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Abstract: Human–robot collaboration stands as one of the research frontiers in industrial applications
due to the possibility for human operators to be supported by robots in carrying out their tasks in
a shared workspace. However, advances in this field can be slowed down by the lack of standards
regarding the safety and ergonomics of such applications. This article aims at reducing this gap by
presenting an adaptation of the standard ISO 11228-3 for the ergonomic evaluation of hand-guiding
applications through the OCRA index. This innovative methodology is innovatively applied to a
drilling application in which a human operator hand-guides a collaborative robotic system consisting
of a Franka Emika Panda robot, a force/torque sensor and an IMU suit to track the motion of the
operator’s body. The SaRAH app, a MATLAB 2020a-based software tool developed on purpose,
implements the ergonomic assessment procedure, allowing the proper redesign of the working shift
(offline mode) or providing the worker suggestions to improve his/her behavior (online mode) so as
to reduce the ergonomic risk.

Keywords: human–robot collaboration; hand-guiding; ergonomics; OCRA; safety; risk assessment

1. Introduction

Human–robot collaboration (HRC) is nowadays a well-established trend in industrial
robotics, questioning the traditional paradigm of separation between human and robot
workspace [1]. Research about human–robot workspace sharing and physical interaction
started in the early 2000s and has risen increasingly until today [2,3]. Likewise, HRC has
been envisaged as one of the drivers of the 4.0 transition [4], on the one hand making light
automation affordable for small and medium enterprises, while on the other enabling the
flexibility required by current market trends [5]. Looking at the market share, the rate of
collaborative versus traditional robot units sold has increased since 2017, reaching up to
eight percent in 2021 (source: International Federation of Robotics) [6].

In future trends, worker wellbeing will definitely play an increasingly central role,
as per the Industry 5.0 paradigm, in several respects [7]. Among these, safety and er-
gonomics deserve great attention as potential barriers towards robot implementation [8,9].
Nevertheless, collaborative robots are intrinsically safer due to the lightweight, smooth
surfaces—in some cases, even padded—and the safety-related functions [6]. However,
workspace sharing considerably increases the complexity of analyzing and designing the
tasks, and this holds true from the perspective of ensuring safety [10]. Indeed, as per ISO
TS 15066 [11], which is the reference standardization deliverable released up to now, HRC
safety assessment processes require step-by-step analyses of the whole task to check the
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possibility of occurrence of any hazard. This means dealing with a high number of variables
to consider all the possible risk scenarios. Consequently, risk mitigation, verification and
monitoring methods become even more crucial [12]. And, in the last years, the research ef-
forts in this direction have been increasing considerably, with safety-related studies aiming
either at avoiding or mitigating contact and ergonomics-oriented ones dealing with both
physical and cognitive/organizational aspects [13].

There are several human–robot collaboration modalities according to [11], depending
on whether or not contact is allowed between the robot and humans and depending
on the strategy to avoid risks for the operators, thus definitely affecting safety-related
aspects. Avoiding impacts between humans and robots is typical of the collaborative
modes of safety-rated monitored stop (the robot stops if a human accesses a pre-defined
safeguarded area) and speed and separation monitoring (the robot slows down depending
on the distance from the human, ensuring adequate stopping time in any configuration).
To ensure safety, the constant monitoring of the workspace is necessary and commonly
achieved by implementing safety-related sensors—i.e., laser scanners—or other acquisition
systems, such as 3D cameras, stereovision systems, ultrasonic sensors, infrared sensors
and thermal cameras. All those measures can be complemented by providing wearable
sensors for the targeted monitoring of the operator [14]. In the power and force-limiting
operating mode a contact is rare but acceptable, but it must be guaranteed that it will
not hurt the operator in any way, so the issue of human–robot contact must be properly
addressed; the well-established approach is test-based and relies on the reproduction of the
contact situation, replacing the human body part with so-called “biofidelic” sensors and
reproducing the characteristics of the human body [15]. In hand-guiding (HG) mode, the
robot moves according to human inputs; thus, it is worth considering ergonomics as more
crucial than safety—strictly intended here as the prevention or mitigation of accidents.
Ergonomics aims, on the other hand, at reducing the risk of musculoskeletal disorders
(MSDs); according to the European Agency for Health and Safety at Work [16], roughly
three out of every five workers complain about an MSD. In particular, the majority of those
dealing with repetitive hand or arm movements are considered to be exposed to physical
risk factors for at least a quarter of the working time [16].

Besides the necessity of minimizing the occurrence of work-related diseases, consider-
ing human factors in process design is also crucial for improving the quality of operation
performance [17]. In relation to this, it is worth observing that, while technologies advance
quickly, legislation and standardization are characterized by slower processes [12] and, in
witness thereof, there is a lack of standards dealing with ergonomics in robotic operations.
A comprehensive overview of the standards generically dealing with ergonomics can be
found in [18]; among those, the ISO 11228 series deals with manual handling, providing
recommendations for designers, employers, workers and other subjects involved in the
design of tasks. ISO 11228-1 [19] deals with the manual lifting and transportation of low-
weight loads, considering operator postures and motion frequency and characteristics.
ISO 11228-2 [20] provides guidance for the assessment of the risks related to pulling and
pushing activities, identifying the maximum permissible static strength as a function of age,
gender and stature. ISO 11228-3 [21] applies to risk assessment of activities characterized by
reiterated movements of the upper limbs; among the approaches described in this standard
for the estimation of the risk factors affecting upper limbs, the Occupational Repetitive
Action (OCRA) assessment methodology of biomechanical overloading is the most com-
prehensive method [22]. Such a protocol also considers action frequency, postures, applied
force, duration of rest breaks, repetitiveness and recovery time during a working shift. It
requires experience in risk index calculation but can accurately provide a prevision of the
risk of disorder occurrence generated by biomechanical overload, enabling the redesign of
the activity according to ergonomics criteria. Moreover, the same ergonomics evaluation
can be implemented in real-time and provide online feedback to the workers who reach
excessive physical overloads.
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The ergonomics-related issues occurring when humans and robots interact to ac-
complish tasks (such as back or upper-limb pain due to the handling of heavy loads or
incorrect postures and stress due to the repetitiveness or needed precision of tasks) are
extensively disclosed in [23]. The paper analyzes the approaches for both physical and
cognitive ergonomics assessments, presenting all the published approaches for ergonomics
monitoring. The “standards-based” approaches to mitigating ergonomics-related workload
in human–robot collaboration mainly rely on the following methodologies:

• REBA (rapid entire body assessment): Initially proposed in [24], it is based on scoring
(i) the postures of different groups of body parts, (ii) the load, (iii) the coupling
factors and (iv) the activity. The scores are then combined to obtain the degree of
risk by consulting a decision table. The approaches relying on this methodology may
lead to modifications of robot pose and action sequence [25], may indicate the more
appropriate body configuration [26] or may support task allocation [27].

• RULA (rapid upper limb assessment): introduced in [28], it consists of evaluating
body posture, force and repetition, considering neck, trunk and upper extremities.
Approaches based on this methodology rely on the adjustments of robot motions to
comply with human poses [29,30] or can be used to predict the physical risk.

• The WISHA (Washington Industrial Safety and Health Act) index, which is, in turn,
derived from the NIOSH (National Institute for Occupational Safety and Health)
equations [31]. An approach building on this methodology enables the adaption of
online robot motion planning to cope with human ergonomics [32].

It is worth observing that no OCRA-based approaches have been presented so far for
the automated offline or online analysis of HRC tasks, even if the OCRA index stands as the
more efficient and complete methodology to analyze workstations and even if compared to
the RULA method [33]. The latter, indeed, does not consider other features of the activity,
such as the working shift duration and the recovery time. In line with these considerations,
OCRA developers stress that this methodology was the one preferred by the ISO working
group, based on a consensus among a variety of technical experts [34]. On the other hand,
none of the aforementioned studies specifically target HG operations. Actually, only a few
studies analyze the safety- and ergonomics-related aspects of HG applications: in [35], an
ergonomics validation protocol is presented and tested in an automotive assembly scenario,
while in [36] the risk assessment of HG-based assemblies in an analogous application
is addressed.

The work presented here, framed within a European research project aimed at closing
the gaps between technological advancements and standardization and supporting users
in the implementation of HRC applications [37], concerns the automated evaluation of
physical ergonomics by means of a software tool developed on purpose for HG applications,
enabling the automated offline and online evaluation of a modified version of the OCRA
index in a given task.

The approach of the present work relies on the OCRA index computation by means of
the “SaRAH” (Safety in Robot Arm Hand-Guidance) MATLAB® app, which was developed
on purpose. While previous works mainly target sequential collaborative assemblies and co-
manipulation tasks, the app targets in particular HG collaborative applications, in which the
robot supports the operator in a repetitive, dull and stressful task. The forces exerted by the
user to perform the task are measured with a six-axis force/torque sensor, and the pose of
the limbs of the human body is tracked with a wearable suit of Inertial Measurement Units
(IMUs). IMUs are particularly suitable for risk assessment in unstructured environments,
such as industry settings, due to their high flexibility, portability, low dimension, low
power consumption and high usability. The usage of IMU systems in ergonomics is
relatively recent, as reported by a review paper [38] identifying a few works based on
IMUs for ergonomics analysis, with most of them relying on the application of ISO 11228.
One of those in particular concerns the OCRA estimation, but it is limited to the posture
multiplier [39]. The described approach enabled by the SaRAH app was tested in a real-
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world application example by one of the researchers participating in the study in order to
prove the overall effectiveness.

The paper is organized as follows. In Section 2, the OCRA-based methodology for
ergonomics assessment is detailed and the SaRAH app is presented. In Section 3, the HG
workcell, the acquisition setup and some application examples are reported. Sections 4 and 5,
respectively, report on the Discussion and Conclusion.

2. Material and Methods
2.1. Ergonomics Assessment

The OCRA index represents a compact index of exposure to repeated movements
of the upper limbs and derives from physiological, biomechanical and epidemiological
principles. The computation of the index is based on the concept of Technical Actions (TAs),
i.e., the elementary manual operations into which the working task is subdivided (e.g.,
pushing, cutting, etc.). The OCRA index is defined as the ratio between the number of
actions actually performed with the upper limbs in cyclical tasks and the corresponding
number of recommended actions, calculated on the basis of a fixed benchmark—30 actions
per minute, according to [21]—considered representative of optimal conditions. In case of
more burdensome conditions (e.g., due to excessive strength, wrong posture, insufficient
recovery periods or other complementary factors), the latter undergoes a decrease through
appropriate corrective coefficients.

As per [21], the OCRA index is calculated as:

OCRA =
nATA

nRTA
. (1)

nATA is the number of actual technical actions performed during the shift, computed as

nATA =

f︷ ︸︸ ︷
nTC × 60

tC
× t (2)

with nTC, tC, f and t corresponding to the number of technical actions per cycle, the cycle
time, the frequency of technical actions and the net duration of the repetitive task in a shift,
respectively. nRTA, instead, represents the number of reference technical actions (RTA) for
each upper limb, computed as

nRTA = kf × FM × PM × ReM × AM × t × RcM × tM (3)

with kf = 30 actions per minute, and FM, PM, ReM, AM, RcM and tM representing the force
multiplier (quantifying the effort of the operator), the posture multiplier (considering
incorrect postures), the repetitiveness multiplier (considering if the same technical action is
repeated for most of the cycle time), the additional multiplier (considering other factors
such as vibrations or the need for precision), the recovery multiplier (considering the
presence of breaks) and the duration multiplier (considering which portion of the total
working shift involves repetitive actions), respectively.

The terms involved in the calculation can be subdivided into the categories here-
after reported.

• Force information FM: According to [21], it can be estimated in three different ways:
(a) through an EMG sensor by the percentage of muscle activation compared to the
maximum contraction, (b) by the percentage of a basis force FB provided for relevant
poses in the standard EN 1005-3 [40] or (c) more qualitatively, based on the amount of
effort perceived by operators during a testing campaign.

• Posture information PM: This is determined based on the percentage of time on which
shoulder, elbow and wrist joint angles exceed specific angle limits, as defined in [21].
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• Task frequency and characteristic information nTC, tC, t, ReM, AM, RcM, tM: These
parameters enable the consideration of factors which make the shift more fatiguing
for the worker.

The multipliers belonging to the latter category can be determined based on the
instructions provided in [21] once the details of the working shifts are known, while more
details are necessary to obtain the values of the posture and force multipliers.

In the methodology proposed in this paper, the posture multiplier is based on the
pose of the limbs of the human body, which is continuously tracked through the men-
tioned IMU system. In particular, our previous work [41] regarded the procedures that
were implemented to guarantee a correct tracking of the human body with the suit. The
model of human upper limbs used for the calculation, commonly used in biomechanical
studies, is characterized by seven degrees of freedom. In greater detail, the shoulder is
modeled by three revolute joints simulating abduction/adduction, internal rotation and
flexion/extension. In the elbow, two rotational DoFs are considered: flexion/extension and
forearm pronation/supination. The wrist is represented by two revolute joints, identifying
palmar flexion/extension and ulnar/radial deviation. The distance between each joint,
namely the body segment length, is estimated through the Drillis and Contini model [42],
which estimates the length of each body segment based on the height of the subject. The
use of a simplified biomechanical model eases the estimation of the joint angles to be
compared with the limit values. The posture multiplier can then be obtained considering
the portion of cycle time in which inappropriate postures (i.e., postures that violate the
limits on maximum/minimum joint angles) occur.

As for the computation of the force multiplier, among the three possible approaches
mentioned before to compute this multiplier, the first one (using EMG) and the third one
(through the perception of the user) were discarded: the first one because EMG sensors are
invasive and not suitable for industrial settings and the third one as it is not appropriate to
obtain objective and trustworthy estimations. The approach using the percentage of the
“basis forces” was instead selected, but a modification had to be introduced. In fact, the
basis forces provided in [40] are relative to static poses, while in the described hand-guided
collaboration scenario the subject constantly changes his/her posture. Then, using the
previously mentioned seven-degree-of-freedom model of the arm, the basis forces are
mapped to “basis torques” in the shoulder, elbow and wrist joints using the Newton–Euler
recursive algorithm, as in [43]. Afterwards, the same Newton–Euler procedure is applied
again starting from the measurement of the force/torque sensor instead of the basis forces
from the standards and considering the arm joint positions according to the measurements
of the IMU system. In this way, the torques that the joints of the human arm need to apply
are calculated. Finally, these torques are compared to the basis torques to obtain the force
multiplier.

From the calculation of the previous values, the obtained overall OCRA index can
belong to three different “regions” of ergonomical risk [21]:

• No risk (green zone), with values lower than 2.2.
• Very low risk (yellow zone), with values in the range 2.2–3.5.
• Risk (red zone), with values higher than 3.5.

2.2. The SaRAH App

The “adapted” OCRA index calculation described in the previous paragraph was
implemented to develop a MATLAB® app aimed at providing an estimation of the fatigue
of the operator during a working shift. The workflow of the app is shown in Figure 1. A
table containing the subdivision of the working task in technical actions (TAs) is provided
as input, along with the working shift organization, i.e., the duration of the shift and the
duration and times of the breaks. The data flow is shown in Figure 2: the measurements
from the force/torque sensor and from the IMUs are communicated, respectively, through
EtherCAT and WiFi protocol to the controller of the robot (a C++ code running within the
ROS Control framework), and then, at the end of each cycle, they are saved in a csv file.
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The MATLAB 2020a app, then, acquires the data in the file and elaborates them to find
the initial and final time of each TA. Then, based on the obtained subdivision and on the
acquired posture and force data, FM and PM are computed. Based on shift organization,
the task frequency and characteristic information multipliers are also calculated. Therefore,
the OCRA index is obtained as per Equations (1)–(3).
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The SaRAH app provides two possible usage modes, offline and online. The offline
mode is used to properly design the shift, in particular by setting the appropriate number
of breaks to obtain an OCRA value in the “green zone”: one working cycle, performed pre-
liminarily, is considered repeated during the whole working shift to forecast an estimation
of the OCRA index. The online mode is instead suitable during the actual working shift
to monitor the ergonomics level: the estimation of the OCRA index is updated at the end
of each work cycle and the operator is warned to improve his/her behavior if he/she is
starting to assume incorrect postures, which could result in high values of the index over
the whole shift. In case the incorrect behavior continues over several cycles in spite of the
warnings, the app will suggest to the user to take a short break.

Warnings provided at the end of the cycle (i.e., not strictly “real-time”) are appropriate
because the objective of the app is not to avoid immediate dangerous situations, but
to mitigate work-related diseases that might arise in the long term due to repetition of
ergonomically erroneous behavior.

The SaRAH app interface features two main tabs. In the first tab (Figure 3), it is
possible to configure the working shift, setting the overall duration and break times,
as well as the desired number of cycles per working shift. These factors directly affect
the OCRA index calculation, in particular the terms categorized as task frequency and
characteristic information.
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The second tab (Figure 4) shows the results of the OCRA index computation, which is
updated in the online mode at the end of each working cycle. The upper part of the tab
reports the results of each single cycle, which can be selected by the drop-down menu (by
default the last performed is selected). The OCRA index displayed is forecasted considering
the selected working cycle repeated over the whole shift. In the online mode, the value
provides information about the performance of a specific cycle, whereas in the offline
mode it can be directly considered to reshape, if necessary, the working shift (e.g., adding
more breaks) to improve the calculated OCRA index by returning to the previous tab. A
warning section indicates if any multiplier is becoming critical; in case of high values of
the posture or force multiplier, the limb mostly affected is also indicated. In the lower
part, the OCRA index estimated for the entire shift considering also the previous cycles is
reported. Two different estimations can be obtained: “Mean”, based on the average of the
recorded cycles, and “Last cycle until end”, which is instead based on the assumption that
the performance of all the upcoming cycles will be the same as the last cycle in order to
predict the necessity of any modification to the execution of the task.
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3. Tests and Results
3.1. Task and Workcell Description

In order to develop, test and validate the SaRAH app, a setup of an operating scenario
was realized consisting of a workcell meant for a repetitive task to be performed with the
support of a hand-guided collaborative robot. The task consists of creating four holes with
an electric drill mounted as the end-effector of a robot: the first hole is on a planar surface,
perpendicular to the ground, while the other three are on a vertical surface. Different
drilling positions were used to test different working conditions for the upper limbs of the
human operator, which could result in different musculoskeletal solicitations.

The workcell consists of the following components (see Figure 5):

• Franka Emika Panda robot: a seven-degree-of-freedom collaborative robot, having a
cycle time of 1000 Hz and equipped with torque sensors in all the joints to measure end-
effector loads and detect impacts with obstacles in the workspace. In case of an impact,
the robot stops and enters into error status, thus preventing harmful interactions with
humans within the workspace.

• An electric drill, mounted as the end-effector of the robot with a custom mechanical
interface, made of 3D-printed flanges. The custom fixture is also provided with an
additional handle so that the operator can grab the end-effector, which incorporates
the drill, with his/her right hand on the drill grip and with their left hand on the
additional handle. The handle also includes a button that enables switching between
two different robot control modes (as detailed below).

• Schunk Axia80 sensor: a six-axis force/torque sensor sending data at a frequency of
1000 Hz and mounted in between the mechanical interface and a 3D-printed additional
handle, in order to measure, together with the robot joint torque sensors, the forces
and torques exerted by the human operator on the robot.

• Shadow MoCap suit: a system of 17 IMU sensors placed in several points of the
human body (on the arms, legs, back, chest and head), sending data at a frequency of
400 Hz. The IMUs are used to track the position of the human body, which is needed to
evaluate the effort of the operator. It is worth observing that the drifting issue typical
of this type of sensor is mitigated in the considered set-up by the given information of
hands position, which is obtained by robot encoders considering that the handle and
the drill are constantly held.
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Two robot control modes, which were selected by the user via a dedicated button on
the custom handle, were set:

• Manual guidance mode: the operator moves the robot to the desired position to drill
the hole. In this phase, the robot is controlled in torque, mainly providing compen-
sation for the gravity force and a support action—driven by the force information
acquired by the six-axis force sensor—necessary to compensate for the internal friction
of joint gearsets.

• Drilling mode: in this phase, the robot is controlled in velocity and is activated when
the force measured by the six-axis force sensor is higher than a pre-defined threshold
in the direction of the tip of the drill. The robot is programmed to move forward (or
backwards, depending on the direction of the force), minimizing the effort exerted by
the operator and ensuring drilling direction. Weight compensation is also provided in
this mode.

3.2. Evaluation with OCRA App

According to the OCRA protocol, the task was subdivided into TAs as initial input for
the index calculation. In a single task, the following technical actions were performed for
each hole:

1. Position the end-effector (manual guidance control mode)
2. Start bit rotation by pressing the drill trigger
3. Push to drill (drilling control mode)
4. Move away (drilling control mode)

Considering the four holes to be drilled, this resulted in 16 TAs characterizing the task,
and the work cycle was subdivided accordingly by the SaRAH app. During task execution,
the switch between the different TAs was identified based on the active control mode (the
switching between manual guidance and drilling control mode was performed through a
button on the handle) and, in the drilling mode, based on the motion direction (forward
or backward).

3.2.1. Offline Mode

Figure 6 shows an example of an offline OCRA estimation. A working cycle was
executed and its data recorded. Then the OCRA was computed with respect to these data
and with the shift organization outlined in the upper part of the figure. It can be observed
that the calculated OCRA index was in the yellow area, due to the low value of the recovery
period multiplier, as indicated in the warning area. Instead, by computing the OCRA with
respect to the same data but changing the shift organization by including a work break in
the middle of the morning, the value of the recovery period multiplier increased, and the
OCRA returned to the “green” zone, as shown in Figure 7. Figure 8 shows the body angles
of the human operator, and Figure 9 shows the torques applied by him/her during the
task. For both posture and force data, the critical limits are represented by the red dotted
lines, and it can be observed that in the considered task the angles and the torques are not
critical, resulting in good force and posture multipliers. In particular, the torques were
always very far from the critical values because most of the force that needed to be applied
to sustain the drill and to create the hole were applied by the robot, with the operator only
guiding the end effector in the desired direction. This shows the benefits of using an HG
collaborative solution. It has to be underlined that, if the HG control law of the robot did
not work as well as the one introduced in this test, or if the task was performed by the
operator alone, without the help of the robot, the app would provide lower values for the
force multiplier. As for the postures, the deviation of the left wrist might seem problematic,
but, according to [21], a wrist deviation exceeding the limits by less than 50% for up to
one-third of the cycle time does not result in a modification of the posture multiplier.
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Figure 9. Torques of the upper limbs for an ergonomically non-problematic working cycle (the red
dashed lines indicate the limit torques).

3.2.2. Online Mode

To test the online mode of the app, several working cycles were performed in sequence.
In particular, in the test hereafter commented on, the first six cycles were performed
similarly to the cycle in Figure 8, while the seventh cycle was purposely performed with an
unnatural posture of the upper limbs. This generated a low value of the posture multiplier,
resulting in an OCRA value in the yellow zone. In the warnings section, which joint was
undergoing the critical solicitation is also shown (in the test, prevalently the right wrist).
Figure 10 shows the data which were used by the app to compute the posture multiplier. It
can be observed that the body angle that overcame the limits for the greatest portion of the
cycle time was the one related to the wrist flexion of the right hand. Even in this case, the
torques applied by the operator were much lower than the limits for the whole cycle time,
as shown in Figure 11. In Figures 12 and 13, it can be observed that the estimated OCRA
index over the entire shift after the seventh cycle was still in the “green” zone if the “Mean”
method was used to obtain the estimation. This was due to the fact that the last cycle was
given the same weight as the previous ones, while OCRA entered the “yellow” zone if the
“Last cycle until end” method was used.
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In the online mode, the app can therefore provide the operator with feedback informa-
tion on whether he/she is performing the task correctly or some of his/her movements are
non-ergonomic, possibly due to fatigue occurring after some hours of repetitive work. In
this way, the operator can correct his/her behavior and mitigate the risk of musculoskeletal
injuries in the long term or take a short break.

4. Discussion

Several approaches have been proposed so far to improve physical ergonomics in
human–robot collaboration. On a general basis, the methodologies proposed in the liter-
ature aim either at an optimal planning of human/robot tasks or at providing real-time
posture correction, targeting tasks characterized by co-manipulation or human–robot
coordination in collaborative assemblies. The methodologies and software application
presented in this paper are instead dedicated to HG applications, considered potentially
critical from the ergonomic perspective in terms of forces or stressful postures occurring
while guiding the robot. The described approach is particularly suitable for such kinds of
applications because in an HG task, the forces exerted by the user (needed for the computa-
tion of the force multiplier) can easily be measured with a force/torque sensor mounted on
the end effector.

As already mentioned, the OCRA index calculation, which is claimed to be the most
appropriate methodology for ergonomics assessment of repetitive manual activities, is
innovatively used in an automated assessment approach. Another benefit of the proposed
methodology is that it provides all the parameters needed for the ergonomic evaluation
from computations, while other methods often rely on the subjective perception of the user.
Furthermore, not only static nominal working positions are considered, but the analysis is
also performed on the whole motion of the user.

A limitation of the present study is that the forces exerted by the muscles of the human
muscles are estimated from the forces read by the force/torque sensor on the end effector:
a direct sensing of the muscle activation, e.g., with electromyography sensors, might be
more accurate. However, such sensors would be much more invasive and would not be
appropriate for daily usage in an industrial setting. Moreover, as already mentioned, the
proposed approach will be the object of a wider campaign considering the execution of
several HG tasks performed by different participants.

4.1. Offline Task Planning

The approach presented in [25] aims at the minimization of the ergonomic cost, based
on a “modified” REBA score, by analyzing offline a simulation of the task to optimize both
the operator sequence and robot path. As remarked, the approach proposed here targets HG
tasks, rather than collaborative assemblies with pre-planned robot trajectories. Moreover,
the SaRAH app enables one to also take into account the forces applied by the operator
and the accumulated stress, which stand as crucial factors for ergonomic assessments.

4.2. Online Ergonomics Improvement

Other approaches presented in the literature aim at the real-time correction, by means
of the robot or the workpiece pose, enabling the optimal posture of the operator and
thus ergonomic improvement [26,30,31]. To reconstruct the operator position within the
working volume, vision systems are commonly the principal means of acquisition. Instead,
in the methodology presented in this paper, human poses and movements rely on IMU suit
acquisitions. Additionally, in contrast to other methodologies, the online functionality of the
SaRAH app is meant to correct operator behavior and improve ergonomics by calculating
the OCRA index over each task repetition, providing a global evaluation which takes into
account the accumulated stress and the specific work shift. As a further difference with
other approaches, the proposed architecture does not rely on the control of the robot, being
suitable to existing applications without affecting the system design phase.
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5. Conclusions

With the spread of human–robot collaboration as an actual industrial trend, rather
than a mere development directive, safety-related issues often represent the barrier towards
the full exploitation of technological advancements. As a consequence, dealing with
safety and ergonomics is gaining increasing interest in both the research and industrial
communities. In particular, several research approaches are currently being proposed either
to ensure safety during collaborative tasks or to support the development of collaborative
applications verifying the compliance with safety and ergonomics principles. However,
due to the lack of specific standards, a number of scenarios still require adequate solutions.

In this paper, a MATLAB-based software application aimed at ergonomic assessment
in HG collaborative tasks—the “SaRAH app”—was presented. As an innovative approach
to the robotics field, the analyses performed by the software build on the so-called “OCRA”
protocol, the state-of-art procedure reported in the standards to deal with tasks involving
repetitive actions of the upper limbs. Such a procedure was appropriately adapted, particu-
larly regarding the computation of the force multiplier, considering the specificity of HG
collaborative applications which often include the real-time monitoring of the operator’s
movements. The approach was tested on a specific setup developed on purpose consisting
of a collaborative HG drilling station in which a collaborative robot supports an operator
to create a series of holes in wood panels. The motion of the human operator is acquired by
a suit of wearable IMUs, while his/her effort is monitored through a six-axis force sensor
installed in a custom HG control end-effector.

As shown by the usage tests and results, the SaRAH App is capable of efficiently
providing support either in task design, enabling offline analyses of the sequence to be
performed by the operator, or during the actual working shift, providing alerts whenever
behaviors or movements become hazardous, considering the repetitiveness of the task. The
reported trials demonstrate that modifying the number and duration of breaks directly
affects the OCRA index calculation, enabling the offline modification of the task and the
minimization of hazards. Moreover, by way of example, the posture multiplier graphs
reported for the online trials show how data are processed online to generate alerts in
hazardous conditions. Furthermore, in both cases, it can be observed that torque multipli-
ers are characterized by extremely low values, demonstrating the effective reduction of
ergonomic risks and fatigue obtainable thanks to the adoption of a collaborative HG robot.

Future developments of this work will concern the validation of the approach based
on tests involving a larger group of participants, possibly external to the research group,
performing a set of different HG tasks.
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