
row (a)), and averaged over the whole simulated time varying the
our chosen parameters (rows (b)–(e)). As expected, the percentage of
odes running the process at any given time is significantly lower than
or the spherical topology (cf. Fig. 3 left column). The performance
rder between the four versions confirms that of the spherical scenario,
ith a larger margin for 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 . Also in the tree case, all algorithms

uccessfully deliver the message with a similar and very high prob-
bility at about the same time. Only 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 has a slightly lower
robability of successful delivery, though always above 98% except for
ery high values of tvar and for middle-range values of speed, where
he probability can drop to 70% (see Fig. 4 row (a)). Looking at that
raph, it is interesting to note that the behaviour of 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 converges
o the behaviour of 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 when the speed of devices reaches the
alue of 30% (recall that speed is a percentage), corresponding to the
nformation speed threshold 𝜃 = 0.3 set for the experiments with
he tree topology. This is in accordance with Corollary 1, according
o which when 𝑣 = 𝜃 the wave only expands without contracting,
ncreasing its radius with the true information speed 𝜌.

The performance in message size follows partly the values shown
or aproc, although with a strong impact from the chosen approach

for implementing the routing table, especially when varying dens and
hops thus increasing the number of devices in the network. See Fig. 4
rows (b)–(e), where the left column refers to the ordered map imple-
mentation of the routing table, while the right column refers to the
Bloom filter implementation. In the ordered map implementation, as for
the spherical scenario, 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 and 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 have a larger overhead
visible in the maximum message size (left column, rows (d),(e)), which
is compensated by the reduction in aproc resulting in an average
message size (left column, rows (b),(c)) that is smaller for 𝚎𝚂𝚙𝚊𝚠𝚗𝑊 ,
with 𝚎𝚂𝚙𝚊𝚠𝚗𝐼 only slightly worse than 𝚎𝚂𝚙𝚊𝚠𝚗𝑆 . The fixed size of the

4 These additional figures can be accessed online at the linked repository.



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.
Fig. 3. Average processes (aproc) for the spherical (left) and tree (right) scenarios varying time, speed, dens, hops and tvar.
Bloom filter results in it performing slightly worse on average message
size (right column, rows (b),(c)), except for large numbers of hops. On
maximum message size (right column, rows (d),(e)), on the other hand,
the performance increase is huge, improving by more than a factor of
10 in many executions.

5.3.3. Summary and key findings
It is important to stress the fact that the goal of our experiments

was not to compare our implementation of multi-hop proximity-based
20
message delivery with existing related techniques from the literature on
computer networks (e.g. P3ON [58], ad hoc networks [59]). The notion
of CCP applies to a much more general family of problems than message
delivery (see Section 8.2 for a discussion about additional interesting
domains).

In general, the high-level requirements we set out in Section 2
(namely, having scalable, decentralised and collective mechanisms to
control ensembles), are essentially satisfied by the very design of the
techniques studied here: the propagation and termination functions



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

a

a
e
i

i
d
w
w
s

Fig. 4. Top row: delivery count as percentage in the tree scenario, varying speed and tvar. Other rows: average message size (centre) and maximum message size (bottom) using
n unordered set (left column) and a Bloom filter (right column).
i
w
C
n
b

m
i

re indeed totally distributed, lightweight computations performed on
ach device, and achieve their collective global tasks by exploiting
nformation exchange between neighbouring nodes.

Our experiments convey that the CCP abstraction provides a work-
ng solution for regulating, in a decentralised way, how an ensemble of
evices takes shape while carrying out a collective task. In particular,
e have shown that ensemble evolution can be effectively controlled
ith well-founded strategies, such as the ones based on information

peed, that ultimately result in globally coherent local decisions of the
21

c

ndividual devices (i.e. joining or leaving the computation). Moreover,
e have elaborated how the different strategies for the evolution of
CPs can be coupled with different logical views of the underlying
etwork (i.e., the spherical vs. tree scenarios) to exhibit complementary
enefits and drawbacks (cf. efficiency and resilience).

The main challenge related to the experimental part is the esti-
ation of the information speed parameter 𝜃, namely the minimum

nformation speed that we are willing to allow. This is crucial for the
orrect working of our algorithms. As explained in Section 4.4, an



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.
Fig. 5. Case study: the behaviour of the nodes.

effective way to deal with it is by a empirical evaluation, a potentially
costly process that, however, has to be performed only once for a given
scenario.

6. Case study: Service discovery and access

After the in-depth evaluation presented in the previous section, we
now describe the application of the techniques proposed in this paper to
a more realistic and compelling case study: service discovery and access
in a peer-to-peer network. In particular, the main goal of the case study is
to demonstrate that the proposed techniques can support a non-trivial
scenario where:

• devices initiate/terminate/participate to CCPs depending on their
current status determined by a finite state machine (FSM);

• each device can participate to several processes at the same time;
• processes have a complex lifetime: starting their life with a spheri-

cal wave expansion, they continue with several simultaneous tree-
based expansions springing from different sources, and finally
they end their life due to a corresponding number of tree-based
terminations.

The source code, build infrastructure, and instructions for running
the case study are also publicly available at the provided permanent
repository (cf. Section 5 and [33]).

6.1. Scenario

In this scenario, there is a network of nodes which provide services
(e.g., computing, storage, or sensing services) and that can act as
service consumers and/or service providers. For simplicity, we assume
that each node in the network offers exactly one service in a predefined
set {𝑆1,… , 𝑆𝐾}. Moreover, each node associates a rank 𝑟 ∈ [0, 1) to its
offered service 𝑆, with a higher rank corresponding to a better service.

Dynamically, a potential consumer device can launch a service
discovery process responsible for gathering at the device the offers pro-
vided by the devices in its surrounding. Once the device has acquired
the information, it can choose the desired service offer for actual access
of the corresponding service.

Most specifically, the behaviour of each node is modelled as per the
state machine in Fig. 5:

• Nodes start in IDLE state. Triggered by some condition (see
below), during a round of execution a node 𝑛 can send a discovery
message to search for a service 𝑆. Node 𝑛 then transitions to the
DISCO state.

• Each node 𝑚 in IDLE state that offers service 𝑆 replies with an
offer message to 𝑚, which includes the rank 𝑟 of 𝑆, and transitions
to the OFFER state.
22
Fig. 6. Case study: a simple scenario with a square pink node sending an ack to the
red node.

• Node 𝑛 collects the offers and, after a stabilisation time elapses, the
best-rank offer is accepted by sending an ack message to its sender
𝑚, while 𝑛 transitions to the SERVED state. The other offers, if any,
are simply ignored. Moreover, if node 𝑛 does not receive an offer
for service 𝑆 within a specified timeout interval after sending its
disco message, it returns to the IDLE state.

• Upon receiving the acknowledgement for its offer, node 𝑚 transi-
tions to the SERVING state and starts sending a file to 𝑛, namely
a sequence of 𝑁 data messages at the rate of one message per
round. If node 𝑚 does not receive an ack within a specified
interval after sending its offer message, it times out and it returns
to the IDLE state.

• After sending (resp. receiving) the last EOF message, 𝑚 (resp. 𝑛)
returns to the IDLE state

The disco messages are sent using the spherical topology, which
broadcasts them to all the nodes in the network. Moreover, we adopt
the wispp termination strategy, since the process that delivers the
message should be active in each node just for the time needed to
propagate it to nodes further away. The other types of messages (offer,
ack, and data) are instead sent using the tree topology, since they
have a specific destination and thus benefit from a focused propagation
along a spanning tree. We adopt the ispp termination strategy, which
is particularly effective for the tree topology (Section 5.3.2). In order
to limit the number of created processes, given a request by a node
𝑛, all the offers made for such a request share the same process,
with pid equal to 𝑛. The same process is also used by 𝑛 to send its
acknowledgement to the chosen server. Since in our case study a node
𝑛 does not make other requests until the current one is served (or
cancelled by a timeout), there is no ambiguity about which request is
associated with process pid 𝑛.

Fig. 6 shows a snapshot of the FCPP graphical user interface during
the execution of an instance of the case study. The white and coloured
circles and squares represent the network devices, and neighbour nodes
are connected with solid lines. In this instance, which is particularly
simple, one node 𝑛 (pink square) has sent a disco message for a service
that was offered only by the red node 𝑚 near the top. Node 𝑚 has
already sent an offer to 𝑚 (its red colour denotes it is in OFFER status),
which has been received by 𝑛; and node 𝑛 has just sent an ack message
towards 𝑚 (its pink colour means it is in SERVED status). It is worth
noting also the green nodes, that represent the intermediate nodes
connecting 𝑛 and 𝑚 in the spanning tree. They are coloured because
they host the active process spawned by 𝑚 to send its offer to 𝑛, and



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.
Fig. 7. Case study: other scenarios.
currently exploited by 𝑛 to send its ack to 𝑚. Their green colour denotes
the fact that they are in IDLE status, since they act just as the medium
for the exchange of messages between 𝑛 and 𝑚. In Section 6.3 we
shall describe two slightly more complex scenarios of the case study
execution.

6.2. Parameters

The case study is configured with the parameters discussed in Sec-
tion 5.2.2 (i.e., temporal variance tvar, network density dens, network
diameter hops, and device speed), plus the following:

1. svc-types, representing the number of different types of services
offered by the nodes in the network. Each node offers exactly one
of such services, identified by an id between 0 and (svc-types −
1).

2. to-coeff, the coefficient to be multiplied by hops for determining
the timeout value used by the behaviour state-machine. For
instance, if hops is 20 and to-coeff is 2, a node that has sent a disco
message gives up if it does not receive an offer within 2×20 = 40
rounds.

3. stab-coeff, the coefficient to be multiplied by hops for determin-
ing the stabilisation time value for collecting offers used by the
behaviour state-machine.

Unless otherwise noted, in the following section we have adopted
the following configuration: 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 1, 𝑟𝑎𝑑𝑖𝑢𝑠 = 100, 𝑡𝑣𝑎𝑟 = 10,
𝑑𝑒𝑛𝑠 = 10, ℎ𝑜𝑝𝑠 = 20, 𝑠𝑝𝑒𝑒𝑑 = 0, svc-types = 100, to-coeff = 2, and
stab-coeff = 1.
23
6.3. More scenarios

Fig. 7 (top left) shows a screenshot of a case study execution similar
to the one of Fig. 6, with the difference that the requested service is
offered by two nodes: the red one as in the previous example, and
the blue one. Since the ranks associated with the service by the two
nodes are, respectively, 0.08 and 0.27, the second one is chosen by the
requester. At the time of the screenshot, the requester is being SERVED
(pink) and the chosen server is SERVING it (blue). The sequence of state
transitions is illustrated in Fig. 7 (top right), where the total number of
nodes in each state (except for IDLE) is plotted as a function of time.
It is interesting to note that, shortly after the request is created at time
10, the two server nodes switch to the OFFER state almost at the same
time. The chosen server goes to SERVING and then IDLE around time
40, while the other server returns to IDLE around time 46 (because it
times out).

A last example is shown in Fig. 7 (bottom left). Here, two requesters
(pink) are being SERVED by their respective best-rank servers (blue).
The other servers are still in OFFERing state, waiting for the timeout.
What is particularly interesting to observe in this plot is the size of
the nodes: in fact, some are clearly larger than others. In our FCPP
simulation of the case study, we use the node size as a way to visualise
how many processes are active in a node. In this relatively complex
scenario, where several requesters are connected with several servers,
some nodes host three active processes at the time of the screenshot.
The sequence of state transitions is illustrated in Fig. 7 (bottom right).

7. Related work

In the following, we distinguish and relate upon multiple clusters of
works that share some commonalities with our approach to distributed
computational processes. The works that are most related, for both



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

p
t
[
3
n
a
m
a
m
c
i
s
t
s

(
i
p
t
t
a
m
p
s

P

m
i
s
m
o
a
o
p
c
L
c
c
t
i
H
c
s
t
m
O
p
i
o
t

E

p
(

c
s

methods and goals, are those on field-based coordination and ensemble-
based approaches. However, we also mention pattern formation, swarm
clustering, and epidemic network processes as sources of related ideas,
to be further investigated in future work.

Field-based coordination, aggregate computing, and aggregate processes
This work takes inspiration from the framework of aggregate com-

uting [13], where distributed systems are programmed ‘‘as wholes’’
hrough a network-wide program manipulating (computational) fields
13,60]. Specifically, we consider the notion of an aggregate process [15,
1], which models a transient, concurrent aggregate computation run-
ing on a dynamic set of devices. Aggregate processes have been
dopted in scenarios like swarm-based exploration [15], peer-to-peer
essaging [15], service discovery [15], multi-agent plan repairing [61],

nd spatial coordination [21]. Aggregate processes have been for-
alised both in the field calculus [13,15,31] and in the exchange

alculus [62–65]. In this work, we provide a more general character-
sation of aggregate processes, that does not require to understand the
emantics details of field and exchange calculi. Moreover, we extend
he state of the art on aggregate processes [15] with more efficient and
ophisticated policies for controlling their lifecycle.

A related tuple-based coordination approach is Tuples On The Air
TOTA) [66]. In TOTA, tuples propagate and evolve (e.g., their content)
n a network, according to various kinds of application-specific rules:
ropagation rules, controlling where tuples may reside and how they
ransform; and maintenance rules, controlling how tuples change over
ime or w.r.t. environmental events. Our CCPs are a more general
bstraction, and can be used to implement TOTA tuples as well as TOTA
iddleware activities—following the approach in [21] where aggregate
rocesses are used to support a decentralised coordination model with
ituated tuples.

attern languages
The proposed work can be framed within the field of self-organising

ulti-robot pattern formation [67]. The survey [11] on spatial comput-
ng identifies pattern languages as a class of works aiming to produce
patial, geometrical, or topological patterns in amorphous computers
ade of several simple, unreliable devices locally communicating with

ne another. For instance, Origami Shape Language (OSL) [68], en-
bles to build shapes on a surface through a sequence of flat folding
perations. An OSL program is then implemented by uniform cell
rograms leveraging gradients, neighbourhood queries, and other lo-
al operations like local folding. Another example is Growing Point
anguage [69], which uses trajectories of ‘‘growing points’’ (mobile
omputations) diffusing across nodes to form patterns. However, unlike
ollective processes, growing points are active at a single domain at a
ime. These works are related as they propose mechanisms for build-
ng shapes incrementally in systems of neighbour-interacting devices.
owever, they tend to focus on the shape of groups and neglect the
omputation carried out in the defined domains. However, generally
peaking, as shown in recent reviews on multi-robot pattern forma-
ion [67], much of the emphasis of the research area is on microscopic
odels and algorithms rather than on macro-programming solutions.
ne recent field-based domain-specific library supporting macro-level
rogramming of pattern formation is Macro-Swarm [70]: indeed, it
nternally leverages aggregate processes (i.e. CCPs) for the dynamics
f several building blocks, hence emphasising the significance of the
echniques discussed in this paper.

nsemble-based approaches
An ensemble is a dynamic group of devices that forms to sup-

ort group-level tasks. In Distributed Emergent Ensembles of Components
DEECo) [14], ensembles are characterised by a membership condition
24

that expresses how a set of components get bound together. Within an w
ensemble, the components interact by implicit knowledge exchange.
Our collective processes can also be seen as regulated through a mem-
bership condition, i.e., the status determining whether the node is
willing to participate in the process; however, ensemble formation
is a dynamic activity that runs on a given communication topology
that also regulates interactions within processes. Service Component
Ensemble Language (SCEL) [26] is a language that enables to express the
behaviour of ensembles interacting via attribute-based communication.
Ensemble formation is thus regulated through predicates over attributes
exposed by components. This is different from our collective processes,
where communication is constrained by both the given neighbouring
relationship and process membership. In summary, both in DEECo and
SCEL, the key aspect of ensemble domain propagation and shrinking
addressed in this paper is not directly captured.

Clustering and area formation
Swarm clustering [71] brings the data clustering problem into swarm

settings. The idea is to group agents into clusters such that the agents
in the same cluster are more correlated to each other (e.g., spatially or
temporally) than to the agents belonging to other clusters. For instance,
in [72], a mathematical model for cluster-based group formation is
proposed that takes inspiration from bee foraging and recruitment in
order to assemble groups with complementary skills. A similar problem
involves organising a system into regions or areas to solve a certain
problem with a configurable level of decentralisation [23], cf. the Self-
organising Coordination Regions pattern [24]. Swarm clusters and such
pattern instances can, indeed, be expressed as collective processes. Also,
collective processes can seamlessly model the case where clusters need
to overlap, which may be instrumental for conflict resolution or inter-
regional coordination. Vice versa, clustering processes could be used to
regulate the formation of collective process domains; however, these
could not naturally cover all the possible evolution dynamics that CASs
may exhibit (e.g., wave-like ones).

Spreading and epidemic processes over networks
The topic of this paper is also potentially related to spreading and

epidemic processes in time-varying and complex networks [73,74].
Among the key distinguishing factors between those works and this
one there are the system model (cf. Section 3) and the emphasis on
programmability of the logic for incremental process domain evolution.
However, studying the dynamics of collective processes via tools and
methods from network science could be an interesting future work.

8. Conclusion

8.1. Discussion

In this manuscript, we investigate algorithmic techniques for the
dynamic evolution of collective computational processes and ensem-
bles, leveraging descriptions over event structures and simulations.
Starting from a general formalisation of the field-based framework of
aggregate processes [15,21,31], we propose algorithms for controlling
the effective propagation and termination of group-wise processes,
enabling trade-offs in terms of efficiency (cf., messages exchanges and
rounds of execution), functionality, and design complexity. Specifically,
we leverage statistics of information speed to devise novel strategies
for wave-like propagation of processes and their shrinking (up to com-
pletion). Then, we show by simulation that the proposed algorithms
improve over the state of the art [15,31,64,65] and run a sensitivity
analysis to study their behaviour in different network settings.

In summary, we have shown how a simple mechanism to express the
participation of a device in a process (cf. status values internal, external,
and border), when supported by collaborative algorithms, enables to
apture various patterns of ensemble evolution (including growth to
eek more devices and termination to close a collaboration). Ultimately,

e find that CCPs offer a fine-grained way to control the formation of



Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.

p
a
t
w
c
s
m
a
t
v
n

C

d
a
o
G
V

D

c
i

D

z

A

‘
P
h
a

R

ensembles and that our formal framework provides a setting where the
evolution of ensembles and the relationships between shape and com-
putation can be investigated (cf. formal properties in Section 4.5). We
remark that the approach is most applicable in large-scale ecosystems
where multiple collective tasks are to be carried out by dynamic teams
of devices: similar ideas have been applied in application scenarios
like environment exploration by swarms [15], flood monitoring for
emergency management [42], and smart warehouse management [52].

8.2. Future work

In the future, we consider analysing CCPs with methods found in
fields like complex networks and epidemics, e.g., to devise formal prop-
erties about the dynamics of process evolution. Furthermore, we plan
to apply the algorithms proposed in this work to various coordination
patterns and scenarios, such as the Self-organising Coordination Regions
attern [24] and models based on situated tuples [21]. In addition, more
dvanced CCPs abstractions could be investigated, for instance, of tasks
hat follow specific state machines. Finally, a still open challenge is
hether it is possible to realise a process propagation strategy that

ombines the efficiency of the tree topology with the robustness of the
pherical topology. Recent insights on distributed data collection [49]
ight help towards this purpose, but more research is needed before

ny conclusion is drawn. In general, more process propagation pat-
erns could be developed, tuned for specific purposes and providing
arious trade-offs, and possibly exploiting differentiated messages to
eighbours as discussed in [62–65].

RediT authorship contribution statement

Giorgio Audrito: Writing – review & editing, Writing – original
raft, Validation, Software, Investigation, Formal analysis, Conceptu-
lization. Roberto Casadei: Writing – review & editing, Writing –
riginal draft, Project administration, Methodology, Conceptualization.
ianluca Torta: Writing – review & editing, Writing – original draft,
alidation, Software, Investigation, Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

We have published data/code on Zenodo: https://doi.org/10.5281/
enodo.8310743.

cknowledgements

This work has been partially supported by the Italian PRIN project
‘COMMON-WEARS’’ (2020HCWWLP) and the EU/MUR FSE REACT-EU
ON R&I 2014–2020. The work is also part of the project NODES which
as received funding from the MUR – M4C2 1.5 of PNRR with grant
greement no. ECS00000036.

eferences

[1] S.S. Goel, A. Goel, M. Kumar, G. Moltó, A review of Internet of Things: qualifying
technologies and boundless horizon, J. Reliab. Intell. Environ. 7 (1) (2021)
23–33, http://dx.doi.org/10.1007/S40860-020-00127-W.

[2] R.D. Nicola, S. Jähnichen, M. Wirsing, Rigorous engineering of collective
adaptive systems: special section, Int. J. Softw. Tools Technol. Transf. 22 (4)
(2020) 389–397, http://dx.doi.org/10.1007/s10009-020-00565-0.

[3] A. Bucchiarone, M. D’Angelo, D. Pianini, G. Cabri, M. De Sanctis, M. Viroli, R.
Casadei, S. Dobson, On the social implications of collective adaptive systems,
IEEE Technol. Soc. Mag. 39 (3) (2020) 36–46, http://dx.doi.org/10.1109/MTS.
2020.3012324.
25
[4] O. Inverso, C. Trubiani, E. Tuosto, Abstractions for collective adaptive systems,
in: Leveraging Applications of Formal Methods, Verification and Validation:
Engineering Principles - 9th International Symposium on Leveraging Applications
of Formal Methods, ISoLA 2020, Proceedings, Part II, in: LNCS, Vol. 12477,
Springer, 2020, pp. 243–260, http://dx.doi.org/10.1007/978-3-030-61470-6_15.

[5] R. Casadei, Macroprogramming: Concepts, state of the art, and opportunities of
macroscopic behaviour modelling, ACM Comput. Surv. 55 (13s) (2023) http:
//dx.doi.org/10.1145/3579353.

[6] T.W. Malone, K. Crowston, The interdisciplinary study of coordination, ACM
Comput. Surv. 26 (1) (1994) 87–119, http://dx.doi.org/10.1145/174666.174668.

[7] J. Ferber, Multi-agent Systems - An Introduction to Distributed Artificial
Intelligence, Addison-Wesley-Longman, 1999.

[8] S. von Mammen, S. Tomforde, J. Hähner, An organic computing approach to
self-organizing robot ensembles, Front. Robot. AI 3 (2016) 67, http://dx.doi.
org/10.3389/frobt.2016.00067.

[9] M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a review
from the swarm engineering perspective, Swarm Intell. 7 (1) (2013) 1–41,
http://dx.doi.org/10.1007/s11721-012-0075-2.

[10] R. Newton, M. Welsh, Region streams: Functional macroprogramming for sensor
networks, in: Workshop on Data Management for Sensor Networks, 2004, pp.
78–87, http://dx.doi.org/10.1145/1052199.1052213.

[11] J. Beal, S. Dulman, K. Usbeck, M. Viroli, N. Correll, Organizing the aggregate:
Languages for spatial computing, in: Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, IGI Global, 2013, pp. 436–501, http:
//dx.doi.org/10.4018/978-1-4666-2092-6.ch016.

[12] T.D. Wolf, T. Holvoet, Designing self-organising emergent systems based on
information flows and feedback-loops, in: Proceedings of the 1st International
Conference on Self-Adaptive and Self-Organizing Systems, SASO 2007, IEEE
Computer Society, 2007, pp. 295–298, http://dx.doi.org/10.1109/SASO.2007.16.

[13] M. Viroli, J. Beal, F. Damiani, G. Audrito, R. Casadei, D. Pianini, From distributed
coordination to field calculus and aggregate computing, J. Log. Algebraic
Methods Program. 109 (2019) http://dx.doi.org/10.1016/j.jlamp.2019.100486.

[14] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, F. Plasil, DEECO:
an ensemble-based component system, in: CBSE’13, Proceedings of the 16th ACM
SIGSOFT Symposium on Component Based Software Engineering, ACM, 2013, pp.
81–90, http://dx.doi.org/10.1145/2465449.2465462.

[15] R. Casadei, M. Viroli, G. Audrito, D. Pianini, F. Damiani, Engineering collective
intelligence at the edge with aggregate processes, Eng. Appl. Artif. Intell. 97
(2021) 104081, http://dx.doi.org/10.1016/j.engappai.2020.104081.

[16] Z. Wood, A. Galton, A taxonomy of collective phenomena, Appl. Ontol. 4 (3–4)
(2009) 267–292, http://dx.doi.org/10.3233/AO-2009-0071.

[17] O. Scekic, T. Schiavinotto, S. Videnov, M. Rovatsos, H.L. Truong, D. Miorandi, S.
Dustdar, A programming model for hybrid collaborative adaptive systems, IEEE
Trans. Emerg. Top. Comput. 8 (1) (2020) 6–19, http://dx.doi.org/10.1109/TETC.
2017.2702578.

[18] X. Chen, P. Zhang, G. Du, F. Li, A distributed method for dynamic multi-robot
task allocation problems with critical time constraints, Robot. Auton. Syst. 118
(2019) 31–46, http://dx.doi.org/10.1016/j.robot.2019.04.012.

[19] I. Navarro, F. Matía, A survey of collective movement of mobile robots, Int. J.
Adv. Robot. Syst. 10 (1) (2013) 73, http://dx.doi.org/10.5772/54600.

[20] S. Mariani, A. Omicini, Space-aware coordination in respect, in: M. Baldoni, C.
Baroglio, F. Bergenti, A. Garro (Eds.), 14th Workshop ‘‘from Objects To Agents’’,
Proceedings, in: CEUR Workshop Proceedings, Vol. 1099, CEUR-WS.org, 2013,
pp. 1–7.

[21] R. Casadei, M. Viroli, A. Ricci, G. Audrito, Tuple-based coordination in large-scale
situated systems, in: Coordination Models and Languages - 23rd International
Conference, COORDINATION 2021, Proceedings, in: LNCS, Vol. 12717, Springer,
2021, pp. 149–167, http://dx.doi.org/10.1007/978-3-030-78142-2_10.

[22] R. Casadei, S. Mariani, D. Pianini, M. Viroli, F. Zambonelli, Space-fluid adaptive
sampling: A field-based, self-organising approach, in: M.H. ter Beek, M. Sirjani
(Eds.), Coordination Models and Languages - 24th International Conference,
COORDINATION 2022, Proceedings, in: LNCS, Vol. 13271, Springer, 2022, pp.
99–117, http://dx.doi.org/10.1007/978-3-031-08143-9_7.

[23] D. Weyns, T. Holvoet, Regional synchronization for simultaneous actions in
situated multi-agent systems, in: Multi-Agent Systems and Applications III,
CEEMAS 2003, Proceedings, in: LNCS, Vol. 2691, Springer, 2003, pp. 497–510,
http://dx.doi.org/10.1007/3-540-45023-8_48.

[24] R. Casadei, D. Pianini, M. Viroli, A. Natali, Self-organising coordination regions:
A pattern for edge computing, in: COORDINATION’19, Proceedings, in: LNCS,
Vol. 11533, Springer, 2019, pp. 182–199, http://dx.doi.org/10.1007/978-3-030-
22397-7_11.

[25] C. Pinciroli, G. Beltrame, Buzz: A programming language for robot swarms, IEEE
Softw. 33 (4) (2016) 97–100, http://dx.doi.org/10.1109/MS.2016.95.

https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
https://doi.org/10.5281/zenodo.8310743
http://dx.doi.org/10.1007/S40860-020-00127-W
http://dx.doi.org/10.1007/s10009-020-00565-0
http://dx.doi.org/10.1109/MTS.2020.3012324
http://dx.doi.org/10.1109/MTS.2020.3012324
http://dx.doi.org/10.1109/MTS.2020.3012324
http://dx.doi.org/10.1007/978-3-030-61470-6_15
http://dx.doi.org/10.1145/3579353
http://dx.doi.org/10.1145/3579353
http://dx.doi.org/10.1145/3579353
http://dx.doi.org/10.1145/174666.174668
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb7
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb7
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb7
http://dx.doi.org/10.3389/frobt.2016.00067
http://dx.doi.org/10.3389/frobt.2016.00067
http://dx.doi.org/10.3389/frobt.2016.00067
http://dx.doi.org/10.1007/s11721-012-0075-2
http://dx.doi.org/10.1145/1052199.1052213
http://dx.doi.org/10.4018/978-1-4666-2092-6.ch016
http://dx.doi.org/10.4018/978-1-4666-2092-6.ch016
http://dx.doi.org/10.4018/978-1-4666-2092-6.ch016
http://dx.doi.org/10.1109/SASO.2007.16
http://dx.doi.org/10.1016/j.jlamp.2019.100486
http://dx.doi.org/10.1145/2465449.2465462
http://dx.doi.org/10.1016/j.engappai.2020.104081
http://dx.doi.org/10.3233/AO-2009-0071
http://dx.doi.org/10.1109/TETC.2017.2702578
http://dx.doi.org/10.1109/TETC.2017.2702578
http://dx.doi.org/10.1109/TETC.2017.2702578
http://dx.doi.org/10.1016/j.robot.2019.04.012
http://dx.doi.org/10.5772/54600
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb20
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb20
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb20
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb20
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb20
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb20
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb20
http://dx.doi.org/10.1007/978-3-030-78142-2_10
http://dx.doi.org/10.1007/978-3-031-08143-9_7
http://dx.doi.org/10.1007/3-540-45023-8_48
http://dx.doi.org/10.1007/978-3-030-22397-7_11
http://dx.doi.org/10.1007/978-3-030-22397-7_11
http://dx.doi.org/10.1007/978-3-030-22397-7_11
http://dx.doi.org/10.1109/MS.2016.95


Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.
[26] R.D. Nicola, M. Loreti, R. Pugliese, F. Tiezzi, A formal approach to autonomic
systems programming: The SCEL language, ACM Trans. Auton. Adapt. Syst. 9
(2) (2014) 7:1–7:29, http://dx.doi.org/10.1145/2619998.

[27] G. Audrito, R. Casadei, G. Torta, On the dynamic evolution of distributed
computational aggregates, in: IEEE International Conference on Autonomic
Computing and Self-Organizing Systems Companion, ACSOS-C 2022, IEEE, 2022,
pp. 37–42, http://dx.doi.org/10.1109/ACSOSC56246.2022.00024.

[28] R. Casadei, E.D. Nitto, I. Gerostathopoulos, D. Pianini, I. Dusparic, et al. (Eds.),
IEEE International Conference on Autonomic Computing and Self-Organizing
Systems Companion, ACSOS-C 2022, Virtual, CA, USA, September 19-23, 2022,
IEEE, 2022, http://dx.doi.org/10.1109/ACSOS-C56246.2022.

[29] M. Nielsen, G.D. Plotkin, G. Winskel, Petri nets, event structures and domains,
part I, Theoret. Comput. Sci. 13 (1981) 85–108, http://dx.doi.org/10.1016/0304-
3975(81)90112-2.

[30] G. Audrito, J. Beal, F. Damiani, M. Viroli, Space-time universality of field
calculus, in: COORDINATION’18, in: LNCS, Vol. 10852, Springer, 2018, pp. 1–20,
http://dx.doi.org/10.1007/978-3-319-92408-3_1.

[31] R. Casadei, M. Viroli, G. Audrito, D. Pianini, F. Damiani, Aggregate processes in
field calculus, in: COORDINATION’19, Proceedings, Springer, 2019, pp. 200–217,
http://dx.doi.org/10.1007/978-3-030-22397-7_12.

[32] G. Audrito, F. Damiani, M. Viroli, Optimal single-path information propagation
in gradient-based algorithms, Sci. Comput. Program. 166 (2018) 146–166, http:
//dx.doi.org/10.1016/j.scico.2018.06.002.

[33] G. Torta, G. Audrito, R. Casadei, fcpp-experiments/process-management: 1.0,
2023, http://dx.doi.org/10.5281/zenodo.8310743.

[34] G.D. Abowd, Beyond weiser: From ubiquitous to collective computing, Computer
49 (1) (2016) 17–23, http://dx.doi.org/10.1109/MC.2016.22.

[35] J. Hendler, T. Berners-Lee, From the semantic web to social machines: A research
challenge for AI on the World Wide Web, Artificial Intelligence 174 (2) (2010)
156–161, http://dx.doi.org/10.1016/j.artint.2009.11.010.

[36] M.A. Jamshed, K. Ali, Q.H. Abbasi, M.A. Imran, M. Ur-Rehman, Challenges,
applications, and future of wireless sensors in internet of things: A review,
IEEE Sens. J. 22 (6) (2022) 5482–5494, http://dx.doi.org/10.1109/jsen.2022.
3148128.

[37] S. Iftikhar, S.S. Gill, C. Song, M. Xu, M.S. Aslanpour, A.N. Toosi, J. Du, H. Wu,
S. Ghosh, D. Chowdhury, M. Golec, M. Kumar, A.M. Abdelmoniem, F. Cuadrado,
B. Varghese, O.F. Rana, S. Dustdar, S. Uhlig, AI-based fog and edge computing:
A systematic review, taxonomy and future directions, Int. Things 21 (2023)
100674, http://dx.doi.org/10.1016/J.IOT.2022.100674.

[38] R. Casadei, Artificial collective intelligence engineering: A survey of concepts and
perspectives, Artif. Life (2023) 1–35, http://dx.doi.org/10.1162/artl_a_00408.

[39] T.M. Mengistu, D. Che, Survey and taxonomy of volunteer computing, ACM
Comput. Surv. 52 (3) (2019) 59:1–59:35, http://dx.doi.org/10.1145/3320073.

[40] S. Berman, Á.M. Halász, M.A. Hsieh, V. Kumar, Optimized stochastic policies for
task allocation in swarms of robots, IEEE Trans. Robot. 25 (4) (2009) 927–937,
http://dx.doi.org/10.1109/TRO.2009.2024997.

[41] G. Aguzzi, G. Audrito, R. Casadei, F. Damiani, G. Torta, M. Viroli, A field-based
computing approach to sensing-driven clustering in robot swarms, Swarm Intell.
(2022) http://dx.doi.org/10.1007/s11721-022-00215-y.

[42] G. Aguzzi, R. Casadei, D. Pianini, M. Viroli, Dynamic decentralization domains
for the internet of things, IEEE Int. Comput. (2022) 1–10, http://dx.doi.org/10.
1109/mic.2022.3216753.

[43] R. Casadei, D. Pianini, A. Placuzzi, M. Viroli, D. Weyns, Pulverization
in cyber-physical systems: Engineering the self-organizing logic separated
from deployment, Future Int. 12 (11) (2020) 203, http://dx.doi.org/10.3390/
fi12110203.

[44] S. Garnier, N. Ross, B. Rudis, M. Sciaini, C. Scherer, Viridis: Default color maps
from ‘matplotlib’, 1, 2018, R package v0.5.

[45] J. Xu, W. Liu, F. Lang, Y. Zhang, C. Wang, Distance measurement model based
on RSSI in WSN, Wirel. Sens. Netw. 2 (8) (2010) 606–611, http://dx.doi.org/
10.4236/wsn.2010.28072.

[46] K. Benkic, M. Malajner, P. Planinsic, Z. Cucej, Using RSSI value for distance
estimation in wireless sensor networks based on ZigBee, in: 15th International
Conference on Systems, Signals and Image Processing, 2008, pp. 303–306,
http://dx.doi.org/10.1109/IWSSIP.2008.4604427.

[47] J.L. Fernandez-Marquez, G.D. Serugendo, S. Montagna, M. Viroli, J.L. Ar-
cos, Description and composition of bio-inspired design patterns: a complete
overview, Nat. Comput. 12 (1) (2013) 43–67, http://dx.doi.org/10.1007/s11047-
012-9324-y.

[48] Y. Mo, S. Dasgupta, J. Beal, Robustness of the adaptive Bellman-Ford algorithm:
Global stability and ultimate bounds, IEEE Trans. Autom. Control. 64 (10) (2019)
4121–4136, http://dx.doi.org/10.1109/TAC.2019.2904239.

[49] G. Audrito, R. Casadei, F. Damiani, D. Pianini, M. Viroli, Optimal resilient
distributed data collection in mobile edge environments, Comput. Electr. Eng. 96
26

(Part) (2021) 107580, http://dx.doi.org/10.1016/j.compeleceng.2021.107580.
[50] R. Casadei, M. Viroli, G. Aguzzi, D. Pianini, ScaFi: A scala DSL and toolkit
for aggregate programming, SoftwareX 20 (2022) 101248, http://dx.doi.org/10.
1016/j.softx.2022.101248.

[51] D. Pianini, R. Casadei, M. Viroli, Self-stabilising priority-based multi-leader elec-
tion and network partitioning, in: IEEE International Conference on Autonomic
Computing and Self-Organizing Systems, ACSOS 2022, IEEE, 2022, pp. 81–90,
http://dx.doi.org/10.1109/ACSOS55765.2022.00026.

[52] L. Testa, G. Audrito, F. Damiani, G. Torta, Aggregate processes as distributed
adaptive services for the Industrial Internet of Things, Pervasive Mob. Comput.
85 (2022) 101658, http://dx.doi.org/10.1016/j.pmcj.2022.101658.

[53] G. Audrito, J. Beal, F. Damiani, D. Pianini, M. Viroli, Field-based coordination
with the share operator, Log. Methods Comput. Sci. 16 (4) (2020) http://dx.doi.
org/10.23638/LMCS-16(4:1)2020.

[54] G. Audrito, FCPP: an efficient and extensible field calculus framework, in:
International Conference on Autonomic Computing and Self-Organizing Systems
(ACSOS), IEEE, 2020, pp. 153–159, http://dx.doi.org/10.1109/ACSOS49614.
2020.00037.

[55] J. Beal, Flexible self-healing gradients, in: ACM Symposium on Applied
Computing, Proceedings, 2009, pp. 1197–1201.

[56] M. Viroli, G. Audrito, J. Beal, F. Damiani, D. Pianini, Engineering resilient
collective adaptive systems by self-stabilisation, ACM Trans. Model. Comput.
Simul. 28 (2) (2018) 16:1–16:28, http://dx.doi.org/10.1145/3177774.

[57] B.H. Bloom, Space/time trade-offs in hash coding with allowable errors,
Commun. ACM 13 (7) (1970) 422–426, http://dx.doi.org/10.1145/362686.
362692.

[58] K. Park, S. Pack, T. Kwon, Proximity based peer-to-peer overlay networks (P3ON)
with load distribution, in: Information Networking. Towards Ubiquitous Net-
working and Services: International Conference, ICOIN 2007, Estoril, Portugal,
January 23-25, 2007. Revised Selected Papers, Springer, 2008, pp. 234–243.

[59] K. Haseeb, I. Ud Din, A. Almogren, N. Islam, A. Altameem, RTS: A robust and
trusted scheme for IoT-based mobile wireless mesh networks, IEEE Access 8
(2020) 68379–68390, http://dx.doi.org/10.1109/ACCESS.2020.2985851.

[60] M. Mamei, F. Zambonelli, L. Leonardi, Co-fields: Towards a unifying approach to
the engineering of swarm intelligent systems, in: 3rd International Workshop on
Engineering Societies in the Agents World, in: LNCS, Vol. 2577, Springer, 2002,
pp. 68–81, http://dx.doi.org/10.1007/3-540-39173-8_6.

[61] G. Audrito, R. Casadei, G. Torta, Fostering resilient execution of multi-agent
plans through self-organisation, in: IEEE International Conference on Autonomic
Computing and Self-Organizing Systems, ACSOS 2021, Companion Volume, IEEE,
2021, pp. 81–86, http://dx.doi.org/10.1109/ACSOS-C52956.2021.00076.

[62] G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, M. Viroli, The exchange
calculus (XC): a functional programming language design for distributed collec-
tive systems, J. Syst. Softw. 210 (2024) 111976, http://dx.doi.org/10.1016/J.
JSS.2024.111976.

[63] G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, M. Viroli, Functional
programming for distributed systems with XC, in: 36th European Conference on
Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany,
in: LIPIcs, Vol. 222, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022,
pp. 20:1–20:28, http://dx.doi.org/10.4230/LIPICS.ECOOP.2022.20.

[64] G. Audrito, R. Casadei, F. Damiani, G. Torta, M. Viroli, Programming distributed
collective processes for dynamic ensembles and collective tasks, in: COORDI-
NATION’23, Proceedings, in: LNCS, Vol. 13908, Springer, 2023, pp. 71–89,
http://dx.doi.org/10.1007/978-3-031-35361-1_4.

[65] G. Audrito, R. Casadei, F. Damiani, G. Torta, M. Viroli, Programming distributed
collective processes in the exchange calculus, 2024, http://dx.doi.org/10.48550/
ARXIV.2401.11212, CoRR arXiv:2401.11212.

[66] M. Mamei, F. Zambonelli, Programming pervasive and mobile computing appli-
cations: The TOTA approach, ACM Trans. Softw. Eng. Methodol. 18 (4) (2009)
15:1–15:56, http://dx.doi.org/10.1145/1538942.1538945.

[67] H. Oh, A.R. Shirazi, C. Sun, Y. Jin, Bio-inspired self-organising multi-robot
pattern formation: A review, Robot. Auton. Syst. 91 (2017) 83–100, http://dx.
doi.org/10.1016/j.robot.2016.12.006.

[68] R. Nagpal, Programmable Self-Assembly: Constructing Global Shape Using
Biologically-Inspired Local Interactions and Origami Mathematics (Ph.D. thesis),
MIT (USA), 2001, URL http://hdl.handle.net/1721.1/86667.

[69] D. Coore, Botanical Computing: A Developmental Approach to Generating
Interconnect Topologies on an Amorphous Computer (Ph.D. thesis), MIT (USA),
1999, URL http://hdl.handle.net/1721.1/80483.

[70] G. Aguzzi, R. Casadei, M. Viroli, MacroSwarm: A field-based compositional
framework for swarm programming, in: Coordination Models and Languages
- 25th IFIP WG 6.1 International Conference, COORDINATION 2023, Held As
Part of the 18th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2023, Lisbon, Portugal, June 19-23, 2023, Proceedings,
in: Lecture Notes in Computer Science, Vol. 13908, Springer, 2023, pp. 31–51,

http://dx.doi.org/10.1007/978-3-031-35361-1_2.

http://dx.doi.org/10.1145/2619998
http://dx.doi.org/10.1109/ACSOSC56246.2022.00024
http://dx.doi.org/10.1109/ACSOS-C56246.2022
http://dx.doi.org/10.1016/0304-3975(81)90112-2
http://dx.doi.org/10.1016/0304-3975(81)90112-2
http://dx.doi.org/10.1016/0304-3975(81)90112-2
http://dx.doi.org/10.1007/978-3-319-92408-3_1
http://dx.doi.org/10.1007/978-3-030-22397-7_12
http://dx.doi.org/10.1016/j.scico.2018.06.002
http://dx.doi.org/10.1016/j.scico.2018.06.002
http://dx.doi.org/10.1016/j.scico.2018.06.002
http://dx.doi.org/10.5281/zenodo.8310743
http://dx.doi.org/10.1109/MC.2016.22
http://dx.doi.org/10.1016/j.artint.2009.11.010
http://dx.doi.org/10.1109/jsen.2022.3148128
http://dx.doi.org/10.1109/jsen.2022.3148128
http://dx.doi.org/10.1109/jsen.2022.3148128
http://dx.doi.org/10.1016/J.IOT.2022.100674
http://dx.doi.org/10.1162/artl_a_00408
http://dx.doi.org/10.1145/3320073
http://dx.doi.org/10.1109/TRO.2009.2024997
http://dx.doi.org/10.1007/s11721-022-00215-y
http://dx.doi.org/10.1109/mic.2022.3216753
http://dx.doi.org/10.1109/mic.2022.3216753
http://dx.doi.org/10.1109/mic.2022.3216753
http://dx.doi.org/10.3390/fi12110203
http://dx.doi.org/10.3390/fi12110203
http://dx.doi.org/10.3390/fi12110203
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb44
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb44
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb44
http://dx.doi.org/10.4236/wsn.2010.28072
http://dx.doi.org/10.4236/wsn.2010.28072
http://dx.doi.org/10.4236/wsn.2010.28072
http://dx.doi.org/10.1109/IWSSIP.2008.4604427
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1007/s11047-012-9324-y
http://dx.doi.org/10.1109/TAC.2019.2904239
http://dx.doi.org/10.1016/j.compeleceng.2021.107580
http://dx.doi.org/10.1016/j.softx.2022.101248
http://dx.doi.org/10.1016/j.softx.2022.101248
http://dx.doi.org/10.1016/j.softx.2022.101248
http://dx.doi.org/10.1109/ACSOS55765.2022.00026
http://dx.doi.org/10.1016/j.pmcj.2022.101658
http://dx.doi.org/10.23638/LMCS-16(4:1)2020
http://dx.doi.org/10.23638/LMCS-16(4:1)2020
http://dx.doi.org/10.23638/LMCS-16(4:1)2020
http://dx.doi.org/10.1109/ACSOS49614.2020.00037
http://dx.doi.org/10.1109/ACSOS49614.2020.00037
http://dx.doi.org/10.1109/ACSOS49614.2020.00037
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb55
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb55
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb55
http://dx.doi.org/10.1145/3177774
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/362686.362692
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb58
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb58
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb58
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb58
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb58
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb58
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb58
http://dx.doi.org/10.1109/ACCESS.2020.2985851
http://dx.doi.org/10.1007/3-540-39173-8_6
http://dx.doi.org/10.1109/ACSOS-C52956.2021.00076
http://dx.doi.org/10.1016/J.JSS.2024.111976
http://dx.doi.org/10.1016/J.JSS.2024.111976
http://dx.doi.org/10.1016/J.JSS.2024.111976
http://dx.doi.org/10.4230/LIPICS.ECOOP.2022.20
http://dx.doi.org/10.1007/978-3-031-35361-1_4
http://dx.doi.org/10.48550/ARXIV.2401.11212
http://dx.doi.org/10.48550/ARXIV.2401.11212
http://dx.doi.org/10.48550/ARXIV.2401.11212
http://arxiv.org/abs/2401.11212
http://dx.doi.org/10.1145/1538942.1538945
http://dx.doi.org/10.1016/j.robot.2016.12.006
http://dx.doi.org/10.1016/j.robot.2016.12.006
http://dx.doi.org/10.1016/j.robot.2016.12.006
http://hdl.handle.net/1721.1/86667
http://hdl.handle.net/1721.1/80483
http://dx.doi.org/10.1007/978-3-031-35361-1_2


Future Generation Computer Systems 158 (2024) 11–27G. Audrito et al.
[71] C. Lee, M. Kim, S. Kazadi, Robot clustering, in: Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, 2005, IEEE, 2005,
pp. 1449–1454, http://dx.doi.org/10.1109/ICSMC.2005.1571350.

[72] D.S. dos Santos, A.L.C. Bazzan, Distributed clustering for group formation and
task allocation in multiagent systems: A swarm intelligence approach, Appl. Soft
Comput. 12 (8) (2012) 2123–2131, http://dx.doi.org/10.1016/j.asoc.2012.03.
016.

[73] C. Nowzari, V.M. Preciado, G.J. Pappas, Analysis and control of epidemics: A
survey of spreading processes on complex networks, IEEE Control Syst. Mag. 36
(1) (2016) 26–46, http://dx.doi.org/10.1109/MCS.2015.2495000.

[74] M. Cremonini, S. Maghool, The dynamical formation of ephemeral groups on
networks and their effects on epidemics spreading, Sci. Rep. 12 (1) (2022) 1–10.

Giorgio Audrito is an assistant professor at Università degli
Studi di Torino, Torino, Italy. His research interests include
distributed computing, programming languages, distributed
algorithms and graph algorithms; as well as innovative
didactic methods through gamification. Since 2013 he is
the team leader of the Italian team at the International
Olympiad in Informatics. Since 2020 he is the original
designer, main developer and maintainer of FCPP (http:
//fcpp.github.io), a C++ framework for aggregate program-
ming, which is winner of a best artefact and an outstanding
artefact awards.
27
Roberto Casadei is an assistant professor at Alma Mater
Studiorum-Università di Bologna, Cesena, Italy. He has a
Ph.D. in Computer Science & Engineering from the same
university, with a thesis awarded by the IEEE TCSC. His
research interests revolve around software engineering and
distributed artificial intelligence. He has 50+ publications in
international journals and conferences on topics including
collective intelligence, aggregate computing, self-* systems,
and IoT/CPS. He also leads the development of the open-
source ScaFi aggregate programming toolkit. He has been
serving in the organising and program committees of mul-
tiple conferences such as ACSOS, COORDINATION, ICCCI,
and SAC, as a guest editor and reviewer for renowned
international journals, and as editorial board member of
JAISCR and Elsevier IoT.

Gianluca Torta is an assistant professor at Università degli
Studi di Torino, Torino, Italy. His research interests include
distributed computing and algorithms, embedded systems,
and model-based reasoning (diagnosis and planning). Since
2021, he is a contributor of FCPP, a C++ framework for
aggregate programming.

http://dx.doi.org/10.1109/ICSMC.2005.1571350
http://dx.doi.org/10.1016/j.asoc.2012.03.016
http://dx.doi.org/10.1016/j.asoc.2012.03.016
http://dx.doi.org/10.1016/j.asoc.2012.03.016
http://dx.doi.org/10.1109/MCS.2015.2495000
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb74
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb74
http://refhub.elsevier.com/S0167-739X(24)00149-3/sb74
http://fcpp.github.io
http://fcpp.github.io

	A general framework and decentralised algorithms for collective computational processes
	Introduction
	Motivation and High-Level Requirements
	Example: Situated Service Discovery

	A General Formal Framework of Dynamic Collectives and Collective Tasks
	Collectives and collective computations: system model
	Augmented event structures

	Processes over Event Structures
	A construct for spawning process instances (spawn)


	Techniques for Dynamic Ensembles
	Baselines
	Legacy baseline (eSpawnL)
	Improved baseline (eSpawnS)

	Exploiting Information Speed
	Wave-like Propagation
	Adapting to Different Scenarios
	Optimality Guarantees

	Evaluation
	Goals
	Experimental setup
	Scenarios
	Parameters and Executions
	Metrics

	Results
	Spherical Topology
	Tree Topology
	Summary and Key Findings


	Case Study: Service Discovery and Access
	Scenario
	Parameters
	More Scenarios

	Related Work
	Field-based Coordination, Aggregate Computing, and Aggregate Processes
	Pattern Languages
	Ensemble-based Approaches
	Clustering and Area Formation
	Spreading and Epidemic Processes over Networks


	Conclusion
	Discussion
	Future Work

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


