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Summary
Even if the SARS-CoV-2 pandemic has been declared over, several risks and clinical 
problems remain to be faced, including long-COVID sequelae and possible outbreaks of 
pathogenic variants. Intense research on COVID-19 has provided in these few years a 
striking amount of data covering different fields and disciplines, which can help to provide 
a knowledge shield against new potential infective spreads, and may also potentially be 
applied to other fields of medicine, including oncology and neurology. Nevertheless, areas 
of uncertainty still remain regarding the pathogenic mechanisms that subtend the multi-
faceted manifestations of the disease. To better clarify the pathogenesis of the disease, 
a systematic multidisciplinary evaluation of the many mechanisms involved in COVID-19 
is mandatory, including clinical, physiological, radiological, immunological and pathologi-
cal studies. In COVID-19 syndrome the pathological studies have been mainly performed 
on autopsy cases, and only a few studies are available on biopsies. Nevertheless, these 
studies have provided relevant information that can substantially contribute to decipher 
the complex scenario characterizing the different forms of COVID-19 and long-COVID-19. 
In this review the data provided by pathological investigations are recapitulated and dis-
cussed, in the light of different hypothesis and data provided by clinical, physiological and 
immunological data. 

Key words: SARS-CoV-2, COVID-19, long-COVID, post-COVID, pathogenesis, lung 
biopsy

COVID-19 

Coronavirus disease 2019 (COVID-19) is characterized by a profound 
variability in clinical presentation and pathological features with a large 
majority of patients developing mild symptoms and a minority experienc-
ing an interstitial pneumonia that can rapidly progress to severe life threat-
ening respiratory failure requiring mechanical ventilation or even extra 
corporeal membrane oxygenation (ECMO) 1. It is now widely accepted 
that SARS-CoV-2 infection can trigger a hyper-inflammatory response in 
susceptible individuals (also termed “cytokine storm” or cytokine release 
syndrome)  2, and several hypothetic schemes have been proposed to 
describe the pathogenic role of different cell types and mechanisms 
leading to different disease phases and endotypes. The heterogeneity of 
clinical presentations is likely conditioned by the viral burden, the effica-
cy of innate and adaptive immune responses, a genetic predisposition, 
and the occurrence and severity of pre-existing comorbidities (such as 
older age, obesity, hypertension, diabetes) 3. The complex interactions of 
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SARS-CoV-2 with human cells and tissues have been 
explained at the cellular and molecular levels, reveal-
ing how viral ligands (mostly the spike protein) and 
receptors on different cell types can allow viral entry 4. 
Interactions between the pathogen and host defenses 
are mediated by a variety of viral gene products that 
interfere with normal development of innate immunity, 
particularly focusing on the cGAS/Sting pathway 5-8. 

The cGAS/Sting pathway and COVID-19

The cGAS-STING pathway is a pattern recognition re-
ceptor involved in the detection of DNA in the cell cyto-
sol where it triggers a robust type I interferon response 
against viral and bacterial infections, as well as self 
DNA released in damaged and senescent cells  9,10. 
Upon DNA binding within the cytoplasm cGAS (Cyclic 
GMP-AMP synthase) is able to generate the second 
messenger cyclic cGAMP necessary to activate Sting 
(Stimulator of INF Genes) with eventual transcription-
al induction of type I interferons 11. Paradoxically, the 
activation of cGAS/Sting is able to effectively block 
the viral infection, but its activation is the main driv-
er of the cytokine storm in severe disease 12-15. These 
findings suggest that the activation of innate immuni-
ty may be relevant in viral clearance in healthy peo-
ple, but is a severe pathogenic driver in predisposed 
individuals. In line with this hypothesis is the experi-
mental observation that in bats, where the cGAS/Sting 
pathway is partially defective and IFN production is 
dampened, SARS-CoV-2 infection is not accompa-
nied by disease manifestation  16. The impairment of 
IFN production may represent an early key pathogenic 
factor in COVID-19 17-19, and several immune mecha-
nisms and involved cell types have been investigated 
to clarify the role of this impairment in triggering the 
cytokine storm 3,20-24. Among the critical issues is how 
SARS-CoV-2, a single-strand RNA virus, can induce 
the activation of the DNA sensor cGAS/Sting  25,26. A 
genetic basis has also been recently demonstrated in 
asymptomatic patients, providing robust early defense 
against the viral infection 27.
The search of factors involved in predisposition to se-
vere disease has produced a striking amount of in-
formation, and several lines of evidence have been 
provided regarding the critical role of conditions and 
comorbidities in increasing the risk of severe compli-
cation (old age and age related diseases, diabetes, 
neurodegenerative disorders, obesity, hypertension, 
etc.)  28. In these conditions a chronic low-grade sys-
temic inflammation (inflammaging) related to progres-
sive dysregulation of cGas/Sting axis is often pres-
ent 29-33.

Human endogenous retroviruses and 
COVID-19

It has been widely demonstrated that in severe and 
critical patients a highly impaired (IFN) type I response 
occurs, characterized by no IFN-β and low IFN-α pro-
duction and activity  34. In a proportion of cases the 
deficiency can be ascribed to genetic inborn errors in 
genes that regulate interferon production 35-38. Another 
possible cause of innate immune deficiency in COV-
ID-19 is the presence of anti-interferon auto-antibod-
ies 39-41. Interestingly, these auto-antibodies are found 
in severe COVID-19 patients together with human en-
dogenous retroviruses (HERV-W-env) auto-antibod-
ies 42. Endogenous retroviruses (HERVs) are ancient 
integrations of exogenous viruses into the germ cells 
of mammalian ancestors (between 100 and 40 million 
years ago), and they now occupy approximately 8% 
of the human genome 43,44. HERV genes are defective 
and are not able to produce infectious viral particles, 
but some HERV can produce retroviral transcripts and 
proteins, which are pathologically related to various 
diverse conditions including autoimmune, infectious, 
neurological and oncologic diseases and also rep-
resent promising therapeutic targets  45-51. Abnormal 
levels of HERV transcripts have been demonstrated 
in COVID-19 and post-COVID-19, and a direct corre-
lation has been demonstrated between the severity of 
COVID-19 and HERV expression 52-55. A complex mod-
ulation of HERVs characterizes different COVID-19 
endotypes as revealed by high-throughput analysis 
of HERV loci expression and this diversity may have 
an impact on the immune-pathogenesis and clinical 
manifestations and outcome of the disease 56. In par-
ticular, the in vitro exposure to SARS-CoV-2 is able 
to activate the expression of the HERV-W pro-inflam-
matory envelope protein (ENV) in peripheral blood 
mononuclear cells 57,58. When abnormally expressed, 
HERV transcripts can profoundly alter the innate im-
munity 59, and their “awakening” is considered a key 
factor in triggering the cGAS/Sting and other pro-in-
flammatory pathways with eventual development of 
cytokine storm and severe disease evolution in pre-
disposed individuals  59. HERV-mediated cGAS/Sting 
triggering of innate inflammation in nervous tissues is 
a major pathogenic mechanism in neurological and 
psychiatric diseases and may be also involved in the 
neurological complications observed in COVID-19 
and long-COVID-19  49, 60-62. Most HERVs are epige-
netically silenced, a process ensuring genomic sta-
bility that is progressively reduced in aging and toxic 
or infection-related stress, all conditions representing 
also risk factors for severe COVID-19 disease  63-65. 
Retroviral-like particles are abnormally induced in se-
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nescent cells and their repression may alleviate tissue 
degeneration and organismal aging thus representing 
a potential therapeutic target 66. 

The contribute of Pathology 

From the beginning of the pandemic a large number of 
post-mortem studies have been performed worldwide, 
providing relevant information regarding the organ 
damages occurring in severe cases 67-69. The most fre-
quent pathological pattern observed in autoptic lung 
is “diffuse alveolar damage” (DAD), with hyaline mem-
branes, alveolar fibrinous edema and type-II alveo-
lar-epithelial cell (AECII) hyperplasia. In many studies 
the occurrence of thrombotic events was reported, 
varying from small capillary clots to thrombosis in the 
larger vessels 70-72. Nevertheless, these post-mortem 
studies did not explain the clinical heterogeneity of 
COVID-19, as revealed by immunological, radiologi-
cal, and clinical studies, accounting for the evidence of 
different disease phenotypes 73,74. A possible explana-
tion of this heterogeneity has been provided by stud-
ies of lung biopsies of patients with early/mild COV-
ID-19 pneumonia as defined by typical lung opacities 
at CT scan, variable degree of hypoxemia but with no 
needs of intubation and mechanical ventilation  75,76. 
In this series a common and peculiar pattern of lung 
modifications was observed, characterized by acute 
lung injury but without the typical features of the DAD 
pattern. Hyaline membranes were in fact absent and 
interstitial fibrosis was either focal or absent. Alveolar 
epithelial type II cells (AECII) hyperplasia was heter-
ogeneous and characterized by an unusual “patchy” 
distribution, with AECII clusters ranging from isolated 
small aggregates to wide proliferation of micronod-
ular and/or pseudo-papillary sprouts, interposed to 
normally looking type-I pneumocytes. An unexpected 
finding was the occurrence of a diffuse enlargement 
of pulmonary interstitial blood vessels (both capillar-
ies and venules). At immunohistochemical analysis 
abnormal phenotypes were demonstrated in both the 
epithelial (AECII) and vascular components, with ro-
bust expression of molecules involved in the STAT3 
pathway (pSTAT3, IL-6). An interesting finding was the 
strong and diffuse expression of molecules related to 
innate-immune activation (PDL1 and Ido1) in intersti-
tial blood vessels 75,76. 

Indoleamine 2,3-dioxygenase (Ido1 and 
Ido2) in COVID-19

Indoleamine 2,3-dioxygenase enzyme activity is the 

rate-limiting step of the aminoacid tryptophan (Trp) 
degradation in extra-hepatic sites. IDO1 expression 
in normal tissues is negligible, but inflammatory stim-
uli can trigger its expression, mainly mediated by 
IFN-gamma 77-79. Ido1 has a relevant role in immune 
regulation suppressing effector T cell functions and 
favoring the development of regulatory T cells by Trp 
depletion at the local site of inflammation and the 
production of immunosuppressive Trp metabolites 
(kynurenine, kynurenic acid, xanthurenic acid). The 
only tissue where Ido1 is constitutively expressed 
and functional is the human placenta, where the en-
zyme is able to maintain feto-maternal immune-tol-
erance and antimicrobial functions. Ido1 is constitu-
tively expressed in chorionic vascular endothelium, 
with highest levels in the microvasculature, where it 
regulates vascular tone and placental perfusion, thus 
providing a regular blood flux to the growing fetus 80-82. 
Accordingly, Ido1 deficiency is related to pregnancy 
disorders such in intrauterine growth restriction (IU-
GR) and pre-eclampsia 82-86. Critical levels of endothe-
lial and/or perivascular concentrations of vasoactive 
Trp metabolites may be necessary for effective con-
trol of the vascular tone  87. Interestingly, the activity 
of endothelial Ido1/kynurenine axis on vascular tone 
is likely more effective in organs characterized by pe-
culiar circulatory systems such as the placenta and 
lung, both characterized by reduced blood pressure 
and both constitutively expressing Ido1 88, 89. Accord-
ingly, Ido1 protects against development of pulmo-
nary hypertension  90. An endothelial protective role 
of Ido1 has been also demonstrated in experimental 
ischemia-reperfusion, atherosclerosis and acute lung 
allograft injury, thus suggesting a role for the TKP ac-
tivation in contrasting vascular dysfunction  91-95. Vas-
cular dysfunction (vascular inflammation, disruption of 
the endothelial homeostasis, edema, and life-threat-
ening coagulation abnormalities) is a distinct feature 
of severe COVID-19 and is common in conditions 
predisposing to severe COVID-19 (diabetes, obesity, 
older age, etc.) 96-99. 
Two Ido paralogs exist (Ido1 and Ido2) characterized 
by distinct expression patterns and roles in immune 
and vascular tone regulation  100-102. Ido2 is prevalent-
ly expressed in severe COVID-19 pneumonia 103, and 
a pathogenic mechanism based on Ido1/ Ido2 imbal-
ance has been hypothesized in COVID-19, switching 
from protective vasodilatation to vascular dysfunction 
and hypertansion 104. The concurrent immunosuppres-
sive and vasodilator activity of Ido1 in COVID-19 early/
mild pneumonia may have a negative role in inducing 
vasoplegia, ventilation/perfusion mismatch (accounting 
for the hypoxia occurring in COVID-19) and lymphocyte 
depletion, but might help in contrasting the life threat-
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ening consequences of hypertension and vascular dys-
plasia as observed in severe COVID-19 pneumonia. It 
is worthwile to note that the concurrent promotion of 
pulmonary hypertension can be exerted in COVID-19 
by up-regulation of HERV-K 105. 
Vascular dilatation is also evident at CT scan in early/
mild COVID-19 pneumonia (described as “vascular en-
largement pattern”)  106-108, and this pattern is likely re-
sponsible of the peculiar pulmonary hemodynamic pro-
file, perfusion abnormalities, and hypoxia (“happy hy-
poxia”) characterizing mild COVID-19 pneumonia 109-111.

Cross-talk of Idos and HERVs in 
COVID-19

Several links exist between HERV-mediated mecha-
nisms and the Ido1/Trp/Kyn pathway. HERVs can act 
as proximal regulatory elements in promoting inter-
feron responses and the expression of Ido enzymes 
strictly depends on IFNs 79,112. Both Ido1 and HERVs 
are physiologically expressed in the placenta and exert 
important concurrent roles in mammalian placental de-
velopment and functions 113. Ido1 enzyme activity is in 
fact necessary to provide sufficient vascular perfusion 
and to avoid immune rejection of the fetus. HERVs are 
also necessary for placental morphology and tropho-
blast invasiveness, inducing syncytialization through 
the synthesis of syncitins, highly fusogenic env-like 
glycoproteins expressed at high levels in human pla-
centa  47,114. Syncitins help maintain trophoblast stem 
cell proliferation, placental angiogenesis and contrib-
ute to maternal immune system suppression and tol-
erance toward the fetus  115-118. In addition, syncytins 
have a role in amino acid transport and allow protec-
tion against viral infection 119. In line with this evidence, 
a decrease in syncytin levels has been demonstrated 
in fetal growth restriction and pre-eclampsia 120-124. It is 
possible to speculate that in COVID-19 an abnormal 
fusogenic activity of syncitins may be related to the 
observed formation of AECII clusters in mild pneumo-
nia 75, and epithelial multinucleated syncitia in severe 
pneumonia 125. When abnormally activated in infected 
lungs these molecular mechanisms likely determine 
perturbations of immune responses and vascular tone 
control with eventual triggering of autoinflammatory 
responses and vascular dysplasia in aging and sus-
ceptible individuals.

Long-COVID-19 (PACS)

A proportion of patients may suffer from post-acute 
sequelae experiencing complications affecting differ-

ent organs (a condition defined as “long COVID-19”, 
or “post-acute COVID syndrome” (PACS) 126-133. Most 
common symptoms in PACS include systemic mani-
festations (fatigue, asthenia, poor concentration, wan-
dering fever), pulmonary functional impairment (dysp-
nea, cough, reduced DLCO), neuropsychiatric mani-
festations (sleep disturbances, cognitive dysfunction, 
depression, mood changes, anxiety, headache, taste, 
and/or smell loss), and cardiac manifestations (chest 
pain, palpitations, tachycardia, dysrhytmias), as well 
as a variety of muscle-skeletal, renal, dermatological, 
and gastrointestinal manifestations 131. In a series of 
lung biopsies the most frequent findings were simi-
lar to those observed in acute early/mild COVID-19 
pneumonias (vascular enlargement and abnormal en-
dothelial expression of Ido1, PD-L1 and STAT3) 75,134. 
The persistence of Ido1 activity in pulmonary vessels 
may be involved in vasoplagia and hypoxia. In both 
COVID-19 and PACS, dysregulation of the Tryptophan/
Kynurenine pathway is likely to be involved in the de-
velopment of neurological complications by decreas-
ing the availability of Trp (necessary for conversion to 
5-HT and melatonin, and by altering the physiological 
proportions of neurotoxic (quinolinic acid, 3-hydrox-
ykynurenine) versus neuroprotective (kynurenic acid, 
picolinic acid, and the essential cofactor NAD+) Trp 
metabolites  135-138. Persistence of HERV transcription 
products may be involved in PACS inducing long-last-
ing symptoms of chronic inflammation in different or-
gans 49,54,139. 

Conclusions

In conclusion, a pathogenic scenario can be hypothe-
sized where a cascade of events follow SARS-CoV-2 
infection of ACEII expressing epithelial cells. Cen-
tral in this scheme is the production of a variety of 
HERV products that can interfere with the functions of 
non-infected cell types (monocytes, myeloid-derived 
suppressor cells, dendritic cells, lymphocytes, en-
dothelial cells, etc.) in different tissue compartments. 
The clinical development and severity of the disease 
(asymptomatic, mild, severe) is likely determined by 
genetic background and physiopathogical status (age, 
comorbidities) interfering with the many biological 
mechanisms and pathways regulating immunity and 
cardio-vascular and pulmonary systems. A rational 
catalog of chronology and relevance of these mech-
anisms is needed to obtain a meaningful comprehen-
sion of COVID-19 pathogenesis. 
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