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The aging process is commonly accompanied by a general or specific loss of
muscle mass, force and/or function that inevitably impact on a person’s quality of
life. To date, various clinical tests and assessments are routinely performed to
evaluate the biomechanical status of an individual, to support and inform the
clinical management and decision-making process (e.g., to design a tailored
rehabilitation program). However, these assessments (e.g., gait analysis or
strength measures on a dynamometer) are typically conducted independently
from one another or at different time points, providing clinicians with valuable yet
fragmented information. We hereby describe a comprehensive protocol that
combines both in vivo measurements (maximal voluntary isometric contraction
test, superimposed neuromuscular electrical stimulation, electromyography, gait
analysis, magnetic resonance imaging, and clinical measures) and in silico
methods (musculoskeletal modeling and simulations) to enable the full
characterization of an individual from the biomechanical standpoint. The
protocol, which requires approximately 4 h and 30 min to be completed in all
its parts, was tested on twenty healthy young participants and five elderlies, as a
proof of concept. The implemented data processing and elaboration procedures
allowing for the extraction of several biomechanical parameters (including
muscle volumes and cross-sectional areas, muscle activation and co-
contraction levels) are thoroughly described to enable replication. The main
parameters extracted are reported asmean and standard deviation across the two
populations, to highlight the potential of the proposed approach and show some
preliminary findings (which were in agreement with previous literature).
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1 Introduction

As we age, our muscles tend to lose mass and to reduce in volume/size (Clark and
Manini, 2008; 2010; Seene and Kaasik, 2012; Clark, 2019). This natural process, referred to
with the term sarcopenia, may be accelerated or aggravated by ongoing neural diseases or
musculoskeletal disorders (Fukagawa et al., 1995; Kemmler et al., 2015). For decades,
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sarcopenia has been identified as the major determinant of physical
frailty in the elderly, and often used as univocal term to define the
typical loss of muscle strength observed in the aging population. In
the early 2000s, the paradigm changed, as it became apparent that
muscles did not simply (or necessary) exhibit a reduced strength
secondary to a loss of mass. Thus, a new term was introduced in the
attempt to describe the complexity of the phenomenon of the loss of
muscle strength: dynapenia. Today, with the term dynapenia,
clinicians and research scientists refer to all those factors
associated with the loss of muscle strength other than sarcopenia,
e.g., changes in contractile properties or neural activation
impairments (Clark and Manini, 2008). Although the decline in
muscle function in the elderly is commonly related to a combination
of sarcopenia and dynapenia, several studies have shown that the
two can manifest independently on one another and that usually the
decline in muscle strength is more rapid than the concomitant loss
of muscle mass (Frontera et al., 2000; Delmonico et al., 2009).
Furthermore, a number of pathological conditions typical of the
elderly, such as osteoarthritis, may lead to further impairments in
the neural system which go beyond the neural alterations common
to the aging process (Rice et al., 2011). Thus, it is clear that the
conundrum is not only on the semantics. The distinction between
sarcopenia and dynapenia is necessary to appropriately identify and
quantify the causes and impairments related to muscle weakness,
and in turn to improve the clinical management of the elderly. In
fact, several rehabilitation/nutritional/pharmacological
interventions may be better set up to address either the loss of
muscle mass or the abnormalities in neural function. To date, the
clinical assessment is based on a number of measures which
comprehensively assess muscle weakness, thus leaving uncertainty
on muscle weakness determinants which are majorly affected by the
aging process (Dent et al., 2018; Beaudart et al., 2019).

The gold standard measures to quantify the (loss of) muscle
volume and the residual muscle force of a person
are—respectively—the acquisition of medical imaging data
(typically magnetic resonance images, MRI) to extract muscle
volumes (Barnouin et al., 2014; Pons et al., 2018; Davico et al.,
2023) and the maximal voluntary isometric contraction (MVIC) test
on a dynamometer (Meldrum et al., 2007; O’Brien et al., 2009; Harbo
et al., 2012). Alternatively, the outcome of a hand-grip test may be
employed as a surrogate measure of generalized sarcopenia (Porto
et al., 2019; Lee and Gong, 2020), and bio-impedance devices may be
used to estimate the body mass composition (Khalil et al., 2014).
Last, the activation inhibitionmay be identified with a superimposed
electrical stimulation (Clark and Taylor, 2011). While informative,
these measures—each requiring a specific instrumentation or not
common in the clinical practice, thus often performed
separately—do not provide a full characterization of the
biomechanical determinants of dynapenia. Nonetheless,
leveraging on these common clinical examinations, and
complementing the assessment with novel musculoskeletal (MSK)
modeling techniques it is possible to achieve a complete
characterization of the health status of an individual from a
biomechanical standpoint.

Therefore, we set out to design an experimental and
computational protocol which provides information on
various key domains, from the loss of muscle mass
(sarcopenia) and force (dynapenia), to inhibited or altered

muscle activation and internal biomechanics. Our aim was
threefold: 1) to develop a comprehensive framework which
combines in vivo assessments and in silico simulations to fully
characterize the biomechanics of an individual, 2) to test the
feasibility of the developed framework in a clinical context and on
an elderly population and 3) to highlight any correlations
between the various measured or predicted biomechanical
parameters.

2 Methods and protocol

The data and results hereby presented have been developed in
the framework of the Proto-Aging project. The study protocol
was approved by the local Ethical Committee (CE AVEC: EM37/
2023_30/2021/Sper/IOR_EM2) and has been recorded on the
ClinicalTrials registry (ClinicalTrials ID: NCT05854316). The
study was conducted in accordance with the Declaration of
Helsinki and a written informed consent was signed by each
of the participants before participating in the study.

2.1 Participants

Twenty healthy young individuals (age: 28.39 ± 4.97 years,
BMI: 22.19 ± 2.79 kg/m2) and five elderlies (age: 68.04 ±
2.01 years, BMI: 25.57 ± 2.73 kg/m2) participated in the study
(Table 1). Were excluded from the study subjects who had 1)
neurological, rheumatic or tumoral diseases, 2) present or
previous injuries to bones, muscles and tendons of the lower
limbs which required surgical interventions or led to
abnormalities in the structure or the function of the lower
limb, 3) sedentary behavior as defined by level 1 of the Saltin
and Grimby physical activity level scale (Grimby et al., 2015),
and/or 4) physical conditions or health issues not compliant with
MRI assessment and electrical stimulation use.

2.2 Study protocol

The experimental data collection was organized in three separate
sessions, to respectively collect full lower limb MRI data, maximal
voluntary and involuntary knee extension and flexion torques and to
perform a full gait assessment (Figure 1).

2.2.1 MRI data acquisition
With the subjects in supine position, full lower limb MRI

data, from the 4th lumbar vertebra (L4) to the toes, were acquired
on a 3T MRI scanner (DISCOVERY MR750w with XP, GE
Healthcare, Chicago, IL-USA), using a Dixon sequence
specifically optimised to highlight muscle boundaries (slice
thickness: 2 mm, Minimum overlap: 20 slices, matrix size:
240 × 240 px, TR: 3.74 ms, TE: 2.2 ms, NEX: 1). Axial images
were acquired in multiple separate stations (4 stations for people
below 170 cm, 5 stations for people taller than 170 cm). A footrest
was used to ensure that the ankles were in neutral position,
i.e., with the angle between foot and tibial bone approximately
at 90°.
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TABLE 1 Participants demographics, including height, mass, body mass index (BMI), age, sex and physical activity (PA) level. The PA level is a 1 to 4 score
according to the Saltin-Grimby scale (Grimby et al., 2015), where 1 = sedentary; 2 = light physical activity; 3 = moderate activity; 4 = agonistic level. Pre =
previous PA level, cur = PA level at the time of the visit.

ID Height (m) Mass (kg) BMI (kg/m ) Age (years) Sex PA level

pre cur

HYA01 1.70 83.00 28.72 26.64 M 3 3

HYA02 1.60 54.00 21.09 27.41 F 3 3

HYA03 1.73 73.00 24.39 40.95 M 3 2

HYA04 1.70 59.00 20.42 27.93 M 4 3

HYA05 1.77 68.00 21.71 27.12 M 4 4

HYA06 1.84 70.00 20.68 23.27 M 4 3

HYA07 1.75 75.00 24.49 29.52 M 3 3

HYA08 1.66 63.00 22.86 38.92 F 4 4

HYA09 1.65 45.00 16.53 23.26 F 3 3

HYA10 1.77 77.00 24.58 33.57 M 4 3

HYA11 1.54 50.00 21.08 34.29 F 3 3

HYA12 1.63 50.00 18.82 23.07 F 3 3

HYA13 1.81 83.00 25.34 26.67 M 4 4

HYA14 1.70 55.00 19.03 27.83 F 3 2

HYA15 1.78 75.00 23.67 23.85 M 4 4

HYA16 1.69 59.00 20.66 30.82 F 4 3

HYA17 1.92 82.00 22.24 22.21 M 4 4

HYA18 1.81 68.00 20.76 26.95 F 4 3

HYA19 1.58 51.00 20.43 27.14 F 4 4

HYA20 1.55 63.00 26.22 26.46 F 3 3

OLD01 1.73 80.00 26.73 70.13 M 3 2

OLD02 1.80 78.00 24.07 64.96 M 3 3

OLD03 1.80 84.00 25.93 69.69 M 3 2

OLD04 1.70 62.00 21.45 66.40 F 3 3

OLD05 1.58 74.00 29.64 69.03 F 3 3

FIGURE 1
Schematic representation of the study protocol, involving three different data acquisition sessions. First, full lower limbMRI data are acquired on a 3T
scanner. Then, a MVIC test is performed on a dynamometer, in various knee configurations (i.e., with knee flexed at 75° and 90° degrees), whilst recording
surface EMG data from eight major lower limb muscles. This includes the delivery of a superimposed neuromuscular electrical stimulation. Last, a gait
assessment in conducted.
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2.2.2 Muscle force assessment
On a separate day, the subjects were asked to perform a maximal

voluntary isometric contraction (MVIC) test to quantify the muscle
force of the knee extensor and flexor muscles.

2.2.2.1 Subject preparation
At subject’s arrival, the operators identified the placement sites

for surface EMG electrodes on eight primary lower limb muscles
(i.e., rectus femoris - RF, vastus medialis—VM, vastus lateralis—VL,
caput longum of the biceps femoris—BFL, semitendinosus—ST,
lateral gastrocnemius LG. EMG data from the VL and BFL were
collected on both sides), according to SENIAM recommendations
(Hermens et al., 2000). Following skin preparation (shaving and
cleaning), pairs of Ag-AgCl EMG electrodes (10 mm diameter) were
placed on the selected locations with a 20 mm interelectrode
distance (centre-to-centre).

2.2.2.2 Muscle strength assessment
Prior to skin preparation, the subjects were asked to sit on the

physiotherapy bed and to perform a hand-grip test. Holding a
hydraulic dynamometer (Jamar) in their dominant hand, with
the elbow flexed at 90°, the participants performed three maximal
contractions. After each contraction, the maximum force value, in
kg, was noted and a 90 s break was allowed for the arm to rest. Verbal
encouragement was provided to elicit maximal contractions. If the
level of force kept increasing, a fourth attempt was requested.

Upon electrodes placement, and prior to the actual MVIC test,
subjects performed a 10-min warm-up session on an ergometer at
low resistance. Then, one electrogoniometer (Biometrics Ltd.,
Gwent, United Kingdom) was placed on the lateral side of the
dominant limb with the two arms aligning with the thigh and leg
axes. Both the electrogoniometer and the bipolar electrodes were
connected through cables to the EMG system (Sessantaquattro,
OTBioelettronica, Torino, Italy. Sampling frequency: 2000 Hz).
Baseline EMG data were collected with the subjects sitting on a
chair and relaxing for 30 s.

Subsequently, the subjects were seated on an isokinetic
dynamometer (Biodex System 4 Pro, Biodex Medical Systems,
New York, United States) and strapped to the chair using belts
across the chest, waist, thigh and ankle of the dominant (assessed)
limb. With the dynamometer arm at 75° flexion, the subjects were
asked to perform a series (n = 8) of short (i.e., 3 s) sub-maximal
contractions at 50% of self-perceived maximal effort. Consecutive
contractions were separated by a 2-s pause.

Following warm-up, the subjects were asked to perform aMVIC
test in different configurations (i.e., with the knee flexed at 75° and
90°, where 0° is full extension), first in extension then in flexion. To
execute the test, all participants were instructed to exert their
maximal strength as fast as possible. Verbal encouragement (e.g.,
Go!, Forza!) and visual feedback were provided to elicit maximal
contractions and to help participants maintaining the level of force
for at least 3 s before relaxing. Three trials were performed at each
angle and for each muscle group (knee extensors and knee flexors). If
the force expressed (i.e., the measured torques) in the third trial
exceeded by 5% or more the values achieved in the previous trials,
the participants were asked to perform a fourth trial (Ditroilo et al.,
2010; Senefeld et al., 2017). To avoid muscle fatigue, a 90 s resting
period was allowed between contractions.

2.2.2.3 Neuromuscular electrical stimulation
Quadriceps muscle voluntary activation deficit was assessed by

means of superimposed neuromuscular electrical stimulation
(SNMES). While the participants performed a maximal
contraction, with the knee flexed at 75°, a doublet of single
square-wave stimuli (2 square pulses; interpulse interval: 10 ms;
pulse duration: 100-µs; maximal voltage: 330 V; intensity: from
200 to 500 mA) were delivered by a constant current high-
voltage stimulator (Digitimer DS7AH, Hertfordshire,
United Kingdom), through a couple of reusable synthetic
chamois leather electrodes (FIAB spa, Vicchio, Italy) applied over
the thigh. The size of the electrodes (12 × 8 or 21 × 11 cm) was
chosen according to each participant’s size to warrantee the
stimulation of a representative portion of the quadriceps muscle.
The intensity of the stimulation was determined in accordance with
previous studies (Malloggi et al., 2019; Catino et al., 2021). First, the
peak torque was recorded during MVIC contraction with the knee
flexed at 75°; then, the subjects were asked to rest and relax their
muscles. To identify an adequate intensity for each participant,
stimulations at increasing intensity (of current), and with a 2-min
rest between, were delivered until a torque value equal to or greater
than 25% of the recorded peak torque (MVC25) was observed. Once
the intensity of stimulation had been selected, the participants were
asked to perform three MVIC of the knee extensor muscles. The
stimulation was delivered when the plateau (maximum torque level)
was reached and maintained for at least 2 s. A resting period of 2 min
between repetitions was granted to avoid muscle fatigue. The
dynamometry and SNMES data were synchronized through the
Power1401 data acquisition system (CED, Cambridge,
United Kingdom), and visualized and recorded in Spike II v10
(Cambridge Electronic Designed Limited-CED, Cambridge,
United Kingdom).

2.2.3 Gait assessment
On the same day or later, the participants underwent a full gait

assessment.
An expert operator removed eventual hair from the skin which

was then cleansed with ethyl alcohol to reduce impedance. Then the
correct location for the Ag-AgCl EMG electrodes was identified in
accordance with SENIAM recommendations. Overall, 16 muscles
were identified (9 on the limb of interest—i.e., soleus, tibialis
anterior, gluteus medius, and the six acquired during the MVIC
test—and 7 on the contralateral side. The EMG signals from the
soleus and gluteus medius muscles were solely collected on the leg of
interest) and wireless EMG sensors (EMG Wave, Cometa , Milan,
Italy) were placed and secured in position with a hypoallergenic
double-sided tape. Then, 49 retro-reflective spherical markers were
placed on anatomical landmarks on the upper body (torso, spine,
shoulders, arms) and lower limbs (pelvis, femurs, tibiofibular
complexes and feet) (Leardini et al., 2007), as well as on thighs
and shanks.

Once instrumented, the subjects were asked to perform few
simple locomotor tasks, including 1) one calibration trial with the
subjects standing in T-pose in front of the cameras (16 camera
system, Vicon), and 2) a minimum of 10 walking trials over a 10 m
walkway at self-selected (habitual) walking speed. The trials were
deemed acceptable if characterized by clean strikes on the force
plates (Kistler, Kistler Instrumente AG, Winterthur, Switzerland).
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3 Data analysis

3.1 Muscle volumes

The axial MRI scans, saved in DICOM format, were imported in
the Mimics Innovation Suite software (Materialise, Leuven, BE), and
organized to ensure consecutive stacks of images were merged
together. Then, using the software Mimics (v23, Mimics
Innovation Suite, Materialise, Leuven, Belgium), the volumes of
the major knee extensor and flexor muscles of the limb of interest,
respectively the quadriceps (vastus medialis, vastus lateralis, vastus
intermedium, and rectus femoris) and the hamstrings
(semitendinosus and biceps femoris) were semi-automatically
segmented, and exported in STL file format. A custom written
python script was ultimately run to extract all muscle volumes
and maximal cross-sectional areas (CSA).

3.2 Maximal isometric torques

The experimental data collected during theMVIC test, originally
saved in a proprietary format (OTB), were exported in MATLAB
files from within the OTBiolab+ software v1.5.7 (OT Bioelettronica,
Turin, Italy). In MATLAB 2022b, the torques data were first filtered
with a zero-phase shift 4th order Butterworth lowpass filter
(fcutoff = 20 Hz) and converted in Nm:

TNm Outdyn × fV Ft−lb × fFt−lb Nm

Outdyn V[ ] × 102.4 ft − lb
V

× 1.3558
Nm

ft − lb
Outdyn × 138.834

where Out is the output torque from the dynamometer (in V),
while f and f are the conversion factors from Volts to
foot-pounds (according to the vendor) and from foot-pounds to
Nm, respectively.

Then, for each subject, task and knee configuration, the
dynamometry data were segmented to separate the different trials
(repetitions). To this end, a threshold value was set to identify the start
and end of the contraction (i.e., the analysis window), as follows:

threshold μnoise + 3σnoise

whereμ and σ are, respectively, the mean and standard
deviation of the signal where, according to the protocol, there
was no contraction (i.e., noise).

Last, a zero-phase shift 4th order Butterworth lowpass filter at
2 Hz was applied to smooth the signal, so to avoid overestimation of
the maximal torques due to sudden bursts, and the maximum value
was extracted. The overall maximum among the three trials (per task
and configuration) was considered to be the MVIC torque value.

3.3 Central activation ratio

A similar approach was employed to quantify any activation
deficit, on the dynamometry data recorded while the SNMES was
delivered. The dynamometry data were filtered with a low-pass
Butterworth filter at 20 Hz, and the offset removed. The Central

Activation Ratio (CAR) was calculated as in (Kent-Braun and Le
Blanc, 1996):

CAR
MVC

MVC + superimposed stimulus
× 100

where MVC is identified as the torque value occurring in
correspondence of the plateau, right before the stimulation, while
the stimulated torque is derived from the amplitude of the
superimposed twitch.

For this analysis, only the trials where the electrical stimulation
was delivered during the maximum voluntary contraction were
considered.

3.4 Muscle activity

The EMG signals recorded while the subjects performed the
MVIC test and the dynamic tasks (e.g., overground walk) during the
warm-up phase prior to the test, were filtered within the 20–300 Hz
band using a zero-lag 5th order Chebyshev high-pass filter followed
by a 8th order Chebyshev lowpass filter (Merletti and Cerone, 2020).
A recursive filter was then applied to remove the 50 Hz noise
frequency and its higher harmonics. The filtered signal was thus
rectified and lowpass filtered with a 2 Hz zero-lag 4th order
Butterworth filter to extract its linear envelope, which was later
normalized by the maximum value observed during the task. Finally,
the co-contraction index (CCI) was computed as suggested by
Rudolph and colleagues (Rudolph et al., 2000):

CCI t( ) inputL
inputH

× inputL + inputH

where input and input are respectively the activation levels of the
less active and more active antagonist muscle (between BFL and VL)
during the execution of the analyzed task.

For the overground walking trials, the CCI was computed
separately for each of the four phases of the gait cycle (i.e., initial
double support—0%–10%, single support: 10%–50%, pre-swing:
50%–60%, swing phase: 60%–100%). Of note, the CCI ranges
from 0 to 2.

3.5 Musculoskeletal modeling and
simulations

All data collected during the gait assessment were pre-processed
in Vicon Nexus, where any gaps due to partial marker occlusion
were filled to ensure continuous marker trajectories. Then, the data
were exported in c3d file format and later processed in MOtoNMS
(Mantoan et al., 2015), to obtain one file containing the data from
the force plates and one file containing the trajectories of all markers
(respectively, in MOT and TRC file format), ready for use in the
OpenSim software (Delp et al., 2007; Seth et al., 2018).

For each subject, a musculoskeletal model was generated by
linearly scaling the generic modified full body model (Rajagopal
et al., 2016; Uhlrich et al., 2022). Motion capture data from a single
calibration trial where the subjects were standing in T-pose were
used to guide the scaling process (i.e., to identify the scaling factors).
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The models were employed within the OpenSim (v4.1)
environment to perform biomechanical simulations of gait. For
each participant, data from 10 overground walking trials were
analyzed. Joint angles, external moments and contact forces were
predicted via the Inverse Kinematics, Inverse Dynamics and Joint
Reaction Analysis tools. Muscle forces and activations were
estimated hypothesizing optimal muscle control, i.e., implementing
a cost function to identify the solution that minimized the overall
metabolic cost expenditure (sum of squared muscle activations)
(Crowninshield and Brand, 1981).

All parameters (muscle volumes and CSAs, MVIC torque values
in extension and flexion with the knee flexed at 75° and 90°, CAR and
CCI during maximal contractions, hand-grip force, average walking
speed, and hip, knee and ankle ROMs on the sagittal plane),
extracted at participant’s level, were pooled together to compute
the mean and standard deviation for the two populations under
study (young and elderly individuals) (Table 3).

The OpenSim output were 1) normalized to each subject’s mass
(joint moments) or body weight (joint contact forces), 2)
interpolated to vectors of 101 points (0–100) to express the data
in percentage of the gait cycle, and 3) organized in structures to
facilitate subsequent analyses. Statistical Parametrical Mapping
techniques (SPM, spm1d in Matlab)(Pataky, 2012) were
employed to identify any statistically significant differences
between the ankle, knee and hip joint kinematics, kinetics and
contact force profiles of the two cohorts under study (i.e., healthy
young individuals and elderlies). Significance for the t-tests was
set to 0.05.

4 Results

All participants successfully completed the entire protocol.
The average time to complete the MRI acquisition was 30 min,
while approximately 1 h and 2 h were respectively allocated for
the gait assessment and the MVIC test (mostly spent for the
participants’ preparation and warm-up). Approximately 20 min
were required to fully process the dynamometry data (i.e., sEMG
and torques) for one subject, using custom written MATLAB
scripts. Similarly, the elaboration of the gait data for each
participant, which was fully automated through MOtoNMS
(Mantoan et al., 2015), took on average 15 min. The
segmentation of medical imaging data was performed with a
semi-automatic (atlas-based) approach in Mimics v23 and took

up to 6 h per subject to completely segment the muscles of
one lower limb.

Due the breadth of the dataset and the main aim of this work, to
keep this section brief and easy to read, only a subset of the data and
results will be presented in the following. Our intent is to show the
type of data and parameters that can be extracted following the
proposed framework (Table 2, Table 3). For more comprehensive set
of results, the reader is referred to the Supplementary Material and
Data availability sections.

4.1 Muscle volumes

The volumes of the quadriceps muscles, with the only exception of
the VM, were smaller in the elderly participants compared to the young
adults (e.g., 597.0 ± 162.3 cm vs. 510.1 ± 92.622 cm , for the VL.
Table 4). Similarly, in the HYA cohort, the maximal CSA of the RF, VL
and VI muscles were larger than on the elderlies. Similar findings were

TABLE 2 Summary of the methods employed to process the experimental data and list of parameters thus extracted. BP = band-pass filter, CAR = central
activation ratio, CCI = co-contraction index, EMG = electromyography, LP = low-pass filter, MRI = magnetic resonance image, MSK = musculoskeletal,
MVIC = maximum voluntary isometric contraction, RMS = root mean squared, SNMES = superimposed neuromuscular electrical stimulation.

Data type Elaboration method Parameter extracted

Surface EMG RMS envelope (BP 20–300 Hz, 50 Hz noise removal, rectification, LP 2 Hz) CCI

Torques Filtering (LP 20 Hz), segmentation (on/off signal to define window) Filtering (LP 2 Hz) MVIC (overall max)

MRIs Semi-automatic segmentation Volumes (both sides)

SNMES Filtering (LP 20 Hz), identification voluntary and involuntary torques CAR

MSK modeling Scaled generic models and biomechanical simulations in OpenSim Joint kinematics, kinetics and contact forces

TABLE 3 Example of parameters that can be extracted from the
experimental tests and in silico simulations. CAR = central activation ratio,
JCF = knee joint contact force characteristic (1 /2 ) peak value, MVIC =
maximal voluntary isometric contraction in extension, PWS = preferred
walking speed, ROM = range of motion on the sagittal plane, Volume =
quadriceps muscles volume, SS = single leg support phase.

Parameter Unit HYA OLD

MVIC Nm 236.1 ± 68.6 183.1 ± 44.4

MVIC Nm 222.8 ± 76.1 160.6 ± 39.7

CAR - 0.96 ± 0.04 0.98 ± 0.01

CCIMVIC75°
- 0.15 ± 0.21 0.13 ± 0.10

CCIWalkSS
- 0.13 ± 0.07 0.31 ± 0.06

Hand-grip kg 40.55 ± 8.93 36.80 ± 10.05

Volume cm 1673.7 ± 475.1 1482.2 ± 127.0

PWS m/s 1.25 ± 0.12 1.32 ± 0.09

ROMSag
Ankle

deg 31.44 ± 6.14 28.88 ± 3.72

ROMSag
Knee

deg 64.07 ± 4.13 58.85 ± 1.99

ROMSag
Hip

deg 40.69 ± 4.34 37.55 ± 3.30

JCF1st peakKnee
BW 3.08 ± 0.52 3.73 ± 0.57

JCF2nd peakKnee
BW 3.14 ± 0.24 2.62 ± 0.30
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observed when the volumes were normalized to the BMI of each
participant, to remove the confounding effect of the
height and mass.

4.2 MVIC test

The MVIC test was successfully conducted on all participants, in
both configurations (i.e., with the knee flexed at 75° and 90°). In general,
with the knee flexed at 75° rather than 90°, the participants were able to
generate their overall maximum extension torques (i.e., 236.1 ± 68.6 Nm
and 183.1 ± 44.4 Nm, respectively, for the HYA and OLD cohort)
(Table 5). The torques generated by the elderlies were the smallest overall.

4.3 Hand-grip

The results of the hand-grip test were in line with the MVIC test
(i.e., HYA >HYA >OLD), with values ranging between
40 and 56 kg for young males, between 28 and 40 kg for young
females, and between 20.5 and 47 kg for the elderlies. A positive and
linear relationship was found between the maximal extension
torques and the maximal strength measured with the hand-grip
test (Figure 2).

4.4 Muscle activity and activation deficit

All participants were able to fully recruit their muscles
voluntarily, as highlighted by the CAR values (larger than
0.90 for all subjects). Of note, the young adults, on average,
showed a CAR of around 0.96, a little less than what was
observed on the older participants (i.e., CAR ~0.98).

The CCI was in general low, for all participants, independently
on their age. Muscle co-contraction was minimal when the subjects
performed the MVIC test (CCI = 0.15 ± 0.21, CCI = 0.13 ±
0.10), and during the swing phase of the gait cycle (CCI
<0.30 and CCI <0.13). The maximum level of co-contraction
was observed during the double support phase of the gait cycle (see
Supplementary Material).

4.5 Gait assessment and biomechanical
simulations

All participants walked at a similar speed, with the elderly
participants walking slightly faster than the young adults (1.32 ±
0.09 m/s vs. 1.25 ± 0.12 m/s, respectively), when instructed to
select their preferred walking speed. Overall, young and older
individuals exhibited similar joint kinematics, kinetics and
contact force profiles (on the sagittal plane), as highlighted by
the results of the simulations. However, statistically significant
differences were found during the stance phase and the push-off
phase of the gait cycle for what concerns the hip and knee joint
contact forces, respectively (the models predicted larger second
peaks for the HYA participants, compared to the
elderlies. Figure 3).

5 Discussion

In this manuscript we proposed a framework that combines
both experimental measurements and computational simulations to
enable the full biomechanical characterization of an individual.
Medical imaging, dynamometry, EMG and motion capture data
were collected on 25 subjects (20 healthy young adults and
5 elderlies) to demonstrate the feasibility of the protocol.
Furthermore, we indulged on the detailed description of the data
elaboration and data analysis to enable replication and to highlight
the type of information that can be extracted, allowing to get insights
on five domains: loss of muscle mass (sarcopenia), loss of muscle
force (dynapenia), presence of abnormal muscle activation patterns
and muscle activation inhibition, loss of function (e.g., in terms of
gait deviation) (Figure 4). All data were acquired and processed
according to international guidelines.

The protocol took approximately 4 h and 30 min per subject,
including the preparation time: 2 h30 for the dynamometry test, 1 h
for the gait assessment and 30–60 min for the MRI acquisition. All
participants completed the protocol and compliance to the protocol
was high. Of note, the protocol can be easily tailored to the
experimenter’s needs, and reduced in time e.g., performing the
MVIC test in one single configuration (or focusing on one
motion direction: leg extension or flexion), or complemented
with additional tests (e.g., high-density EMG, ultrasound,
isokinetic tests).

A comprehensive set of parameters was extracted, allowing to
get insights on different biomechanical domains of clinical interest
(Figure 4). The experimental findings are in line with previous
studies. In particular, the maximal extension torques closely
approximate those reported by O’Brien et al. (O’Brien et al.,
2009), while the gait kinematics and kinetics is typical of a

TABLE 4 Muscle volumes reconstructed from the MRI data, expressed as
mean and standard deviation across each cohort, and reported in cm . RF =
rectus femoris, VI/VL/VM = vastus intermedius/lateralis/medialis.

Muscle Volume (cm ) CSA (mm )

HYA OLD HYA OLD

RF 224.0 ± 75.4 117.8 ± 36.1 1233.5 ± 340.3 949.9 ± 189.1

VL 597.0 ± 162.3 510.1 ± 92.6 2807.4 ± 634.5 2421.1 ± 384.4

VI 430.2 ± 110.2 365.7 ± 87.9 2080.0 ± 496.6 1807.2 ± 461.4

VM 422.4 ± 127.2 432.5 ± 110.4 2283.3 ± 541.2 2284.2 ± 359.0

TABLE 5 Maximum extension torques values (in Nm) and knee flexion angle
(in degrees) measured by the dynamometer and the electrogoniometer
(internal angle), respectively, for the cohort of young healthy adults (HYA)
and elderly individuals (OLD), in the two tested configurations (with the
dynamometer angle set at 75° and 90°). The values are reported as mean
and standard deviation across the respective cohort.

Maximal torques (Nm) Internal angle (°)

HYA OLD HYA OLD

75° 236.1 ± 68.6 183.1 ± 44.4 60.9 ± 8.6 57.3 ± 4.2

90° 222.8 ± 76.1 160.6 ± 39.7 72.8 ± 9.3 68.1 ± 7.1
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healthy adult population (Bovi et al., 2011; Moissenet et al., 2019;
Rowe et al., 2021). In addition, as expected, and in accordance
with previous studies (Rozand et al., 2020), none of the
participants showed signs of poor muscle control or activation
deficits (CCI<0.30 and CAR >0.96 in all cases, while performing

the MVIC test at 75°), which could have been identified through
the combination of electromyography and superimposed
electrical stimulations. Indeed, the correct application of the
stimulation is not trivial, as it is not uncommon to observe
within- and between-subjects variability in terms of maximal

FIGURE 2
Relationship between themaximal extension torques recorded during theMVIC test in extension and the hand-grip test, for both young (HYA, black)
and elderly (OLD, grey) participants. The solid and dashed lines represent the trend line of the data considering the results of the MVIC test performedwith
the knee flexed at 75° and 90°, respectively.

FIGURE 3
Hip, knee and ankle joint kinematics, kinetics and contact forces during overground walking predicted by the musculoskeletal models. The results
are reported as mean (solid line) and standard deviation (shade) across each population (black = young adults, red = elderlies). Ten trials per participant
were analysed. Joint contact force values are normalised to the bodyweight, to enable comparisons. The black bars on top identify statistical significance
(p < 0.05) according to the SPM analysis.
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torques profiles (despite analogous instructions and
familiarization).

Furthermore, the predicted joint contact forces were within the
normative ranges, i.e., approximately 3–4 N (van Rossom et al.,
2018). Nonetheless, the use of musculoskeletal models enabled to
appreciate some differences in both joint kinematics and joint
loading during walking. This is quite important. Atypical contact
force profiles and/or abnormal peak values are secondary to altered
biomechanics and could serve as early predictor/indicator of
neuromuscular pathologies (Pizzolato et al., 2017; Killen et al.,
2020; Davico et al., 2022; Uhlrich et al., 2022).

Last, the availability of MRI data allowed for the reconstruction of
3D muscle volumes, better predictor of muscle strength than CSA
measurements (Akagi et al., 2009). As highlighted in previous works
(Trappe et al., 2001; Fuchs et al., 2023), elder participants had smaller
muscles than their younger counterparts. With a larger dataset at
hand or combining different datasets, population-specific atlases and
robust regression models can be generated (e.g., Handsfield et al.,
2014), which would expedite the process to estimate muscle volumes,
thus, to identify and quantify the presence of sarcopenia. The
possibility to detect fat infiltrations, which new algorithms promise
to enable, would add more informative value. Alternatively,
bioimpedentiometry measurements may be used to estimate the
percentage of muscular and fat tissues.

Extending the investigation (and validation) of the proposed
framework to other populations (e.g., subjects affected by
musculoskeletal conditions and/or neuromuscular disorders) may
lead in the long run to an improvement in the management of
patients and consequently to an improvement in their general health
and quality of life. From a clinical point of view, the discrimination
of the determinants leading to muscle strength decline is essential to
personalize clinical interventions. For example, if the tests show that
the low muscle strength is mainly related to the loss of muscle mass
nutritional and strength trainingmay need to be implemented, while
pharmacological interventions may be further required if the loss of
muscle strength is mainly, or partly, related to abnormal or declined
neural function.

To the authors’ knowledge, this is the first study showing such a
comprehensive set of experimental measures and parameters,
collected with the aim to fully characterize an individual from a
biomechanical and neuromuscular standpoint. With a larger sample
size at hand, one could apply data extraction and analytics
approaches—eventually supported by machine learning or AI-
based methods—to get insights into the mechanisms behind the
loss of muscle force (Giarmatzis et al., 2020; Yeung et al., 2020; Liew
et al., 2023; Moghadam et al., 2023; Rabbi et al., 2024).

The small sample size (and the limited number of elderly
subjects enrolled) was the main limitation of this preliminary
investigation, which was however devised to test the feasibility of
the proposed workflow in a clinical setting.

There are some additional limitations to the study. For instance,
as reported, the internal knee joint angle did not correspond to the
theoretical angle of the dynamometer (see the reported internal
angle versus nominal angle, Table 5). However, this is in line with
previous works. The availability of a motion capture system would
enable for a better control of the experiment, and/or to correct for
movements. Moreover, the use of an isokinetic dynamometer to
execute a MVIC test is the current gold standard. Second, the EMG
data were—at times—noisy. This was due to the EMG system being
wired, with the cables causing artifacts. However, the data
elaboration pipeline allowed for a proper data cleaning. In
addition, EMG data was also collected during a range of dynamic
tasks, which enabled to compute important parameters, such as the
CCI, during more common tasks/activities of daily living (including
walking). Third, the groups were unbalanced and the numerosity
was not sufficient to reach statistical significance for many
comparisons (except for the results of the simulations), but this
was not a primary objective for the study. A larger cohort and dataset
would enable to use linear mixed models or decisional trees (e.g.,
classification and regression trees) to highlight any relationships/
correlations between the extracted parameters. Fourth, the MSK
models used in this study were generic models linearly scaled from a
template model (Rajagopal et al., 2016; Uhlrich et al., 2022).
Although their use was motivated by their application to two
cohorts of healthy adults, and by an easier and faster
development compared to personalized MSK models built off
medical imaging data (Smith et al., 2015; Modenese et al., 2018;
Princelle et al., 2023), the latter would yield more physiologically
plausible estimate (particularly when employed to study individuals
with MSK disorders) and may incorporate patient-specific
characteristics (e.g., sarcopenia). Last, the criterion employed to
estimate muscle forces and activations, which identified the solution
that minimized the sum of squared muscle activations, may not be
the most appropriate to simulate many motor tasks. However, as
none of the participants was affected by/diagnosed with
neuromuscular disorders, it was reasonable to assume that they
performed a minimally demanding and easy task such as walking
with minimal energy consumption. Also, it should be mentioned
that the gait assessment was performed barefoot. Future studies
should also investigate if some differences between barefoot or
wearing shoes walking exist.

In conclusion, we hereby proposed a protocol and framework to
enable the full biomechanical characterization of an individual,
combining both in vivo and in silico approaches and we
demonstrated its feasibility, in a clinical context. The same or

FIGURE 4
Schematic of the domains that can be extracted and/or explored
through the proposed framework.
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similar framework can provide quantitative evidence to support
clinical management and decision-making.

Data availability statement

The datasets presented in this article are not readily available
because further processing and curation are required before any data
can be publicly shared. The authors intend to share the curated
dataset with the scientific community under the form of a data
collection. Requests to access the datasets should be directed to
giorgio.davico@unibo.it.

Ethics statement

The studies involving humans were approved by the Comitato
Etico Area Vasta Emilia Centro (CE-AVEC). The studies were
conducted in accordance with the local legislation and
institutional requirements. The participants provided their
written informed consent to participate in this study.

Author contributions

GD: Investigation, Writing–original draft, Formal Analysis,
Methodology, Project administration. LL: Data curation,
Investigation, Methodology, Project administration,
Writing–review and editing. IG: Data curation, Formal Analysis,
Writing–review and editing. MB: Conceptualization, Investigation,
Resources, Writing–review and editing. MV: Conceptualization,
Resources, Supervision, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The study

was was funded by the Italian Ministry of Health, under the Aging
Network of Italian Research Hospitals (IRCCS)—RCR-2022-
23682286-RETE AGING—“Next-Generation Promising (NGP): a
new network approach to frailty, multimorbidity, and age-related
disease in the era of precision medicine,” and by the European
Union through the Next-Generation EU funding scheme (ALMArie
CURIE 2022– SupER-funded by Italian Ministerial Decree
n. 737/2021).

Acknowledgments

The authors would like to thank all participants, and other
collaborators who helped in the data collection.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbioe.2024.1356417/
full#supplementary-material

References

Akagi, R., Takai, Y., Ohta, M., Kanehisa, H., Kawakami, Y., and Fukunaga, T. (2009).
Muscle volume compared to cross-sectional area is more appropriate for evaluating
muscle strength in young and elderly individuals. Age Ageing 38, 564–569. doi:10.1093/
ageing/afp122

Barnouin, Y., Butler-Browne, G., Voit, T., Reversat, D., Azzabou, N., Leroux, G., et al.
(2014). Manual segmentation of individual muscles of the quadriceps femoris using
MRI: a reappraisal. J. Magnetic Reson. Imaging 40, 239–247. doi:10.1002/jmri.24370

Beaudart, C., Rolland, Y., Cruz-Jentoft, A. J., Bauer, J. M., Sieber, C., Cooper, C., et al.
(2019). Assessment of muscle function and physical performance in daily clinical
practice. Calcif. Tissue Int. 105, 1–14. doi:10.1007/s00223-019-00545-w

Bovi, G., Rabuffetti, M., Mazzoleni, P., and Ferrarin, M. (2011). A multiple-task gait
analysis approach: kinematic, kinetic and EMG reference data for healthy young and
adult subjects. Gait Posture 33, 6–13. doi:10.1016/j.gaitpost.2010.08.009

Catino, L., Malloggi, C., Scarano, S., Cerina, V., Rota, V., and Tesio, L. (2021).
Quadriceps activation during maximal isometric and isokinetic contractions: the
minimal real difference and its implications. Isokinet. Exerc. Sci. 29, 277–289.
doi:10.3233/IES-203241

Clark, B. C. (2019). Neuromuscular changes with aging and sarcopenia. J. Frailty
Aging 8, 7–9. doi:10.14283/jfa.2018.35

Clark, B. C., and Manini, T. M. (2008). Sarcopenia != dynapenia. J. Gerontol. A Biol.
Sci. Med. Sci. 63, 829–834. doi:10.1093/gerona/63.8.829

Clark, B. C., and Manini, T. M. (2010). Functional consequences of sarcopenia and
dynapenia in the elderly. Curr. Opin. Clin. Nutr. Metab. Care 13, 271–276. doi:10.1097/
MCO.0b013e328337819e

Clark, B. C., and Taylor, J. L. (2011). Age-related changes in motor cortical properties
and voluntary activation of skeletal muscle. Curr. Aging Sci. 4, 192–199. doi:10.2174/
1874609811104030192

Crowninshield, R. D., and Brand, R. A. (1981). A physiologically based criterion of
muscle force prediction in locomotion. J. Biomech. 14, 793–801. doi:10.1016/0021-
9290(81)90035-X

Davico, G., Bottin, F., Di Martino, A., Castafaro, V., Baruffaldi, F., Faldini, C., et al.
(2023). Intra-operator repeatability of manual segmentations of the hip muscles on
clinical magnetic resonance images. J. Digit. Imaging 36, 143–152. doi:10.1007/s10278-
022-00700-0

Davico, G., Lloyd, D. G., Carty, C. P., Killen, B. A., Devaprakash, D., and Pizzolato, C.
(2022). Multi-level personalization of neuromusculoskeletal models to estimate
physiologically plausible knee joint contact forces in children. Biomech. Model
Mechanobiol. 21, 1873–1886. doi:10.1007/s10237-022-01626-w

Delmonico, M. J., Harris, T. B., Visser, M., Park, S. W., Conroy, M. B., Velasquez-
Mieyer, P., et al. (2009). Longitudinal study of muscle strength, quality, and
adipose tissue infiltration. Am. J. Clin. Nutr. 90, 1579–1585. doi:10.3945/ajcn.
2009.28047

Frontiers in Bioengineering and Biotechnology frontiersin.org10

Davico et al. 10.3389/fbioe.2024.1356417



Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., et al. (2007).
OpenSim: open-source software to create and analyze dynamic simulations of
movement. IEEE Trans. Biomed. Eng. 54, 1940–1950. doi:10.1109/TBME.2007.901024

Dent, E., Morley, J. E., Cruz-Jentoft, A. J., Arai, H., Kritchevsky, S. B., Guralnik, J.,
et al. (2018). International clinical practice guidelines for sarcopenia (ICFSR): screening,
diagnosis and management. J. Nutr. health aging 22, 1148–1161. doi:10.1007/s12603-
018-1139-9

Ditroilo, M., Forte, R., Benelli, P., Gambarara, D., and De vito, G. (2010). Effects of age
and limb dominance on upper and lower limb muscle function in healthy males and
females aged 40–80 years. J. Sports Sci. 28, 667–677. doi:10.1080/02640411003642098

Frontera, W. R., Suh, D., Krivickas, L. S., Hughes, V. A., Goldstein, R., and Roubenoff,
R. (2000). Skeletal muscle fiber quality in older men and women. Am. J. Physiol. Cell
Physiol. 279, C611–C618. doi:10.1152/ajpcell.2000.279.3.C611

Fuchs, C. J., Kuipers, R., Rombouts, J. A., Brouwers, K., Schrauwen-Hinderling, V. B.,
Wildberger, J. E., et al. (2023). Thigh muscles are more susceptible to age-related muscle
loss when compared to lower leg and pelvic muscles. Exp. Gerontol. 175, 112159. doi:10.
1016/j.exger.2023.112159

Fukagawa, N. K., Poehlman, E. T., Toth, M. J., Fishman, P. S., Vaitkevicius, P.,
Gottlieb, S. S., et al. (1995). Sarcopenia in aging humans: the impact of menopause and
disease. Journals Gerontology Ser. A Biol. Sci. Med. Sci. 50A, 73–77. doi:10.1093/gerona/
50A.Special_Issue.73

Giarmatzis, G., Zacharaki, E. I., and Moustakas, K. (2020). Real-time prediction of
joint forces by motion capture and machine learning. Sensors (Basel) 20, 6933. doi:10.
3390/s20236933

Grimby, G., Börjesson, M., Jonsdottir, I. H., Schnohr, P., Thelle, D. S., and Saltin, B.
(2015). The “saltin–grimby physical activity level scale” and its application to health
research. Scand. J. Med. Sci. Sports 25, 119–125. doi:10.1111/sms.12611

Handsfield, G. G., Meyer, C. H., Hart, J. M., Abel, M. F., and Blemker, S. S. (2014).
Relationships of 35 lower limb muscles to height and body mass quantified using MRI.
J. Biomechanics 47, 631–638. doi:10.1016/j.jbiomech.2013.12.002

Harbo, T., Brincks, J., and Andersen, H. (2012). Maximal isokinetic and isometric
muscle strength of major muscle groups related to age, body mass, height, and sex in
178 healthy subjects. Eur. J. Appl. Physiol. 112, 267–275. doi:10.1007/s00421-011-1975-3

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., and Rau, G. (2000). Development of
recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr.
Kinesiol 10, 361–374. doi:10.1016/s1050-6411(00)00027-4

Kemmler,W., Teschler, M., Goisser, S., Bebenek,M., von Stengel, S., Bollheimer, L. C.,
et al. (2015). Prevalence of sarcopenia in Germany and the corresponding effect of
osteoarthritis in females 70 years and older living in the community: results of the
FORMoSA study. Clin. Interv. Aging 10, 1565–1573. doi:10.2147/CIA.S89585

Kent-Braun, J. A., and Le Blanc, R. (1996). Quantitation of central activation failure
during maximal voluntary contractions in humans. Muscle and Nerve 19, 861–869.
doi:10.1002/(SICI)1097-4598(199607)19:7<861::AID-MUS8>3.0.CO;2-7
Khalil, S. F., Mohktar, M. S., and Ibrahim, F. (2014). The theory and fundamentals of

bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors
(Basel) 14, 10895–10928. doi:10.3390/s140610895

Killen, B. A., Falisse, A., De Groote, F., and Jonkers, I. (2020). In silico-Enhanced
treatment and rehabilitation planning for patients with musculoskeletal disorders: can
musculoskeletal modelling and dynamic simulations really impact current clinical
practice? Appl. Sci. 10, 7255. doi:10.3390/app10207255

Leardini, A., Sawacha, Z., Paolini, G., Ingrosso, S., Nativo, R., and Benedetti, M. G.
(2007). A new anatomically based protocol for gait analysis in children. Gait Posture 26,
560–571. doi:10.1016/j.gaitpost.2006.12.018

Lee, S. H., and Gong, H. S. (2020). Measurement and interpretation of handgrip
strength for research on sarcopenia and osteoporosis. J. Bone Metab. 27, 85–96. doi:10.
11005/jbm.2020.27.2.85

Liew, B. X. W., Rügamer, D., Mei, Q., Altai, Z., Zhu, X., Zhai, X., et al. (2023). Smooth
and accurate predictions of joint contact force time-series in gait using over
parameterised deep neural networks. Front. Bioeng. Biotechnol. 11, 1208711. doi:10.
3389/fbioe.2023.1208711

Malloggi, C., Catino, L., Rota, V., Scarano, S., and Tesio, L. (2019). Measuring
voluntary activation of the Quadriceps femoris during isokinetic concentric
contractions. Isokinet. Exerc. Sci. 27, 125–134. doi:10.3233/IES-182224

Mantoan, A., Pizzolato, C., Sartori, M., Sawacha, Z., Cobelli, C., and Reggiani, M.
(2015). MOtoNMS: a MATLAB toolbox to process motion data for
neuromusculoskeletal modeling and simulation. Source Code Biol. Med. 10, 12.
doi:10.1186/s13029-015-0044-4

Meldrum, D., Cahalane, E., Conroy, R., Fitzgerald, D., and Hardiman, O. (2007).
Maximum voluntary isometric contraction: reference values and clinical application.
Amyotroph. Lateral Scler. 8, 47–55. doi:10.1080/17482960601012491

Merletti, R., and Cerone, G. L. (2020). Tutorial. Surface EMG detection, conditioning
and pre-processing: best practices. J. Electromyogr. Kinesiol. 54, 102440. doi:10.1016/j.
jelekin.2020.102440

Modenese, L., Montefiori, E., Wang, A., Wesarg, S., Viceconti, M., and Mazzà, C.
(2018). Investigation of the dependence of joint contact forces on musculotendon

parameters using a codified workflow for image-based modelling. J. Biomechanics 73,
108–118. doi:10.1016/j.jbiomech.2018.03.039

Moghadam, S.M., Yeung, T., and Choisne, J. (2023). A comparison of machine learning
models’ accuracy in predicting lower-limb joints’ kinematics, kinetics, and muscle forces
from wearable sensors. Sci. Rep. 13, 5046. doi:10.1038/s41598-023-31906-z

Moissenet, F., Leboeuf, F., and Armand, S. (2019). Lower limb sagittal gait kinematics
can be predicted based on walking speed, gender, age and BMI. Sci. Rep. 9, 9510. doi:10.
1038/s41598-019-45397-4

O’Brien, T. D., Reeves, N. D., Baltzopoulos, V., Jones, D. A., and Maganaris, C. N.
(2009). The effects of agonist and antagonist muscle activation on the knee extension
moment–angle relationship in adults and children. Eur. J. Appl. Physiol. 106, 849–856.
doi:10.1007/s00421-009-1088-4

Pataky, T. C. (2012). One-dimensional statistical parametric mapping in Python.
Comput. Methods Biomechanics Biomed. Eng. 15, 295–301. doi:10.1080/10255842.2010.
527837

Pizzolato, C., Reggiani, M., Saxby, D. J., Ceseracciu, E., Modenese, L., and Lloyd, D. G.
(2017). Biofeedback for gait retraining based on real-time estimation of tibiofemoral
joint contact forces. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1612–1621. doi:10.1109/
TNSRE.2017.2683488

Pons, C., Borotikar, B., Garetier, M., Burdin, V., Salem, D. B., Lempereur, M., et al.
(2018). Quantifying skeletal muscle volume and shape in humans using MRI: a
systematic review of validity and reliability. PLOS ONE 13, e0207847. doi:10.1371/
journal.pone.0207847

Porto, J. M., Nakaishi, A. P. M., Cangussu-Oliveira, L. M., Freire Júnior, R. C., Spilla, S.
B., and Abreu, D. C. C. (2019). Relationship between grip strength and global muscle
strength in community-dwelling older people. Arch. Gerontol. Geriatr. 82, 273–278.
doi:10.1016/j.archger.2019.03.005

Princelle, D., Davico, G., and Viceconti, M. (2023). Comparative validation of two
patient-specific modelling pipelines for predicting knee joint forces during level
walking. J. Biomechanics 159, 111758. doi:10.1016/j.jbiomech.2023.111758

Rabbi, M. F., Davico, G., Lloyd, D. G., Carty, C. P., Diamond, L. E., and Pizzolato, C.
(2024). Muscle synergy-informed neuromusculoskeletal modelling to estimate knee
contact forces in children with cerebral palsy. Biomech. Model Mechanobiol. doi:10.
1007/s10237-024-01825-7

Rajagopal, A., Dembia, C. L., DeMers, M. S., Delp, D. D., Hicks, J. L., and Delp, S. L.
(2016). Full-body musculoskeletal model for muscle-driven simulation of human gait.
IEEE Trans. Biomed. Eng. 63, 2068–2079. doi:10.1109/TBME.2016.2586891

Rice, D. A., McNair, P. J., and Lewis, G. N. (2011). Mechanisms of quadriceps muscle
weakness in knee joint osteoarthritis: the effects of prolonged vibration on torque and
muscle activation in osteoarthritic and healthy control subjects. Arthritis Res. Ther. 13,
R151. doi:10.1186/ar3467

Rowe, E., Beauchamp, M. K., and AstephenWilson, J. (2021). Age and sex differences
in normative gait patterns. Gait Posture 88, 109–115. doi:10.1016/j.gaitpost.2021.05.014

Rozand, V., Sundberg, C. W., Hunter, S. K., and Smith, A. E. (2020). Age-related
deficits in voluntary activation: a systematic review and meta-analysis. Med. Sci. Sports
Exerc. 52, 549–560. doi:10.1249/MSS.0000000000002179

Rudolph, K. S., Axe, M. J., and Snyder-Mackler, L. (2000). Dynamic stability after
ACL injury: who can hop? Knee Surg. Sports Traumatol. Art. 8, 262–269. doi:10.1007/
s001670000130

Seene, T., and Kaasik, P. (2012). Muscle weakness in the elderly: role of sarcopenia,
dynapenia, and possibilities for rehabilitation. Eur. Rev. Aging Phys. Act. 9, 109–117.
doi:10.1007/s11556-012-0102-8

Senefeld, J., Yoon, T., and Hunter, S. K. (2017). Age differences in dynamic fatigability
and variability of arm and leg muscles: associations with physical function.
Exp. Gerontol. 87, 74–83. doi:10.1016/j.exger.2016.10.008

Seth, A., Hicks, J. L., Uchida, T. K., Habib, A., Dembia, C. L., Dunne, J. J., et al. (2018).
OpenSim: simulating musculoskeletal dynamics and neuromuscular control to study human
and animal movement. PLoS Comput. Biol. 14, e1006223. doi:10.1371/journal.pcbi.1006223

Smith, C., Lenhart, R., Kaiser, J., Vignos, M., and Thelen, D. (2015). Influence of
ligament properties on tibiofemoral mechanics in walking. J. Knee Surg. 29, 099–106.
doi:10.1055/s-0035-1558858

Trappe, T. A., Lindquist, D. M., and Carrithers, J. A. (2001). Muscle-specific atrophy of
the quadriceps femoris with aging. J. Appl. Physiology 90, 2070–2074. doi:10.1152/jappl.
2001.90.6.2070

Uhlrich, S. D., Jackson, R. W., Seth, A., Kolesar, J. A., and Delp, S. L. (2022). Muscle
coordination retraining inspired by musculoskeletal simulations reduces knee contact
force. Sci. Rep. 12, 9842. doi:10.1038/s41598-022-13386-9

van Rossom, S., Smith, C. R., Thelen, D. G., Vanwanseele, B., Van Assche, D., and
Jonkers, I. (2018). Knee joint loading in healthy adults during functional exercises:
implications for rehabilitation guidelines. J. Orthop. Sports Phys. Ther. 48, 162–173.
doi:10.2519/jospt.2018.7459

Yeung, S., Fernandez, J. W., Handsfield, G. G., Walker, C., Besier, T. F., and Zhang, J.
(2020). Rapid muscle volume prediction using anthropometric measurements and
population-derived statistical models. Biomech. Model Mechanobiol. 19, 1239–1249.
doi:10.1007/s10237-019-01243-0

Frontiers in Bioengineering and Biotechnology frontiersin.org11

Davico et al. 10.3389/fbioe.2024.1356417


