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A B S T R A C T   

The present work reports the theoretical background and the capabilities of SEISMIC, a Python code specifically 
developed to calculate the propagation of the sound waves inside crystalline materials. SEISMIC is a tool inte-
grated in the QUANTAS package and provides a series of useful information for engineers and geophysicists, such as 
the phase and group velocities, the power flow angle, the enhancement factors, and the polarization vectors, 
using as input the elastic moduli and the density of the material. Numerical treatments of the derivatives were 
avoided, using analytical methods to obtain numerically stable results. The code relies only on Python numerical 
and graphical libraries to ensure a full cross-platform usability.   

1. Introduction 

The analysis of the elastic moduli of crystalline solids, physically 
represented by a 3 × 3 × 3 × 3 (4th-rank) tensor, can yield several in-
formation about the behaviour of crystalline materials. From the 
experimental point of view, the elastic moduli can be obtained from the 
analysis of the propagation of sound velocities inside the medium, e.g., 
by Brillouin scattering techniques (Kojima, 2022). Vice versa, if the 
stiffness tensor is known, it is possible to calculate how the acoustic 
waves travel inside a material by solving the Christoffel’s equation 
(Musgrave, 1970), which is a very useful knowledge that is widely 
employed by engineers and geophysicists. 

Thanks to the continuous advancement of both computing power 
and technology, the elastic moduli can be readily calculated from ab 
initio simulations for a wide range of crystalline materials. Some code, 
for example CRYSTAL (Dovesi et al., 2018), VASP (Kresse and Hafner, 
1993) and SIESTA (Soler et al., 2002), implemented automated routines to 
calculate the components of the stiffness tensor from stress-strain re-
lationships. However, typically these quantum chemistry codes do not 
implement advanced post-processing routines to extract all the useful 
information from the elastic tensor. To this aim some specific softwares 
were developed, such as MTEX (Mainprice et al., 2011), which is a 
toolbox for Matlab®, and the Fortran code AWESOME (Acoustic Wave 
Evaluator in Solid Media) (Munoz-Santiburcio et al., 2015), which was 

recently added to CRYSTAL. Only recently, a Python code called 
christoffel (Jaeken and Cottenier, 2016) was developed, intended 
as a cross-platform utility that, like AWESOME, still requires an external 
code, i.e., GNUPlot, to produce the graphical representations of the 
results. 

For all these reasons, and starting from the code of Jaeken and 
Cottenier (2016), it was decided to develop a code that relies only on 
Python and its libraries to analyse the acoustic (i.e., seismic) wave ve-
locities within crystalline media. The program was called SEISMIC, and 
it is an open-source code implemented as a module of the QUANTAS 

package (Ulian and Valdrè, 2022), both freely available on Github under 
the New Berkeley Software Distribution (BSD) software license. 

The structure of the present article is the following: after the intro-
duction in Section 1, Section 2 provides the necessary background to 
understand the principles behind the calculation of the acoustic wave 
velocities in solids; Section 3 shows how the involved quantities are 
obtained, i.e., the adopted computational strategy, how the code works 
and the results that are produced. Section 4 reports two test cases used to 
demonstrate the capability of the software to obtain valuable data, and, 
finally, Section 5 provides a summary and the future perspectives of the 
code. 
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2. Theoretical background 

The basic property used to calculate the acoustic wave propagation 
in a homogeneous crystalline material (e.g., a perfect crystal) is the 
elastic tensor, which describes the relationship between stress σ and 
strain ε according to the following formula: 

σij =
∑

kl

Cijklεkl, (1)  

where the Cijkl terms are the component of the 3 × 3 × 3 × 3 stiffness 
tensor (see Nye, 1957). For the sake of clearness, all the sums here re-
ported run over the three Cartesian coordinates x, y and z. Generally, Eq. 
(1) is written using the 6 × 6 Voigt’s matrix notation of elastic tensor: 
⎛
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(2)  

with the subscripts being mapped as 1 → xx, 2 → yy, 3 → zz, 4 → yz, 5 → 
xz, 6 → xy, and the double counting is accounted by the factor 2 in the 
strain tensor. 

To access information on the elastic (acoustic) waves that travel 
through the material, it is necessary to solve the Christoffel’s equation 
(see Musgrave, 1970). Let’s define q a monochromatic wave vector with 
angular frequency ω and polarization ŝ that travels inside a crystalline 
material with density ρ. The Christoffel equation is an eigenvalue 
problem defined as: 
∑

ij

[
Mij − ρω2δij

]
sj =0 (3)  

where Mij are the terms of the Christoffel matrix M that are written as 

Mij =
∑

kl
qkCikljql (4) 

Eq. (3) can be solved for any given q. From now on, we will use the 
notation suggested by Jaeken and Cottenier (2016), which introduces 
the reduced stiffness tensor C′ = C/ρ and the reduced Christoffel matrix 
M′ =M/ρ. For convenience, the prime on these two tensor quantities will 
be omitted in the following expressions. In addition, Eq. (3) and Eq. (4) 
show ω(q) is a linear function of q in a single direction, which means the 
sound velocities are independent of the wavelength q but its direction. 
Hence, q will be considered in the following as a dimensionless unit 
vector that describes only the travel direction of the monochromatic 
plane wave. Thus, Eq. (3) can be rewritten as: 
∑

ij

[
Mij − v2

pδij

]
sj =0 (5)  

with vp the velocity of the monochromatic plane wave that travels in the 
direction given by q̂. The subscript p denotes this quantity as the phase 
velocity. The non-trivial solutions of Eq. (5) are three eigenvalues, i.e. 
three velocities subdivided into one primary (P-mode) and two sec-
ondary (S-mode), which are related to the (pseudo-) longitudinal and 
(pseudo-) transversal polarizations, respectively. As a convention, the 
two secondary velocities are one fast S-mode and a slow S-mode, so that 
in general vp,P > vp,Sfast > vp,Sslow , and the difference vp,Sfast − vp,Sslow is called 
shear-wave splitting. The three eigenvector solutions of the Christoffel 
equation are associated with the polarization directions. 

The above formulas consider the sound as a monochromatic plane 
wave, an ideal situation. However, a more realistic approach is repre-
senting sound as a wave packet whose wavelength and travelling di-
rection show a certain amount of spreading. Thus, the sound (acoustic 
energy) travels through a homogeneous medium as a wave packet given 

by the superposition of several phase waves, whose velocity is described 
by the following formula: 

vg =∇
→vp (6)  

where vg is the so-called group velocity, whose direction is the travel 
direction of (acoustic) energy if the medium does not dissipate energy 
(see Auld, 1973). The gradient (in reciprocal space) is given by the de-
rivative of the components of the dimensionless vector q̂. It is worth 
noting that vg is a vector that typically does not line in the direction of q̂, 
and the power flow angle ψ describes the angular difference between the 
directions of the group and phase velocity according to: 

vp = vg cos(ψ) (7) 

If we introduce the normalized directions of the phase velocity, n̂p, 
and of the group velocity, n̂g, we can re-write Eq. (7) as: 

cos(ψ)= n̂p⋅n̂g. (8) 

Since the energy travelling direction typically is not the same of the 
phase velocity, the power flow concentration changes depending on the 
direction. To quantify this effect on a directional basis, it is introduced 
the enhancement factor, A, which is calculated using the following 
formula: 

A=
ΔΩp

ΔΩg
(9) 

In Eq. (9), ΔΩp and ΔΩg are the solid angles subtended by beams of 
phase n̂p and group n̂g wave vectors, respectively. Fig. 1 shows the 
quadrangle that is formed on a unit sphere when the vectors n̂p and n̂g 

are normalized. 
The most simple way to determine the enhancement factor is to 

consider its infinitesimal value, which is easily described in spherical 
coordinates, as suggested by Jaeken and Cottenier (2016). With this 
approach, the solid angle is equal to the area of a quadrangle described 
on the unit sphere by the partial derivatives of the phase vector n̂p or 
group vector n̂g to θ and φ. This translates into 

dΩp = sin(θ)dθdφ (10)  

and 

dΩg =

⃦
⃦
⃦
⃦

∂n̂g

∂θ
×

∂n̂g

∂φ

⃦
⃦
⃦
⃦sin(θ)dθdφ (11) 

Thus, the enhancement factor is given by 

A =

⃦
⃦
⃦
⃦

∂n̂g

∂θ
×

∂n̂g

∂φ

⃦
⃦
⃦
⃦

− 1

, (12)  

which can be also expressed as 
(

θ̂ ⋅ ∇→n̂g
)
×
(

φ̂ ⋅ ∇→n̂g
)
=det

(
∇
→n̂g

)(
∇
→n̂g

)− T ⋅ (θ̂ × φ̂)

= det
(
∇
→n̂g

)(
∇
→n̂g

)− T ⋅ q̂
= Cof

(
∇
→n̂g

)
⋅ q̂

(13)  

Fig. 1. Graphical representation of the dΩp and dΩg values.  
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where Cof indicates the matrix of cofactors, and 

θ̂ =
∂q̂
∂θ

, φ̂ =
∂q̂
∂φ

. (14) 

By substituting Eq. (13) into Eq. (14), the enhancement factor is 
given by the following expression 

A=
⃦
⃦Cof

(
∇
→n̂g

)
⋅q̂
⃦
⃦− 1

, (15)  

which is not dependent on the spherical coordinates and can be evalu-
ated from the derivatives of the Christoffel’s matrix eigenvalues. 

3. Algorithm and implementation 

3.1. Computational strategy 

A schematic workflow of the analysis of the second-order elastic 
moduli to obtain the seismic wave velocities is shown in Fig. 2. As 
previously suggested by Jaeken and Cottenier (2016), the implemented 
computational approach uses the eigenvalues of the Christoffel’s matrix, 
λ, as the key quantity to obtain all the measurable properties (phase 
velocity vp, group velocity vg and enhancement factor A). Hence, the 
phase velocity is defined as 

vp =
̅̅̅
λ

√
(16) 

that can be substituted in Eq. (6) to give 

vg =∇
→vp =∇

→ ̅̅̅
λ

√
=

∇
→λ
2

̅̅̅
λ

√ (17) 

Except for the phase velocities, all the other quantities are obtained 
from the first and second derivatives of the matrix λ. The gradient of the 
generic eigenvalue λi can be expressed as 

∂λi

∂qk
= ŝ i⋅

∂M
∂qk

⋅ŝ i (18)  

with ̂si the normalized eigenvector related to λi. The Hessian matrix H(λ) 
is given by the second-order derivatives of the Christoffel’s eigenvalues, 
according to the following expression 

H(λ)i =
∂2λi

∂qk∂qm
= ŝ i ⋅

∂2M
∂qk∂qm

⋅ ŝ i +2ŝi ⋅
∂M
∂qk

⋅ (λiI − M)
+ ⋅

∂M
∂qm

⋅ŝi, (19)  

which is obtained from the derivative of the gradient of the eigenvectors 
given by (Petersen and Pedersen, 2012) 

∂ŝi

∂qk
=(λiI − M)

+ ⋅
∂M
∂qk

⋅ŝi. (20) 

In this framework, the derivative of the Christoffel’s matrix, ∇→M 
(third-order tensor), is simply 

∇
→M=

∂Mij

∂qk
=
∑

m

(
Cikmj +Cimkj

)
qm, (21) 

and its Hessian is 

H(M)=
∂2Mij

∂qk∂qm
= Cikmj + Cimkj (22) 

It is worth noting that (i) Eq. (21) depends on q, whereas Eq. (22) 
does not, and (ii) the group velocities can be straightforwardly obtained 
from the solution of Eqs. (17), (18) and (21), which require just the ei-
genvalues and eigenvectors of M: 

vi
g =

ŝ i⋅∇
→M⋅ŝi

2
̅̅̅̅
λi

√ . (23) 

The calculation of the enhancement factor considers the gradient of 
the vector field of the normalized group velocity with respect to λ, 

∇
→n̂g =∇

→ vg⃦
⃦vg

⃦
⃦
=∇
→ ∇

→vp
⃦
⃦∇
→vp

⃦
⃦
=∇
→ ∇

→λ
‖∇
→λ‖

(24) 

Considering that the gradient of a differentiable and positive vector 
field v is given by 

∇
→ v
‖v‖

=
∇
→v
‖v‖

−
v ⊗ (∇

→v)⋅v
‖v‖3 , (25)  

where ⊗ is the Kronecker’s product, it follows that 

∇
→n̂g =

H(λ)
‖∇
→λ‖

−
∇
→λ ⊗ H(λ)⋅∇→λ

‖∇
→λ‖3 . (26) 

It is important to highlight that the outer product in Eq. (26) does not 
commute, hence ∇→n̂g is not equal to its transposed matrix, i.e., the 
matrix is not symmetric, as explained by Jaeken and Cottenier (2016). 

3.2. SEISMIC Python module 

The code that performs the analysis of the seismic wave velocities in 
crystalline materials was entirely written in Python, as a module of the 
QUANTAS (QUANTitative Analysis of Solids) software (Ulian and 
Valdrè, 2022). The module is subdivided into three components, i.e., (i) 
a Seismic object, which implements all the previously discussed formulas 
to obtain vp, vg, ψ and A from the elastic moduli, (ii) plotting utilities to 
automatically generate 2D and 3D representations of the wave veloc-
ities, and (iii) the interface to the QUANTAS code. 

The calculation of the acoustic wave velocities can be initialized 
using the ad hoc command line interface of QUANTAS, i.e. 

QUANTAS seismic input_file [options] 
where input_file is a text file containing the stiffness tensor in Voigt’s 

notation (complete, upper triangular or lower triangular) and the den-
sity of the crystalline material. The code performs a matrix-to-tensorial 
form conversion that preserves the Cartesian reference frame that was 
employed to obtain the elastic tensor in the Voigt’s notation. The 
analysis of the seismic waves is automatic, i.e., the acoustic wave ve-
locities are calculated by scanning the surface of a unit sphere between 
the 0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ 2π. At the end of the analysis, the code can 
produce plots of the results. 

3.3. Output and visualization 

The results of the analysis performed by Seismic are saved in a single 

Fig. 2. Workflow of the implementation of the analysis of the seismic wave 
velocities in crystalline solids. The green box reports the input data (tensor of 
the elastic moduli in Voigt’s notation and crystal density), whereas the blue 
ones are the output of the calculation. The numbers in parentheses are refer-
ences to the equations shown along the text. 

G. Ulian and G. Valdrè                                                                                                                                                                                                                        



Computers and Geosciences 188 (2024) 105615

4

binary file in HDF5 format with three datasets, one for each solution of 
the Christoffel’s equation (one primary and two secondary waves), 
which store.  

• Column 1 – the spherical coordinate θ (radians),  
• Column 2 – the spherical coordinate φ (radians),  
• Column 3 – the phase velocity vp (km s− 1)  
• Column 4 – the relative phase velocity with respect to the isotropic 

acoustic wave velocity (%)  
• Columns 5–7 – the phase polarization along x, y, and z  
• Column 8 – the group velocity vg (km s− 1)  
• Column 9 – the relative group velocity with respect to the isotropic 

acoustic wave velocity (%)  
• Columns 10–12 – the x, y, and z coordinates of the ray surface (km 

s− 1)  
• Column 13 – the power flow angle ψ (degrees)  
• Column 14 – the enhancement factor A (log10A). 

The isotropic wave velocities cited above are given by: 

viso,P =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K + 4μ/3

ρ

√

(27)  

viso,S =

̅̅̅μ
ρ

√

(28)  

with K and μ the bulk and shear modulus, respectively, calculated ac-
cording to the Voigt-Reuss-Hill averaging scheme (see Nye, 1957). 

The calculated data can be plotted with the routines implemented in 
Seismic, which uses the Plotly graphical library (Plotly Technologies Inc, 
2015) for the 3D (spherical) representations, whereas the Matplotlib 
package (Hunter, 2007) is employed for the 2D (polar) plots of the re-
sults. The latter are projections of the spherical results on two di-
mensions that were implemented considering both the Lambert 
equal-area and stereographic projections, which preserve, respec-
tively, the local area and the local shape of the data. 

4. Test cases: fluorite and quartz 

4.1. Fluorite CaF2 

Fluorite, the cubic polymorph of calcium fluoride (space group 
Fm3m), was used a simple test case, using the SEISMIC code of the 
QUANTAS package to calculate the acoustic wave velocities and to 
produce their graphical representations. The input data were taken from 
the experimental work of Speziale and Duffy (2002), who reported the 
following elastic moduli in Voigt’s notation: 

C=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

170.9 47.5 47.5 ⋅ ⋅ ⋅
47.5 170.9 47.5 ⋅ ⋅ ⋅
47.5 47.5 170.9 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ 34.0 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ 34.0 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 34.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (29)  

with a crystal density of 3222 kg m− 3. The dots in Eq. (29) are the null 
values of Cij due to the symmetry of the material. 

Fig. 3. (a) Phase velocities vp, (b) group velocities vg, and (c) S-wave anisotropy and ratios between the phase velocities (P/S1 and P/S2) of fluorite CaF2, reported as 
Lambert equal area 2D projection. The black square and the white dot show the maximum and minimum value calculated in each plot, respectively. 
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Fig. 3 reports the Lambert equal area 2D projection of the phase 
velocities vp, group velocities vg, the S-wave anisotropy (or shear wave 
splitting), defined as 

200⋅
vp,S1 − vp,S2

vp,S1 + vp,S2
, (30) 

and the ratio between the primary and the secondary phase veloc-
ities. To interpret the relationship between the phase and the group 
velocities, it is useful to also analyse the enhancement factor A and the 
power flow angle ψ (Fig. 4). The vg is shown as a function of the 
wavefront q, however the actual direction of the group velocities forms 
the ψ angle with q. The focussing of the acoustic waves in fluorite de-
pends on the considered wave, as evinced from the enhancement factor 
(Fig. 4a). The primary mode shows the highest A values along the [001] 
crystallographic direction, whereas the lowest value lies on the [111] 
propagation direction. The minimum A value for the secondary modes is 
also on the [111] crystallographic direction, but the general pattern is 
more complex with respect to the one calculated for the primary mode. 

Finally, Fig. 5 shows the three-dimensional plots of the quantities 
described above, which could be further useful to analyse and interpret 
the results, in particular when less symmetrical materials (in the crys-
tallographic perspective) are considered. 

4.2. .Quartz SiO2 

Quartz (SiO2, space group P3221, trigonal crystal system) is a 
framework silicate and one of the most abundant minerals in the Earth’s 
crust, with several important technological applications, among which 
various exploiting mechanical properties, e.g., it is employed as a 
piezoelectric material (Wang et al., 2015). The experimental data of 
Wang et al. (2015) were used to calculate the acoustic wave velocities 
with SEISMIC, with the following second-order elastic moduli: 

C=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

86.6 6.74 12.4 17.8 ⋅ ⋅
6.74 86.6 12.4 − 17.8 ⋅ ⋅
12.4 12.4 106.4 ⋅ ⋅ ⋅
17.8 − 17.8 ⋅ 58.0 ⋅ ⋅

⋅ ⋅ ⋅ ⋅ 58.0 17.8
⋅ ⋅ ⋅ ⋅ 17.8 39.9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (31)  

and a crystal density of 2648 kg m− 3. 
Fig. 6 shows the Lambert equal area 2D projection of the phase ve-

locities vp, group velocities vg, power flow angle ψ and enhancement 
factor A. The trigonal symmetry of quartz is easily recognizable in each 
panel of Fig. 6. In fact, differently from fluorite (belonging to the cubic 
system), the patterns of the group velocity vg, power flow angle ψ and 
enhancement factor A are more complex. The results are in good 
agreement with the single crystal velocities experimentally determined 
by Braun et al. (1991). For example, in the cited work, the maximum 
(minimum) longitudinal wave velocity was 7.1 (5.5) km s–1 along the 
[011] ([201]) crystallographic direction, which is in line with those 
calculated with SEISMIC, i.e., 7.0 (5.3) km s–1. Also, the calculated 
anisotropy of the primary (28%), fast secondary (31%) and slow sec-
ondary (34%) are in good agreement with those calculated by Braun and 
collaborators (1991), i.e., 25%, 27% and 32%, respectively. This good 
agreement is also reflected in the 2D projection of the primary, fast 
secondary and slow secondary seismic wave velocities shown in Fig. 6a 
in the present work, which perfectly match the graphical results re-
ported in the study of Braun et al. (1991). 

5. Conclusions 

The present paper showed the capabilities of SEISMIC, a Python code 
implemented within the QUANTAS framework that was developed to 
provide a simple tool to calculate the acoustic wave velocities in crys-
talline media knowing the elastic moduli and the density of the material. 
The code was built as a module of the QUANTAS package, which already 
implement some routines to analyse the stiffness tensor, and does not 
require other software to provide the three-dimensional and two- 
dimensional plots of the calculated quantities. As in the chris-
toffel code (Jaeken and Cottenier, 2016), derivatives are calculated in 
an accurate and efficient way, and the amount of details can be 
increased or decreased according to the size of the sampling grid of 
(spherical) directions. At present, the code is serial, i.e., it computes the 
seismic waves one direction at a time, which means that the computa-
tional cost increases linearly with the number of sampling points 
requested by the user. In the present paper, SEISMIC was tested against 
two different crystal structures, fluorite (cubic symmetry) and quartz 
(trigonal), finding a very good agreement with experimental data. 

Fig. 4. Lambert equal area 2D projection of (a) enhancement factor A (as log10A) and (b) power flow angle ψ of fluorite. The black square and the white dot show the 
maximum and minimum value calculated in each plot, respectively. 
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Fig. 5. Three-dimensional representations of (a) phase velocity, (b) group velocity, (c) enhancement factor, and (d) power flow angle of fluorite.  
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In future, other features will be added to SEISMIC, i.e., the number of 
analyses, text reports and 2D/3D plots of the results that can be pro-
duced. In addition, it will be included the estimation of the calculation 
errors from the uncertainties associated with the elastic tensor compo-
nents, which will give the reliability range of the results. 

The performance of the code could be increased using parallelization 
support, either using the multiprocessing library of Python or other 
more advanced ones. 

Code availability section 

SEISMIC (part of the QUANTAS library) 
Contact: gianfranco.ulian2@unibo.it, 0039-0512094934 - giovanni. 

valdre@unibo.it 0039-0512094943. 
Hardware requirements: PC with at least 2 GB of memory, support-

ing Unix, MacOS or Windows operative systems. 
Program language: Python. 
Software required: Python >3.7, NumPy, SciPy, Matplotlib, Plotly. 
Program size: 15.2 MB (including the source files for the 

documentation) 
The source codes are available for downloading at the link: htt 

ps://github.com/gfulian/quantas/tree/development. 
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Fig. 6. (a) Phase velocities vp, (b) group velocities vg, (c) power flow angle ψ, and (d) enhancement factor A (as log10A) of quartz SiO2, reported as Lambert equal 
area 2D projection. The black square and the white dot show the maximum and minimum value calculated in each plot, respectively. 
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