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On the period of Li, Pertusi and Zhao’s symplectic variety

Franco Giovenzana, Luca Giovenzana, and Claudio Onorati

Abstract. We extend classical results of Perego and Rapagnetta on moduli spaces

of sheaves of type OG10 to moduli spaces of Bridgeland semistable objects on the

Kuznetsov component of a cubic fourfold. In particular, we determine the period

of this class of varieties and use it to understand when they become birational to

moduli spaces of sheaves on a K3 surface.
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Introduction

The theory of moduli spaces of sheaves on algebraic surfaces is arguably one of

the most important and fruitful research areas of the last decades. In particular,

moduli spaces of sheaves on K3 surfaces have been extensively studied in relation to

the geometry of irreducible holomorphic symplectic manifolds, i.e. simply connected

compact Kähler manifolds with a unique up to scalar non-degenerate holomorphic

2-form.

Let (S,H) be a polarised K3 surface, v = v(F ) be the Mukai vector of a coherent

sheaf F on S and M be the moduli space of Gieseker semistable sheaves on S of Mukai

vector v. It is known that when v is primitive, i.e. not of the form v = kw with k ̸= ±1,

and v2 ≥ −2 and H is generic with respect to v, then the moduli space is nonempty,

irreducible, and symplectic (see [Yos01] for the final statement of a long list of works).

In this case, any semistable sheaf is stable. On the other hand, if the Mukai vector is

not primitive, then the singular locus of M coincides with the strictly semistable locus,

which may be nonempty. By the seminal work of Mukai ([Muk84]), the stable locus

always carries a holomorphic symplectic form, but in general there are no symplectic

Key words and phrases. Moduli spaces of Bridgeland semistable objects, cubic fourfolds, interme-

diate jacobian fibrations, irreducible holomorphic symplectic manifolds.
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2 FRANCO GIOVENZANA, LUCA GIOVENZANA, AND CLAUDIO ONORATI

resolutions of singularities. More precisely, if the polarisation is v-general, we have

that ([LS06, KLS06]):

• if v = 2w with w2 = 2, then there exists a symplectic resolution of singularities;

• if v = kw with w2 ̸= 2 or w2 = 2 and k ≥ 3, then there are no symplectic

resolutions of singularities.

In the former case, which we are interested in, the desingularisation M̃ is an irreducible

holomorphic symplectic manifold of type OG10. Its geometry is quite well understood

nowadays, in particular its Hodge structure is abstractly described by Perego and

Rapagnetta ([PR14]). We recall these works in Section 1.

The first aim of this paper is to generalise these results to the non-commutative

case. Since Bridgeland’s work on stability conditions ([Bri07]), the realm of moduli

spaces welcomed more general objects, namely moduli spaces parametrising semistable

objects in the derived category of coherent sheaves on a K3 surface. Even more gener-

ally, stability conditions have been recently constructed on some K3 categories (often

called non-commutative K3 surfaces). Examples of these are given by the Kuznetsov

component of a smooth cubic fourfold. This level of generality is the one we consider

in this paper. The machinery to study these objects has been rigorously developed in

[BLMNPS21], where the case of a primitive Mukai vector is comprehensively analysed.

Recently Li, Pertusi and Zhao studied moduli spaces of Bridgeland semistable ob-

jects in the K3 category of a cubic fourfold with a non primitive Mukai vector of the

form v = 2w, with w2 = 2 (see [LPZ20] – we recall some of their work in Section 2).

These varieties are called LPZ varieties in the following. As in the classical case,

they show that a symplectic resolution of singularities exists and the resulting mani-

fold is an irreducible holomorphic symplectic manifold of type OG10. Paralleling the

classical works of Perego and Rapagnetta ([PR13, PR14]), we determine the periods

of both the singular moduli space and its desingularisation, see Proposition 2.8 and

Proposition 2.15.

As a first corollary we get a Torelli-like statement that compares the birational

geometry of LPZ varieties with a particular Mukai vector (see Example 2.6) with

the geometry of the cubic fourfold. More precisely, in Theorem 2.14 we prove that the

existence of a birational morphism between two such varieties, satisfying two additional

assumptions, implies that the underlying cubic fourfolds are isomorphic.

As a second corollary we get the following analog of the main result of [PR14]:

An LPZ variety is either locally factorial or 2-factorial.

See Corollary 2.16 for the precise statement.

In the rest of the paper we use the results of Section 2 to investigate the following

natural question.

Q: When is an LPZ variety birational to a moduli space of sheaves on a (twisted) K3

surface?



We give a complete answer to this question in the non-twisted case in Theorem 3.2.

As expected, such a birational isomorphism exists as soon as the cubic fourfold has an

associated K3 surface. When the K3 surface is twisted though, we need to rigidify our

hypothesis, and we prove a similar statement under the assumption that the birational

map is stratum preserving in Proposition 3.1. Here, a stratum preserving birational

map is a birational map that is well-defined at the generic point of the singular locus

of the first variety and maps it to the generic point of the singular locus of the second

variety.

The same question for Fano varieties of lines of cubic fourfolds and for the so-called

Lehn–Lehn–Sorger–van Straten symplectic eightfolds has been previously answered, by

similar methods, in [Add16, Huy17] and [AG20, LPZ18]. From this point of view, the

present work can be thought as a natural continuation of the aforementioned works.

Recently, similar results of the ones in the present paper appeared in [FGG23].

Finally, in [LPZ20, Theorem 1.3] it is proved that certain LPZ varieties are birational

to an irreducible holomorphic symplectic manifold of type OG10 that compactifies the

twisted intermediate jacobian fibration associated to a cubic fourfold (see [Voi18]).

Using this remark, in Theorem 4.3 we give an answer to the following question.

Q: When is an LPZ variety birational to an LSV variety?

An LSV variety is an irreducible holomorphic symplectic manifold of type OG10

that compactifies the intermediate jacobian fibration associated to a cubic fourfold

([LSV17, Sac20] – see also Section 4).
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1. Moduli spaces of sheaves on a K3 surface

1.1. Classical theory. Let S be a projective K3 surface and v ∈ Ktop(S) be a positive

Mukai vector ([Yos01, Definition 0.1]). For a choice of an ample divisor H, we consider

the moduli space Mv(S,H) of Gieseker–Maruyama H-semistable sheaves on S of class

v. When v is primitive and H is chosen generic with respect to v ([PR13, Section 2.1]),

the space Mv(S,H) is a non-empty smooth and projective variety deformation equiv-

alent to a Hilbert scheme of points of a K3 surface ([Yos01, Theorem 8.1]). Here we

are interested in the case v is non primitive as described in the following theorem.
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Theorem 1.2 ([O’Gr99][LS06, Théorème 1.1]). Suppose that v = 2w, where w is

primitive and w2 = 2. If H is generic with respect to v, then Mv(S,H) is a non-

empty projective singular symplectic variety of dimension 10. Moreover, there exists a

symplectic desingularisation

π : M̃v(S,H) −→ Mv(S,H),

where M̃v(S,H) is a smooth and projective irreducible holomorphic symplectic variety.

Moreover, M̃v(S,H) is obtained by blowing up Mv(S,H) at the singular locus with

reduced scheme structure.

Any irreducible symplectic manifold that is deformation equivalent to M̃v(S,H) is

said to be of type OG10. Any singular symplectic variety that is locally trivially defor-

mation equivalent to Mv(S,H) is said to be singular of type OG10. (This makes sense

since, by [PR13, Theorem 1.6], the moduli spaces and the respective desingularisations

obtained in the theorem are all deformation equivalent to each other.)

Recall that Ktop(S) is a unimodular lattice of rank 24, where the pairing is given

by the opposite of the Euler pairing. For v ∈ Ktop(S) we denote by v⊥ the sublattice

of Ktop(S) of vectors that are orthogonal to v. Recall also that Ktop(S) ∼= Heven(S,Z),
and it comes with a pure Hodge structure of weight 2 obtained by declaring

Heven(S,C)2,0 := H2,0(S), Heven(S,C)0,2 := H0,2(S)

and

Heven(S,C)1,1 := H0(S)⊕H1,1(S)⊕H4(S).

In particular, v⊥ inherits a Hodge structure of weight 2 as well.

Notice also that the free Z-module Heven(S,Z) inherits a lattice structure from

Ktop(S), and from now on we use the more common notation H̃(S,Z) in order to

explicit this lattice structure.

Finally, we say that two lattices, both with a Hodge structure, are Hodge-isometric

if there exists an isometry that is also an isomorphism of Hodge structures.

Proposition 1.3 ([PR13, Theorem 1.7],[PR14, Theorem 3.1]). Let S, H and v be

as in the theorem above, and let π : M̃v(S,H) −→ Mv(S,H) be the desingularisation

morphism.

(1) The pullback

π∗ : H2(Mv(S,H),Z) −→ H2(M̃v(S,H),Z)

is injective. In particular, H2(Mv(S,H),Z) has a pure Hodge structure of

weight two and inherits a non-degenerate lattice structure.

(2) The lattice H2(Mv(S,H),Z) is Hodge-isometric to the lattice v⊥.

(3) The Beauville–Bogomolov–Fujiki lattice H2(M̃v(S,H),Z) is Hodge-isometric to

the lattice

(1.1) Γv =
{(

x, k
σ

2

)
∈ (v⊥)∗ ⊕ Z

σ

2
| k ∈ 2Z ⇔ x ∈ v⊥

}
,
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where σ2 = −6 and corresponds to the class of the exceptional divisor of π.

Here, the Hodge structure of Γv is defined by the Hodge structure on v⊥ and

by declaring the class σ to be of type (1, 1).

Remark 1.4. Note that item (1) holds true for any singular symplectic variety by the

work of Bakker and Lehn (see [BL21, Lemma 2.1, Lemma 3.5] and, more generally,

[BL18, Section 5]).

1.5. Moduli of objects in the derived category. As before, let S be a projective

K3 surface and let Db(S) be its derived category of coherent sheaves. By [Bri07, Theo-

rem 1.2] there exists a complex manifold Stab(S) of Bridgeland stability conditions on

Db(S) and, as customary, we denote by Stab†(S) the distinguished connected compo-

nent containing geometric stability conditions ([Bri08, Theorem 1.1]). If v ∈ Ktop(S)

is a Mukai vector, then Stab†(S) is decomposed in walls and chambers with respect

to v, and we say that a stability condition is generic if it belongs to one of the (open)

chambers. By [BM14a, Theorem 2.15] and [BM14b, Theorem 1.3], if τ ∈ Stab†(S)

is generic, then there exists a non-empty coarse moduli space Mv(S, τ), parametris-

ing S-equivalence classes of objects that are semistable with respect to τ . Moreover,

Mv(S, τ) is a normal projective and irreducible variety with Q-factorial singularities,

and if v is primitive, then Mv(S, τ) is smooth and deformation equivalent to a Hilbert

scheme of points on S.

Theorem 1.6 ([MZ16, Proposition 2.2, Corollary 3.16]). Let τ ∈ Stab†(S) be generic

and v = 2w, with w primitive and w2 = 2. Then Mv(S, τ) is singular, the singular locus

being the locus of strictly semistable objects, and there exists a symplectic resolution of

singularities

π : M̃v(S, τ) −→ Mv(S, τ).

Moreover M̃v(S, τ) is a projective irreducible holomorphic symplectic manifold of type

OG10.

Under the genericity assumption of the stability condition, the singular locus of

Mv(S, τ) is isomorphic to Sym2Mw(S, τ). (This classical result is usually referred to

[O’Gr99, Lemma 1.1.5], by using the tools developed in the proof of [BM14b, Theo-

rem 1.3].)

As before, let us describe the second cohomology groups of the singular and the

smooth moduli spaces. The following result is due to Meachan and Zhang, we only

prove the third statement, since it is not written anywhere, but all the tools are

contained in [MZ16].

Proposition 1.7 ([MZ16, Theorem 2.7]). Let S, v = 2w and τ be as above, and let

π : M̃v(S, τ) −→ Mv(S, τ) be the desingularisation morphism.

(1) The pullback

π∗ : H2(Mv(S, τ),Z) −→ H2(M̃v(S, τ),Z)
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is injective. In particular, H2(Mv(S, τ),Z) has a pure Hodge structure of weight

two and inherits a non-degenerate lattice structure.

(2) The Mukai morphism defines a Hodge isometry

θv : v
⊥ −→ H2(Mv(S, τ),Z)

that is invariant under Fourier–Mukai equivalences.

(3) The Beauville–Bogomolov–Fujiki lattice H2(M̃v(S, τ),Z) is Hodge-isometric to

the lattice Γv defined in (1.1).

Proof. The only statement that is not contained in [MZ16, Theorem 2.7] is the last

one: its proof is essentially implicit in loc. cit., so we quickly recall the main ideas.

By [BM14b, Lemma 7.3] the moduli space Mv(S, τ) is isomorphic to a moduli space

Mṽ(S
′, α,H) of H-Gieseker semistable α-twisted sheaves on a (possibly different)

twisted K3 surface S′; the vector ṽ = 2w̃ is a Fourier–Mukai transform of v = 2w.

Therefore it is enough to prove the claim in this case. As recalled in the proof of

[MZ16, Proposition 2.2] (see [Lie07] and [Yos06]), moduli of twisted sheaves are con-

structed as GIT quotients and have the same deformation theory as untwisted sheaves.

In particular M̃ṽ(S
′, α,H) is constructed by blowing up the singular locus (which,

under our genericity assumptions, is isomorphic to Sym2Mw̃(S
′, α,H)) with its re-

duced scheme structure. We first claim that the exceptional divisor Σ̃ṽ(α) of this

resolution is an element of square −6 and divisibility 3 in the Beauville–Bogomolov–

Fujiki lattice H2(M̃ṽ(S
′, α,H),Z). In order to prove this, we start by noticing that by

[MZ16, Lemma 3.3, Proposition 3.7 and Proposition 3.9] one can locally trivially de-

form Mṽ(S
′, α,H) to a moduli space of untwisted sheaves (notice that [MZ16, propo-

sition 3.7] holds conditionally to some technical assumptions, which we can always

assume by performing a first general deformation of the twisted K3 surface). More

precisely, there exists a curve B and a locally trivial family

p : M −→ B

such that Mb1 = Mṽ(S, α,H) and Mb2 = Mv′′(S
′′, H ′′) for some polarised K3 surface

(S′′, H ′′). If

(1.2) p̃ : M̃ −→ B

is the induced family of the desingularisations (i.e. the relative blow-up of the singular

loci), then by the proof of [PR13, Proposition 2.16] we get that the exceptional divisors

of the fibres form a flat section σ̃ of the local system R2p̃∗Z. (Here and in the following

all the local systems we consider come with a distinguished connection, the Gauss–

Manin connection, and flatness of a section has to be interpreted with respect to this

connection.) Therefore the claim follows from the untwisted case ([Rap08]).
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Now define the homomorphism

fṽ(S
′, α,H) : Γṽ −→ H2(M̃ṽ(S, α,H),Z)(

x, k
σ

2

)
7→ π∗(θṽ(x)) +

k

2
Σ̃ṽ(α),

where π : M̃ṽ(S
′, α,H) −→ Mṽ(S

′, α,H) is the desingularisation map and Σ̃ṽ(α) is the

class of the corresponding exceptional divisor. Let p̃ : M̃ −→ B be a family as in (1.2).

If Γ̃ṽ is the trivial local system on B with stalk Γṽ, then fṽ(S
′, α,H) extends to a

morphism of local systems

fB : Γ̃ṽ −→ R2p̃∗Z.

The proof is concluded as soon as fb is a Hodge-isometry for one point b ∈ B. By

definition of p̃ : M̃ −→ B, there exists b ∈ B such that the fibre M̃b is isomorphic to a

moduli space of untwisted sheaves, hence the claim follows from Proposition 1.3. □

Remark 1.8. The main tool in the results above is [BM14b, Lemma 7.3], which trans-

lates problems on Mv(S, τ) to problems on Mṽ(S, α). Hidden in the proof of Proposi-

tion 1.7 (more precisely in the proof of [MZ16, Proposition 2.2]) there is the statement

that everything we said so far holds for moduli spaces of twisted sheaves on a K3

surface. (For primitive Mukai vectors, the analogous statement is [BM14b, Theo-

rem 6.10].) In particular, for a generic choice of the polarisation, Mṽ(S, α) admits a

symplectic desingularisation M̃ṽ(S, α) obtained by blowing up the singular locus (iden-

tified with Sym2Mṽ/2(S, α)) with its reduced scheme structure. Moreover, M̃ṽ(S, α)

is an irreducible holomorphic symplectic manifold, H2(Mṽ(S, α),Z) is Hodge-isometric

to ṽ⊥ and H2(M̃ṽ(S, α),Z) is Hodge-isometric to Γṽ. We will use this remark later in

the proof of Theorem 3.1.

2. LPZ varieties

Let V be a smooth cubic fourfold and AV be the Kuznetsov component defined by

the semi-orthogonal decomposition

(2.1) Db(V ) = ⟨AV ,OV ,OV (1),OV (2)⟩.

The category AV is a CY2-category ([Kuz04, Corollary 4.3]; see also [Kuz19] for a

general account about Calabi–Yau categories). The Mukai lattice H̃(AV ) introduced

in [AT14, Definition 2.2] is defined as

H̃(AV ) := ⟨[OV ], [OV (1)], [OV (2)]⟩⊥ ⊂ Ktop(V ).

Here Ktop(V ) is the topological K-theory of V equipped with the Euler pairing. The

Mukai lattice is equipped with a pure Hodge structure of weight 2 induced by the Hodge

structure on H∗(V,Z). More precisely, if v : Ktop(V ) −→ H∗(V,Q) is the morphism

associating to a sheaf F the vector v(F ) = ch(F )
√
tdV , then

H̃(AV )
2,0 = v−1

(
H3,1(V )

)
.
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As an abstract lattice, H̃(AV ) is isometric to U⊕4 ⊕ E8(−1)⊕2, where U is the uni-

modular hyperbolic plane and E8(−1) is the negative definite lattice associated to the

Dynkin diagram E8 ([AT14, Sec.2.3]). Notice that if AV
∼= Db(S), for some K3 surfaces

S, then there is a Hodge-isometry

H̃(AV ) ∼= H̃(S,Z).

If pr : Db(V ) −→ AV denotes the projection functor with respect to the decompo-

sition (2.1), we define the elements λ1, λ2 ∈ H̃(AV ) as the classes of pr(Ol(1)) and

pr(Ol(2)), respectively. Here l ⊂ V is a line. The classes λ1 and λ2 are algebraic,

i.e. λ1, λ2 ∈ H̃
1,1

(AV ), and they generate a lattice isometric to A2, the rank 2 lattice

associated to the Dynking diagram A2. More precisely λ2
i = 2 and (λ1, λ2) = −1 (see

[AT14, (2.5)]). Notice that the lattice A2 is always contained in the algebraic part of

H̃(AV ) by construction, and they coincide for the very general cubic fourfold. More-

over, the orthogonal complement A⊥
2 in H̃(AV ) is Hodge isometric to the primitive

cohomology group H4(V,Z)prim (see [AT14, Proposition 2.3]).

Stability conditions on AV have been constructed in [BLMS23, Theorem 1.2]. Let

λ ∈ H̃(AV )
1,1 be a Mukai vector and let us suppose that λ = 2λ0, where λ0 is primitive

and λ2
0 = 2. For example we can take λ0 = λ1 + λ2. For a generic stability condition

τ , we consider the moduli stack Mλ(V, τ) of τ -semistable objects in AV . Here, generic

means that any strictly semistable object of class λ is S-equivalent to the direct sum

of two stable objects of class λ0. The moduli stack Mλ(V, τ) has a good moduli space

Mλ(V, τ) that exists as a proper algebraic space ([BLMNPS21, Theorem 21.24].

Theorem 2.1 ([LPZ20, Theorem 1.1]). Under the hypothesis above, there exists a

smooth and projective variety M̃λ(V, τ) and a symplectic resolution

π : M̃λ(V, τ) −→ Mλ(V, τ).

Moreover, M̃λ(V, τ) is an irreducible holomorphic symplectic manifold of type OG10.

As in the classical case, the singular locus of Mλ(V, τ) is identified with the sym-

metric product Sym2Mλ0(V, τ), and the morphism π is the blow-up of Mλ(V, τ) at the

singular locus (with its reduced scheme structure).

Let us recall the main features of Mλ(V, τ) and M̃λ(V, τ).

Lemma 2.2. Mλ(V, τ) is a normal and projective variety.

Proof. This is explained in the proof of [LPZ20, Theorem 3.1] (see [LPZ20, Sec-

tion 3.7]). First of all, Li, Pertusi and Zhao prove that there exists an ample line

bundle L on Mλ(V, τ), giving an embedding of Mλ(V, τ) into a projective space. By

[SP18, Lemma 0D2W], one concludes that Mλ(V, τ) is a scheme. Now, as explained

in [LPZ20, Remark 3.6], Mλ(V, τ) has a local description in terms of nilpotent orbits

as in the classical case, from which it follows at once both the normality and the fact

that Mλ(V, τ) is a variety. □

https://stacks.math.columbia.edu/tag/0D2W
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Lemma 2.3. Mλ(V, τ) is a singular symplectic variety, in particular it has rational

singularities.

Proof. This follows from the fact that Mλ(V, τ) admits an irreducible symplectic res-

olution. Thus, it has canonical singularities, hence rational singularities [Elk81] (see

also [Bea00, Proposition 1.3]). □

Lemma 2.4. Hi(Mλ(V, τ),Z) has a pure Hodge structure of weight i, for i = 1, 2.

Moreover, the pullback map

π∗ : H1(Mλ(V, τ),Z) −→ H1(M̃λ(V, τ),Z)

is an isomorphism and the pullback map

π∗ : H2(Mλ(V, τ),Z) −→ H2(M̃λ(V, τ),Z)

is injective.

In particular, H2(Mλ(V, τ),Z) is endowed with a non-degenerate symmetric bilinear

form induced by the one on M̃λ(V, τ) via π∗, turning it into a lattice of signature

(3, b2(Mλ(V, τ))− 3).

Proof. As we already noticed in Remark 1.4, since Mλ(V, τ) is a projective variety with

rational singularities, this is [BL21, Lemma 2.1, Lemma 3.5]. □

Remark 2.5. Since Mλ(V, τ) is a singular symplectic variety, H2(Mλ(V, τ),Z) has an

intrinsic non-degenerate symmetric bilinear form turning it into a lattice by [BL18, §5]
and references therein. This intrinsic lattice structure coincides with the one induced

by the irreducible symplectic desingularisation as in the Lemma 2.4.

Example 2.6 (The vector λ = 2λ1+2λ2). Let V be a smooth cubic fourfold and Y ⊂ V

a smooth linear section. Let E be a rank 2 vector bundle on Y with trivial first Chern

class and second Chern class of degree 2. This is called an instanton bundle of charge

2 on a smooth cubic threefold, see [Dru00] for a detailed study of the corresponding

moduli space. Let i : Y −→ V be the closed embedding and set F = i∗E; it is easy to

see that F ∈ AV . Li, Pertusi and Zhao prove in [LPZ20] that there exists a stability

condition τ̄ such that F is τ̄ -stable (this stability condition is the one constructed in

[BLMS23] when V is very general). Moreover, by a direct computation one can see

that the Mukai vector of F is λ = 2λ1 + 2λ2. The stability condition τ̄ is generic

with respect to λ and the moduli space Mλ(V, τ̄) admits a desingularisation M̃λ(V, τ̄)

that is an irreducible holomorphic symplectic manifold of type OG10. Moreover, in

[LPZ20, Section 6] the authors construct a birational lagrangian fibration structure

on M̃λ(V, τ̄) and show that M̃λ(V, τ̄) is in fact birational to the twisted intermediate

jacobian fibration constructed in [Voi18] (cf. Section 4).

The generality assumption can conjecturely be made more precise by saying that

V does not contain a plane or a rational cubic scroll (see [LPZ20, Section 5.7] for the

case of a rational cubic scroll – the case of a plane is expected to behave similarly),
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and in these two cases one expects to find examples of the walls of the Kähler cone

described in [MZ16] (in the singular setting) and [MO22] (in the desingularisation).

Denote by M s
λ(V, τ) ⊂ Mλ(V, τ) the open subset consisting of stable objects and

take a quasi-universal family F ∈ D(M s
λ(V, τ) × V )perf of similitude ρ (see [BM14b,

Definition 4.5, Remark 4.6]). Consider the induced map

θ′ : H̃(AV ) −→ H2(M s
λ(V, τ),Q), x 7→ 1

ρ

[
pMs∗

(
ch(F ).p∗V

(
x∨

√
tdV

))]
1
,

where pV : V ×M s
λ(V, τ) −→ V and pMs : V ×M s

λ(V, τ) −→ M s
λ(V, τ) are the projections

and x∨ is the dual class to x in Ktop(V ). In the following we work with the restriction

θ′λ : λ
⊥ −→ H2(M s

λ(V, τ),Q),

which do not depend on the choice of the quasi-universal family. Our first remark is

that this morphism extends to a morphism to H2(Mλ(V, τ),Z).

Lemma 2.7. The following pullback morphism is an isomorphism:

i∗ : H2(Mλ(V, τ),Q) −→ H2(M s
λ(V, τ),Q).

In particular, there exists a canonical morphism θλ making the diagram

λ⊥

θ′λ &&

θλ // H2(Mλ(V, τ),Q)

i∗vv
H2(M s

λ(V, τ),Q)

commutative.

Proof. First of all, notice that the claim is topological in nature, and that the variety

Mλ(V, τ) is a locally trivial deformation of a singular moduli space Mv(S,H), where

S is a K3 surface, v = 2w with w2 = 2 and H is generic with respect to v. Therefore

it is enough to prove the claim for M = Mv(S,H). This is essentially done in [PR13,

Lemma 3.7] (see also the second paragraph of [PR13, page 18]), let us briefly explain

why. In the proof of [PR13, Lemma 3.7], Perego and Rapagnetta prove that there

exists a commutative diagram with exact rows

0 //

��

H2(M,Z) //i∗ //
� _

π∗

��

H2(M s,Z)

∼=
��

Z �
� c̃ // H2(M̃,Z) ı̃ // // H2(π−1(M s),Z),

where π : M̃ −→ M is the symplectic resolution and c̃(1) = Σ̃ is the exceptional di-

visor. Notice that the image of c̃ is not contained in π∗(H2(M,Z)), so that eventu-

ally the defect of surjectivity of i∗ is contained in the torsion part of the quotient

H2(M̃,Z)/H2(M,Z). Since the latter is a finite group, the claim follows.

□
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Proposition 2.8. The homomorphism θλ is integral, i.e.

θλ(λ
⊥) ⊆ H2(Mλ(V, τ),Z).

Moreover,

θλ : λ
⊥ −→ H2(Mλ(V, τ),Z)

is a Hodge-isometry.

Proof. The claims follow at once via a deformation argument. Let V −→ (B, 0) be a

deformation of V over a curve B such that for a point b ∈ B the cubic fourfold Vb

has an associated K3 surface S with Db(S) ≃ AVb
. By [LPZ20, Proposition 3.7] the

relative moduli space

p : M −→ B.

exists and is a locally trivial deformation of M0 = Mλ(V, τ) with Mb isomorphic to

Mλ(S, τ) for some stability condition τ on Db(S).

Since θ′λ,Q is defined via a quasi-universal family, it also deforms: there exists a

well-defined morphism of local systems

θ̃ : λ⊥
Q −→ R2p∗Q.

Now, over the point b the map θ̃b coincides with the map θλ : λ
⊥ −→ H2(Mλ(S, τ),Q)

which is integral and a Hodge-isometry by item (2) of Proposition 1.7 (more precisely,

[MZ16, Theorem 2.7]). Since B is connected, the same must be true for any other

point of B, in particular for 0. □

Remark 2.9. If the Mukai vector v is primitive, the same result is [BLMNPS21, The-

orem 29.2].

Corollary 2.10. Under the hypotheses above, one has that

Pic(Mλ(V, τ)) = H1,1(Mλ(V, τ),Z) = H1,1(Mλ(V, τ)) ∩H2(Mλ(V, τ),Z) ∼= (λ⊥)1,1.

Proof. Straightforward (see [MZ16, Corollary 2.8] for the analogous result in the com-

mutative case). □

Corollary 2.11. Suppose that λ ∈ A2. Then there exists an isometric embedding of

Hodge structures

(2.2) ξλ : H4(V,Z)prim −→ H2(Mλ(V, τ),Z).

Proof. Since λ ∈ A2 ⊂ H̃(AV ,Z) and A⊥
2 = H4(V,Z)prim by [AT14, Proposition 2.3],

we have a natural inclusion

H4(V,Z)prim ⊂ λ⊥

that preserves both the lattice and the Hodge structures. Then ξλ is defined as the

restriction of θλ and the claim follows from Proposition 2.8. □
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Remark 2.12 (The Donaldson morphism). Let S be a projective K3 surface and v =

(2, 0,−2). The moduli space Mv(S,H) is the singular variety studied in the original

paper [O’Gr99]. For what follows, we refer to the book [FM94]. A general point in

Mv(S,H) corresponds to a slope-stable rank 2 vector bundle E on S whose first Chern

class vanishes and whose second Chern class has degree 4. The underlying complex

vector bundle of E has the structure of a SU(2)-principal bundle and it admits an

anti-self-dual connection of charge 0. In fact, more precisely, the open locus M lf
v (S,H)

of locally free sheaves is isomorphic (as a real analytic space) to the corresponding

moduli space of anti-self-dual connections ([FM94, Theorem IV.3.9]). By Uhlenbeck’s

Weak Compactness Theorem (cf. [FM94, Theorem III.3.15]), the space of anti-self-

dual connections admits a natural compactification that we denote by M
U
S . By [Li93,

Corollary 4.3], the Uhlenbeck space M
U
S has an algebraic structure and there exists a

divisorial contraction ϕ : M(2,0,−2)(S,H) −→ M
U
S (see also [O’Gr99, Section 3.1]). The

Donaldson morphism is the morphism

δ : H2(S,Z) −→ H2(M
U
S ,Z)

defined by taking the slant product with a universal bundle (see [FM94, Theorem

III.3.10, Theorem III.6.1]). Notice that it is injective (cf. [FM94, Proposition VII.2.17]).

Pulling back via ϕ gives an injective morphism

ξS = ϕ∗ ◦ δ : H2(S,Z) −→ H2(M(2,0,−2)(S,H),Z).

If U ⊂ Heven(S,Z) is the hyperbolic plane generated by H0(S,Z) and H4(S,Z), then
v = (2, 0,−2) ∈ U and H2(S,Z) = U⊥ ⊂ v⊥. By definition, the Donaldson morphism

coincides with the restriction to H2(S,Z) of the morphism v⊥ −→ H2(Mv(S,H),Z) (see
Proposition 1.3).

Now, by definition λ ∈ A2 ⊂ H̃(AV ) and by [AT14, Proposition 2.3]A⊥
2 = H4(V,Z)prim.

Moreover, when V has an associated K3 surface, then there is a Hodge-isometric em-

bedding H2(S,Z)prim −→ H4(V,Z)prim ([Huy18, Proposition 1.25]).

Therefore we regard ξλ in Corollary 2.11 as a generalised version of the Donaldson

morphism.

Example 2.13. Let V be a smooth cubic fourfold and consider the LPZ variety in

Example 2.6. There is a Hodge-isometric embedding

(2.3) H4(V,Z)prim −→ H2(M̃2λ1+2λ2(V, τ),Z)

obtained by composing the Donaldson morphism (2.2) with the pullback by the desin-

gularisation map (see Lemma 2.4). We claim that the orthogonal complement of

H4(V,Z)prim in H2(M̃2λ1+2λ2(V, τ),Z) is generated by the class of the exceptional di-

visor and by an algebraic and isotropic class. In fact, by [LPZ20, Theorem 1.3],

M̃2λ1+2λ2(V, τ) is always birational to an irreducible holomorphic symplectic manifold

having a lagrangian fibration structure. If bV ∈ Pic(M̃2λ1+2λ2(V, τ)) is the isotropic
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movable class corresponding to the pullback of the polarisation on the base of the fibra-

tion, then bV remains of type (1, 1) on all the deformations induced by deformations of

the cubic fourfolds. The same holds for the class of the exceptional divisor. Therefore

the claim follows by deforming to a very general cubic fourfold in the sense of Hassett.

If we denote by Σ̃V the class of the exceptional divisor, then

Pic(M̃2λ1+2λ2(V, τ)) = ⟨H2,2(V,Z)prim, Σ̃V , bV ⟩,

where H2,2(V,Z)prim = H4(V,Z)prim ∩H2,2(V ).

We finish by noticing that the lattice generated by Σ̃V and bV is isometric to the

non-unimodular hyperbolic plane U(3). In fact, if the cubic fourfold is very general,

then by [LPZ20, Theorem 1.3] we have a chain of equalities

⟨Σ̃V , bV ⟩ = Pic(M̃2λ1+2λ2(V, τ))
∼= Pic(IJt(V )) = U(3),

where the last equality is [MO22, Lemma 6.2]. Here IJt(V ) is the symplectic compacti-

fication of the twisted intermediate jacobian fibration of V [Voi18] (see also Section 4).

Finally, let us also notice that the lattice generated by Σ̃V and bV is primitively

embedded in Pic(M̃2λ1+2λ2(V, τ)).

As a consequence of Corollary 2.11, we get the following Torelli-like statement

for certain LPZ varieties, namely the varieties M2λ1+2λ2(V, τ) in Example 2.6. As

usual, we denote by M̃2λ1+2λ2(V, τ) the symplectic desingularisation, and we recall

that M̃2λ1+2λ2(V, τ) has a birational lagrangian fibration structure, i.e. it is birational

to an irreducible holomorphic symplectic manifold having a lagrangian fibration struc-

ture (see Section 4 or [LPZ20, Theorem 1.3]).

Theorem 2.14. Let V1 and V2 be two smooth cubic fourfolds and consider the desin-

gularised LPZ varieties M̃2λ1+2λ2(V1, τ1) and M̃2λ1+2λ2(V2, τ2), where τi is a 2λ1+2λ2-

generic stability condition on the Kuznetsov component AVi of Vi. The following con-

ditions are equivalent.

(1) M̃2λ1+2λ2(V1, τ1) is birational to M̃2λ1+2λ2(V2, τ2) such that:

• the birationality preserves the exceptional divisors;

• the birationality commutes with the birational lagrangian fibration struc-

tures.

(2) V1 and V2 are isomorphic.

Proof. Given a birational map

M̃λ(V1, τ1) −→ M̃λ(V2, τ2),

there is an induced Hodge-isometry

(2.4) H2(M̃λ(V1, τ1),Z) −→ H2(M̃λ(V2, τ2),Z).

Now, as we saw in Example 2.13, there is a primitive embedding

H4(Vi,Z)prim ↪→ H2(M̃2λ1+2λ2(Vi, τi),Z),
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and the orthogonal complement of H4(Vi,Z)prim in H2(M̃2λ1+2λ2(Vi, τi),Z) is generated
by the exceptional divisor and an algebraic isotropic class corresponding to the class

of the birational lagrangian fibration structure.

Since by hypothesis these two classes are preserved, the Hodge-isometry (2.4) re-

stricts to a Hodge-isometry

H4(V1,Z)prim −→ H4(V2,Z)prim

and, by the Torelli theorem for cubic fourfolds ([Voi86]), V1 and V2 are isomorphic. □

Finally, we give a lattice-theoretic description of the period of the smooth varieties

M̃λ(V, τ). As in the commutative case, we define the lattice

(2.5) Γλ =
{(

x, k
σ

2

)
∈ (λ⊥)∗ ⊕ Z

σ

2
| k ∈ 2Z ⇔ x ∈ λ⊥

}
.

This comes with a natural Hodge structure given by the Hodge structure on (λ⊥)∗ and

by declaring σ to be of type (1, 1).

Proposition 2.15. The morphism

fV : Γλ −→ H2(M̃λ(V, τ),Z),
(
x, k

σ

2

)
7→ π∗

V (θλ(x)) +
k

2
Σ̃λ

where Σ̃λ is the class of the exceptional divisor, is a Hodge-isometry.

Proof. The proof is as in Proposition 1.7. By definition, fV respects the Hodge struc-

tures. Let now p : M −→ B be a family of singular LPZ varieties induced by a family of

cubic fourfolds as in [LPZ20, Proposition 3.7], and p̃ : M̃ −→ B the associated family

of LPZ manifolds. If Γ̃λ denotes the trivial local system on B with stalk Γλ, then the

morphism fV extends to a morphism of local systems

Γ̃λ −→ R2p̃∗Z.

Therefore, it is enough to prove the claim for a point of B. If we choose the family

B such that there exists a point b ∈ B such that the corresponding cubic fourfold is

Pfaffian, then the result follows from Proposition 1.7. □

Recall that a locally factorial variety is a variety such that any Weil divisor is Cartier.

If m is an integer, then a variety is m-factorial if for any Weil divisor D there exists

k ≤ m such that kD is Cartier.

Corollary 2.16. The moduli space Mλ(V, τ) is either locally factorial or 2-factorial.

More precisely, if we write λ = 2λ0:

• Mλ(V, τ) is locally factorial if and only if (λ0, u) ∈ 2Z for every u ∈ H̃(AV )
1,1;

• Mλ(V, τ) is 2-factorial if and only if there exists u ∈ H̃(AV )
1,1 such that

(λ0, u) = 1.
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Proof. The proof is the same as the proof of [PR14, Theorem 1.1] (see [PR14, Sec-

tion 4.1]), using our Proposition 2.8 and Proposition 2.15 instead of [PR13, Theo-

rem 1.7] and [PR14, Theorem 3.1], respectively. Let us recall here the main steps for

the reader’s convenience.

First of all, if A1(Mλ(V, τ)) denotes the Weil class group, then we need to com-

pute the quotient A1(Mλ(V, τ))/Pic(Mλ(V, τ)). Now, by Corollary 2.10, we have that

Pic(Mλ(V, τ)) ∼= (λ⊥)1,1. On the other hand, since the singularities of Mλ(V, τ) are

in codimension 2, we have that A1(Mλ(V, τ)) ∼= Pic(M s
λ(V, τ)). There is a short exact

sequence

0 −→ Z −→ Pic(M̃λ(V, τ)) −→ Pic(M s
λ(V, τ)) −→ 0,

where the first map is defined by mapping 1 to the class Σ̃λ of the exceptional divisor

and the second map is the restriction. Combining this with Proposition 2.15, we get

A1(Mλ(V, τ)) ∼=
Γ1,1
λ

Zσ
,

and eventually

A1(Mλ(V, τ))

Pic(Mλ(V, τ))
∼=

Γ1,1
λ

(λ⊥)1,1 ⊕ Zσ
.

The proof is now reduced to a lattice-theoretic computation. □

Example 2.17. If λ0 = λ1 + λ2, then (λ0, λ1) = 1. Therefore the moduli space

M2λ1+2λ2(V, τ) of Example 2.6 is 2-factorial.

3. When is an LPZ variety birational to a moduli space of sheaves?

In the following we denote by C the moduli space of smooth cubic fourfolds and by

Cd the irreducible (Hassett) divisor consisting of special cubic fourfolds of discriminant

d. Recall that Cd is non-empty if and only if d > 6 and d ≡ 0, 2 (mod 6) (see [Has00,

Theorem 4.3.1]).

We consider the following two properties for d

(∗∗): d divides 2n2 + 2n+ 2 for some n ∈ Z;
(∗∗′): in the prime factorization of d/2, primes p ≡ 2(3) appear with even exponents.

As it has been well summarized in [Huy18, Proposition 1.13, Proposition 1.24, Corol-

lary 1.26], from work of Hassett, Addington, Addington and Thomas, and Huybrechts

[Add16, AT14, Has00, Huy17], the first condition is equivalent to the existence of

an associated K3 surface; the second condition is equivalent to the existence of an

associated twisted K3 surface.

A birational map f : X 99K Y between singular LPZ varieties is called stratum pre-

serving if it is defined at the generic point of the singular locus of X and maps it to the

generic point of the singular locus of Y . Since LPZ varieties admit an irreducible sym-

plectic desingularisation, this is equivalent to requiring that there exists a birational

map between the desingularisations preserving the exceptional divisors.
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Proposition 3.1. For any smooth cubic fourfold V , we consider the singular LPZ

variety Mλ(V, τ), where λ = 2λ0, λ
2
0 = 2 and τ is a generic stability condition on the

Kuznetsov component AV .

(1) The following conditions are equivalent:

(a) Mλ(V, τ) is stratum preserving birational to a moduli space Mv(S,H) of

sheaves on some projective K3 surface S;

(b) V ∈ Cd for some d satisfying (∗∗).
(2) The following conditions are equivalent:

(a) Mλ(V, τ) is stratum preserving birational to a moduli space Mv(S, α,H)

of twisted sheaves on some twisted K3 surface S;

(b) if V ∈ Cd for some d satisfying (∗∗′).

Proof. (1) By [Huy18, Proposition 1.13, Proposition 1.24, Corollary 1.26], if V ∈ Cd
with d satisfying (∗∗), then there exist a polarised K3 surface (S,H) and an equivalence

of categories Φ: AV −→ Db(S). This induces a Hodge-isometry ΦK : Ktop(AV ) −→
Ktop(S) ∼= H̃(S,Z). If v := ΦK(λ), then clearly we have that the restriction

ΦK : λ⊥ −→ v⊥

is a Hodge-isometry as well.

Let us write v = (v0, v2, v4) ∈ H̃(S,Z). Without loss of generality, after possibly

shifting and taking duals, we may assume that v0 ≥ 0 and v2 is a non-negative multiple

of the ample class H. In particular, v is a positive Mukai vector and, by a result of

Yoshioka (cf. [Yos01]) the moduli space Mv(S,H) is non-empty. By Proposition 2.8

and Proposition 1.3, we eventually get an isometry

ϕ : H2(Mλ(V, τ),Z) ∼= λ⊥ −→ v⊥ ∼= H2(Mv(S,H),Z)

that is an isomorphism of Hodge structures. Now, passing to the symplectic resolutions

M̃λ(V, τ) and M̃v(S,H), we get a natural Hodge-isometry

ϕ̃ : H2(M̃λ(V, τ),Z) ∼= Γλ −→ Γv
∼= H2(M̃v(S,H),Z)

obtained by sending the classes of the exceptional divisors into each other. By the

Global Torelli Theorem for manifolds of type OG10 (see [Ono20, Introduction]), we

have then that M̃λ(V, σ) and M̃v(S,H) are birational. ThereforeMλ(V, τ) andMv(S,H)

are also birational and, by construction, the birationality is stratum preserving.

For the converse, assume thatMλ(V, τ) is stratum preserving birational to a Gieseker

moduli space Mv(S,H) on a K3 surface S; in particular v = 2w with w2 = 2. The

birational morphism from Mλ(V, τ) to Mv(S,H) extends to a birational morphism

between the desingularisations M̃λ(V, τ) and M̃v(S,H). Since the last two varieties

are smooth symplectic varieties, the birational morphism induces a Hodge-isometry on

the Beauville–Bogomolov–Fujiki lattices., i.e.

H2(M̃λ(V, τ),Z) ∼= H2(M̃v(S,H),Z)
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and by hypothesis this isometry sends the class of the exceptional divisor to the class

of the exceptional divisor. In particular it restricts to a Hodge-isometry

H2(Mλ(V, τ),Z) ≃ H2(Mv(S,H),Z)

(cf. Proposition 2.15 and item (3) of Proposition 1.3). By Proposition 2.8 and item

(2) of Proposition 1.3 we get that

Ktop(AV ) ⊃ λ⊥ ≃ H2(Mλ(V, τ),Z) ≃ H2(Mv(S,H),Z) ≃ v⊥ ⊂ H̃(S,Z).

Now, since the lattices λ⊥ and v⊥ have discriminant group isomorphic to Z/2Z, this
Hodge-isometry must act as the identity on the discriminant group and, by [Nik79,

Corollary 1.5.2], it extends to a Hodge-isometry Ktop(AV ) ≃ H̃(S,Z) (sending λ to

v). Finally, V ∈ Cd for some d satisfying (∗∗) by [Huy18, Proposition 1.13, Proposi-

tion 1.24].

(2) The proof is very similar to the case before, we only remark on the subtle dif-

ferences. First of all, by [Huy18, Proposition 1.13, Proposition 1.24] and [BLMNPS21,

Proposition 33.1], Y ∈ Cd with d satisfying (∗∗′) if and only if there exist a twisted

K3 surface (S, α) and an equivalence of categories Φ: AV −→ Db(S, α). Such an equiv-

alence of categories induces a Hodge-isometry ΦK : Ktop(AV ) −→ Ktop(S, α). Put

v = ΦK(λ) and consider the moduli space Mv(S, α,H). For the non-emptiness of

Mv(S, α) one uses [Yos06]. The rest of the argument and the reverse implication

follow verbatim as in the part (1) of the proof (cf. Remark 1.8). □

Using a lattice-theoretic trick, we can remove the stratum preserving hypothesis, at

least in the untwisted case.

Theorem 3.2. For any smooth cubic fourfold V , we consider the singular LPZ variety

Mλ(V, τ), where λ = 2λ0, λ
2
0 = 2 and τ is a generic stability condition on the Kuznetsov

component AV . The following conditions are equivalent:

(1) Mλ(V, τ) is birational to a moduli space Mv(S,H) of sheaves on some projective

K3 surface S;

(2) V ∈ Cd for some d satisfying (∗∗).

Proof. One direction follows from Proposition 3.1. So let us suppose that Mλ(V, τ)

is birational to a moduli space Mv(S,H) of semistable sheaves on a projective K3

surface S. In particular, the desingularised moduli spaces M̃λ(V, τ) and M̃v(S,H) are

birational and hence we have an induced Hodge-isometry

Γλ = H2(M̃λ(V, τ),Z) ∼= H2(M̃v(S,H),Z) = Γv.

For a lattice L with a weight 2 Hodge structure, we denote by T (L) the induced

transcendental lattice, defined as the smallest sub-Hodge structure containing L2,0.

Then there is an induced Hodge-isometry

T (Γλ) ∼= T (Γv).



18 FRANCO GIOVENZANA, LUCA GIOVENZANA, AND CLAUDIO ONORATI

Notice that, by definition, T (Γλ) = T (λ⊥) and T (Γv) = T (v⊥) = T (S), where the lat-

ter is the transcendental lattice of the K3 surface S. Now, the orthogonal complement

T (S)⊥ ⊂ H̃(S,Z) contains a unimodular hyperbolic plane U , namely the hyperbolic

plane generated by H0(S,Z) and H4(S,Z). Moreover, by construction we have two

primitive embeddings of T (S):

T (S) ↪→ H̃(S,Z) and T (S) ∼= T (λ⊥) ↪→ H̃(AV ).

By [Nik79, Theorem 1.14.4], there must exist an isometry

g : H̃(AV ) −→ H̃(S,Z)

that preserves the Hodge structures by construction. Then we can conclude as before

by [Huy18, Proposition 1.13, Proposition 1.24]. □

Remark 3.3. Both the proposition and the theorem above should be compared with

the derived Torelli theorems for (twisted) K3 surfaces. More precisely, two K3 surfaces

are derived equivalent if and only if their Mukai lattices are Hodge-isometric if and

only if their transcendental lattices are Hodge-isometric ([Orl97, Theorem 3.3]).

On the other hand, two twisted K3 surfaces are derived equivalent if and only if

their Mukai lattices are orientation-preserving Hodge-isometric ([Rei19, Theorem B]

and [HS05, Theorem 0.1]). Here the orientation chosen is the one with respect to the

positive 4-space. In this case it seems no longer true that this condition is equiva-

lent to the existence of an isometry between the transcendental lattices (cf. [HS05,

Remark 4.10]).

Example 3.4. When V is a Pfaffian cubic fourfold, it is known that V has an associated

K3 surface S. In this case there is natural birational morphism from the manifold

M̃2λ1+2λ2(V, τ) of Example 2.6 and the O’Grady resolution M̃(2,0,−2)(S,H), which we

now recall. First of all, by [LPZ20, Theorem 1.3], the manifold M̃2λ1+2λ2(V, τ) is

birational to a twisted intermediate jacobian fibration (see Section 4). Moreover, by

[Ono18, Example 4.3.6], in this case the twisted intermediate jacobian fibration is

isomorphic to the untwisted intermediate jacobian fibration constructed in [LSV17].

Finally, in [LSV17, Section 6] the authors construct a birational map between the

intermediate jacobian fibration and the manifold M̃(2,0,−2)(S,H).

This birational map is explicitely known only at a general point of the smooth locus

and its construction is rather difficult. We are not aware of any known description

of this morphism at a general point of the singular locus. In particular, the question

whether it is stratum preserving is open, and it would be very interesting to have an

answer to it.

4. When is a LPZ manifold birational to a LSV manifold?

Let Y be a smooth cubic threefold. The intermediate jacobian of Y is defined as

JY = H2,1(Y )∗/H3(Y,Z),
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where H3(Y,Z) is included in H2,1(Y )∗ via integration. JY is a principally polarised

abelian variety of dimension 5 and it parametrises dimension 1 cycles on Y that are

homologically trivial.

For any t ∈ H4(Y,Z) = Z, we denote by J t
Y the torsor parametrising cycles of

homology class t. Notice that, up to canonical isomorphism, there exists only one

non-trivial torsor, namely J1
Y .

Let now V be a smooth cubic fourfold and let us denote by U ⊂ PH0(V,OV (1))
∗

the open subset parametrising smooth linear sections. Then there exist two fibrations

(4.1) p : JU −→ U and pt : J t
U −→ U

whose fibres are of the form JY and J t
Y , respectively.

Theorem 4.1 ([LSV17, Voi18, Sac20]). There exist smooth and projective compacti-

fications

p : IJ(V ) −→ (P5)∨ and pt : IJt(V ) −→ (P5)∨

of the fibrations (4.1). Moreover, both IJ(V ) and IJt(V ) are projective irreducible

holomorphic symplectic manifolds of type OG10, and both p and pt are lagrangian

fibrations.

Varieties isomorphic to IJ(V ) are called LSV varieties; varieties isomorphic to IJt(V )

are called twisted LSV varieties.

Remark 4.2. Theorem 4.1 is an existence result. It is known that when V is very

general (in the sense of Hassett), then the compactifications in Theorem 4.1 are unique,

but this may not longer be true for special cubic fourfolds. In [MO22, Section 6] it

is proved that in the twisted case there exists only one compactification that is a

lagrangian fibration, under the additional condition that the fibres are irreducible. (In

reference to Example 2.6, the cases where the stability condition τ̄ is conjecturally non-

generic correspond to the cases where the compactifications of the twisted intermediate

jacobian have reducible fibres.)

Even though there may be several compactifications, by construction all the com-

pactifications are birational to each other. Since we are interested in the birational

class of LPZ varieties, we can safely ignore this lack of uniqueness.

We retain the notation from the previous section, so that C denotes the moduli space

of smooth cubic fourfolds and Cd denotes the Hassett divisor of special cubic fourfolds

with discriminant d.

Theorem 4.3. For any smooth cubic fourfold V , we consider the desingularised LPZ

variety M̃λ(V, τ), where λ = 2λ1+2λ2 and τ is λ-generic (cf. Example 2.6). Then the

following statements are equivalent:

(1) there exists a birational isomorphism between M̃λ(V, τ) and IJ(V );

(2) V ∈ Cd with d > 6 and d ≡ 2 (mod 6).
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Proof. First of all, by [Sac20, Corollary 3.10] (see also [MO22, Example 3.3]), it is

known that if V is very general (in the sense of Hassett), then the twisted LSV manifold

is not birational to the untwisted one. Since by [LPZ20, Theorem 1.3] the manifold

M̃λ(V, τ) is always birational to IJt(V ), in order to have any birational isomorphism

between M̃λ(V, τ) and IJ(V ), the cubic fourfold V must be special, i.e. V ∈ Cd with

d > 6 and d ≡ 0, 2 (mod 6).

Let us assume that V ∈ Cd with d > 6 and d ≡ 2 (mod 6). In particular this

is equivalent to say that d > 6 is even and d ≡ 2 (mod 3). Let T ⊂ V be an

algebraic two-dimensional cycle (not homologous to a complete intersection) such that

the discriminant of the lattice generated by the cohomology class [T ] and h2 is d.

(Notice that such a cycle T exists since V ∈ Cd.) Here h is the class of an hyperplane

section of V and h2 is the corresponding class in H4(V,Z). If we set x = [T ]2 and

y = h2.[T ], then d = 3x− y2. By hypothesis we must have y ≡ ±1 (mod 3); in other

words, the intersection of T with a smooth linear section of V is a cycle of degree

not a multiple of 3. We can then use T to construct a trivialisation of the torsor

pt : J t
U −→ U . In particular we get an isomorphism between J t

U and JU , which implies

that the varieties IJt(V ) and IJ(V ) are birational, so that also M̃λ(V, τ) is birational

to IJ(V ).

Let us now prove the other implication. Assume that M̃λ(V, τ) is birational to an

LSV variety IJ(V ), so that there is an isometry

Pic(M̃λ(V, τ)) ∼= Pic(IJ(V )).

Since, by [Ono20, Proposition 4.1], Pic(IJ(V )) contains a unimodular hyperbolic plane,

also Pic(M̃λ(V, τ)) contains a unimodular hyperbolic plane.

On the other hand, as we noticed in Example 2.13, we have

Pic(M̃λ(V, τ)) = ⟨U(3),H2,2(V,Z)prim⟩,

where U(3) is the primitive sublattice generated by the exceptional divisor Σ̃ and the

movable isotropic class of the lagrangian fibration induced on M̃λ(V, τ) by [LPZ20,

Theorem 1.3].

Since the lattice U(3) is primitive in Pic(M̃λ(V, τ)) and H2,2(V,Z)prim is negative def-

inite, the only way for Pic(M̃λ(V, τ)) to contain a hyperbolic plane is that H2,2(V,Z)prim
contains at least a class of divisibility 3. By [Has00, Proposition 3.2.2] this can happen

only if V ∈ Cd with d ≡ 2 (mod 6). □

Example 4.4. If V is a Pfaffian cubic fourfold, so that V ∈ C14, as already remarked in

[Ono18, Example 4.3.6] IJ(V ) and IJt(V ) are isomorphic. In particular the manifold

M̃2λ1+2λ2(V, τ) is birational to IJ(V ) and moreover

Pic(M̃2λ1+2λ2(V, τ)) = U ⊕ ⟨D⟩,

where D is a class of square −42 and divisibility 3.
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Example 4.5. More generally let us take a cubic fourfold V ∈ Cd with d > 6 and d ≡ 2

(mod 6), and let us assume that V is general in Cd. In particular H2,2(V,Z)prim = ZD
where D2 = −3d and div(D) = 3 (see [Has00, Proposition 3.2.2]). Since d is always

even, let us write d = 2k, so that D2 = −6k.

In this case we have that

Pic(M̃λ(V, τ)) = ⟨ē, f̄ , D⟩,

where ē and f̄ are the standard basis of U(3). The rank 3 lattice generated by these

three classes has the following Gram matrix0 3 0

3 0 0

0 0 −6k,


so that it is easy to see that

A :=
ē+ kf̄ +D

3
∈ Pic(M̃λ(V, τ)).

Notice that A2 = 0, A.f̄ = 1 and A.D = −2k, so that we eventually get that the rank

2 lattice generated by A and f̄ is the unimodular hyperbolic plane and moreover the

class Z = D+2kf̄ is ortogonal to it (and it has divisibility 3). Eventually we get that

Pic(M̃λ(V, τ)) = ⟨A, f̄ , Z⟩ =

0 1 0

1 0 0

0 0 −6k.


Vice versa, if div(D) = 1, then there cannot exist any isometric embedding of U in

Pic(M̃λ(V, τ)). In fact if x ∈ H2(M̃λ(V, τ),Z) is a class orthogonal to U(3) and such

that D.x = 1, then we will have A.x = 1/3, which is absurd.
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