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Summary
Real-world data have revealed that a substantial portion of patients with myelodys-
plastic syndromes (MDS) does not respond to epigenetic therapy with hypomethyl-
ating agents (HMAs). The cellular and molecular reasons for this resistance to the 
demethylating agent and biomarkers that would be able to predict the treatment 
refractoriness are largely unknown. In this study, we shed light on this enigma by 
characterizing the epigenomic profiles of patients with MDS treated with azaciti-
dine. Our approach provides a comprehensive view of the evolving DNA methylation 
architecture of the disease and holds great potential for advancing our understand-
ing of MDS treatment responses to HMAs.
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I N TRODUC TION

Myelodysplastic syndromes (MDS) comprise a family of my-
eloid malignancies with heterogeneous genotypes and pheno-
types, which are characterized by ineffective haematopoiesis 
and an increased risk of progression to acute myeloid leukaemia 
(AML).1–3 Genome-wide analyses have identified mutations in 
several DNA methylation regulators, such as TET2, DNMT3A, 
IDH1 or IDH2.1–3 Additionally, DNA methylation studies have 

unveiled an aberrant methylation pattern in MDS,4 revealing 
the important disruption of the epigenetic landscape that oc-
curs in these syndromes. To tackle the aberrant epigenomic 
profile, hypomethylating agents (HMAs), such as azacitidine, 
are used in the clinics to treat higher risk patients with MDS, 
leading to an increased overall survival rate.1–3 However, a 
major limitation exists, such only 40%–50% of the higher risk 
patients respond to the treatment.1–3 Although several po-
tential biomarkers of azacitidine response in MDS have been 

T A B L E  1   Characteristics of the studied MDS patients.

Characteristics Entire cohort (n = 43) Discovery cohort (n = 31) Validation cohort (n = 12) Discovery versus validation p-value*

Sex

Female 15 10 (32.3%) 5 (41.7%) 0.723

Male 28 21 (67.7%) 7 (58.3%)

Age (years)

<70 14 10 (33.3%) 4 (33.3%) 1.000

≥70 28 20 (66.7%) 8 (66.7%)

MDS WHO 2017 subtypes

MDS-EB1 15 10 (32.3%) 5 (41.7%) 0.924

MDS-EB2 16 12 (38.7%) 4 (33.3%)

MDS-MLD 8 6 (19.4%) 2 (16.7%)

MDS-SLD 2 2 (6.5%) 0 (0.0%)

MDS-U 2 1 (3.2%) 1 (8.3%)

Bone marrow blast count at diagnosis (%)

<5% 12 9 (29.0%) 3 (25.0%) 1.000

5%–9% 16 11 (35.5%) 5 (41.7%)

10%–19% 15 11 (35.5%) 4 (33.3%)

IPSS-R cytogenetic riska

Very good 0 0 (0.0%) 0 (0.0%) 0.333

Good 11 10 (33.3%) 1 (8.3%)

Intermediate 11 6 (20.0%) 5 (41.7%)

Poor 7 5 (16.7%) 2 (16.7%)

Very poor 13 9 (30.0%) 4 (33.3%)

IPSS-R risk groupb

Very low (0–1.5) 0 0 (0.0%) 0 (0.0%) 0.380

Low (2–3) 2 2 (6.7%) 0 (0.0%)

Intermediate (3.5–4.5) 7 5 (16.7%) 2 (16.7%)

High (5–6) 13 11 (36.7%) 2 (16.7%)

Very high (>6) 20 12 (40.0%) 8 (66.7%)

Response to azacitidinec

Responder 25 18 (58.1%) 7 (58.3%) 1.000

Non-responder 18 13 (41.9%) 5 (41.7%)

Abbreviations: IPSS-R, International Prognostic Scoring System-Revised; MDS, myelodysplastic syndromes; MDS-EB1, MDS with excess blasts type 1; MDS-EB2, MDS 
with excess blasts type 2; MDS-MLD, MDS with multilineage dysplasia; MDS-SLD, MDS with single lineage dysplasia; MDS-U, MDS Unclassifiable; WHO, World Health 
Organization.
aSchanz J, Tüchler H, Solé F, Mallo M, Luño E, Cervera J, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and 
oligoblastic acute myeloid leukaemia after MDS derived from an international database merge. J Clin Oncol 2012;30(8): 820-9.
bGreenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood 
2012;120(12): 2454-65.
cResponse criteria and the pertinent references are described in Data S1. Available data are shown.
*p-values were calculated using Fisher's exact test or chi-squared test for dichotomous or categorical respectively. p-values under 0.05 represent statistically significant 
association between co-variables.
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proposed,1–3 a comprehensive global profile of the DNA meth-
ylome in HMA-treated MDS longitudinal DNA samples before 
and after treatment has not been reported. Herein, we describe 
the consecutive DNA methylation changes that take place in 
patients with MDS upon HMA therapy according to clinical 
response, and identify a DNA methylation signature to poten-
tially predict the efficacy of the treatment at diagnosis.

PATIE N T SE L EC TION/ST U DY DE SIGN

Our study includes 86 paired bone marrow (BM) samples col-
lected prior and post-azacitidine treatment (median = 6.0 cycles 
[interquartile range, 4.5–6]) from 43 patients with MDS. For 
those few cases with less than four azacitidine cycles at evalua-
tion response (n = 6), it was confirmed that the duration of re-
sponse was prolonged overtime (median = 10 months). Table 1 
describes the clinicopathological patient characteristics. 
Additional information regarding karyotypes and mutations 
at diagnosis is shown in Table S1. Clinical response was de-
fined following the International Working Group response cri-
teria in patients with MDS (IWG-MDS), as detailed in Data S1 
with the pertinent references. DNA methylation profiles 
were generated using the Infinium HumanMethylationEPIC 
BeadChip microarray (EPIC/850k) (Figure 1A), as previously 
described.5 Raw files (IDATs) underwent quality control, nor-
malization and filtering to obtain the methylation scores (β- 
and M-values), as previously reported.5 The global methylation 
content was assessed by calculating the number of hypermeth-
ylated sites. Differentially methylated CpG positions (DMPs) 
were identified by calculating mean β-value differences be-
tween groups and fitting a linear regression model using 
limma, with batch effect adjustment as a covariate. The classi-
fication model was trained by the DMPs using a random forest 
algorithm. Model performance was evaluated by the receiver 
operating characteristic (ROC) curve. For clinicopathological 
variables, p-values were calculated using Fisher's exact test or 
chi-squared test for dichotomous or categorical, respectively. 
For the global methylation analyses, the comparison between 
groups was performed with the two-sided Mann–Whitney 
Wilcoxon test. Statistical significance was considered if p-value 
<0.05; or adjusted p-value <0.05 when multiple testing was per-
formed. Further details are available in Data S1.

R E SU LTS

We first determined the global DNA methylation content 
by calculating the number of CpG sites hypermethylated 

(β-value >0.66) in each patient and each condition (pre- and 
post-treatment). We observed, as expected, that the HMA 
agent induced an overall reduction of DNA methylation in 
post-treatment samples in comparison to the pretreatment 
group, evidenced by the significant decrease in the mean 
number of hypermethylated CpGs (Figure  1B, left). The 
diminished DNA methylation was observed for all genomic 
loci classified by CpG density and context, such as CpG-
rich areas (CpG islands), neighbouring CpG island loci 
(CpG shelves and shores) and CpG-poor regions (open sea) 
(Figure  S1). Interestingly, the hypomethylating effect was 
overall more significant in the group of HMA responders 
(p-value <0.001) than in non-responders (p-value = 0.008) 
(Figure  1B, middle and right). Even more important, the 
HMA responder patients showed a significant reduction of 
hypermethylated sites located at CpG islands (p-value = 0.003) 
that was not observed in the patients with MDS refractory to 
the azacitidine treatment (p-value =0.181) (Figure  1C). For 
the other CpG sites, we did not observe differences between 
HMA responders and non-responders, both groups showing 
significant hypomethylation events upon the use of azacitidine 
(p-value <0.05) (Figure S1). These findings could relate to the 
known functional reactivation of tumour suppressor genes 
associated with hypomethylation events at CpG islands,6 
a phenomenon that our data suggest can be invoked in the 
patients with MDS that respond to the epigenetic therapy. For 
individual CpG sites, we identified 14 loci that were uniquely 
hypomethylated in the post-HMA treatment samples of 
responder patients (Table  S2). Strikingly, one of the genes 
associated with the identified CpG sites, phosphoinositide-
phospholipase C beta1 (PLCB1), has been previously 
described as reactivated upon DNA hypomethylation in 
patients with MDS that responded to HMA treatment,7,8 
further validating our experimental approach.

The above comparison between the DNA methylation pro-
files of patients with MDS before and after azacitidine treat-
ment according to the clinical response provides relevant clues 
about the further course of disease upon the use of HMAs, 
but considering the utility in the clinical setting, it would be 
optimal to decipher DNA methylation profiles that could be 
associated with the response taking into account only the pre-
treatment sample. Thus, to achieve this goal, we also conducted 
a differential DNA methylation analysis in HMA responders 
versus non-responders exclusively focusing on the BM sam-
ples prior to the azacitidine therapy (n = 43). These samples 
were divided into a discovery (n = 31) and validation (n = 12) 
cohorts (Table 1). To avoid any statistical bias, we confirmed 
that there were no significant differences between the two 
cohorts with respect to the clinicopathological variants, such 

F I G U R E  1   Impact of azacitidine on global DNA methylation patterns and definition of EPIAZA signature in patients with MDS. (A) Study design 
and workflow. (B, C) Bar plots representing the mean number of total hypermethylated CpG sites (B) and CpG island (C) in pretreatment (PRE) and post-
treatment (POST) samples. CpG sites were categorized as hypermethylated when β-value >0.66. Two-sided Mann–Whitney–Wilcoxon test was performed. 
(D) Scheme of the definition of EPIAZA signature in the discovery and validation cohorts. (E) Heatmap representing the methylation β-values of four CpGs 
differentially methylated in responders versus non-responders, located at the 5′ regulatory region of the LDHC gene. CpG location is denoted below the CpG 
ID. The annotation bar indicates whether the sample is from a responder or non-responder patient. (F, G) Heatmaps representing the EPIAZA signature in 
the discovery (F) and validation (G) cohorts. Annotation bars indicate whether the sample is classified as EPIAZA+ or EPIAZA− and is from a responder or 
non-responder patient. Methylation β-values range from 0 (green) to 1 (red).
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as age, gender, MDS WHO 2017 subtypes, BM blast count at 
diagnosis, IPSS-R cytogenetic risk, IPSS-R risk group and per-
centage of azacitidine responders (Table 1). The overall study 
design and pipeline are illustrated in Figure 1D. The analy-
sis of the discovery cohort unveiled 39 CpGs with significant 
differences in mean methylation levels between responders 
and non-responders (mean delta β-value >|0.2| and adjusted 
p-value <0.05) (Table S3). Remarkedly, two of the genes linked 
to the identified CpG sites (SLC35D2 and SLC22B5) belong 
to the SLC superfamily of solute carriers that have been pre-
viously associated with azacitidine response9,10; reinforcing 
our methodological strategy. Next, we further investigated 
the gene with the highest number of DMPs in responders 
versus non-responders (4 CpGs), the lactate dehydrogenase C 
(LDHC) gene, which was hypermethylated in HMA respond-
ers (Table S3). The methylation status of those four CpGs was 
enough to classify patients according to azacitidine response 
in pretreatment samples with a hierarchical clustering anal-
ysis (Fisher's exact test, p-value <0.001) (Figure 1E). To assess 
the functional role of LDHC hypermethylation in gene regu-
lation, we took advantage of a panel of 23 AML cell lines11 and 
found that the occurrence of hypermethylation at the 5′ regu-
latory region was linked to gene transcription downregulation 
(Spearman correlation coefficient r = −0.548; p-value = 0.008), 
in agreement with previous findings.12 Interestingly, the up-
regulation of LDHC is associated with enhanced response to 
anti-PD-1 therapy13; thus, it is tempting to propose that the 
transcriptional reactivation of this gene by the demethylating 
agent might foster an immune response that could potentially 
improve response in patients with MDS.

We next selected the 39 methylation sites associated 
with HMA response to train a random forest algorithm 
with 10-fold cross-validation repeated three times (final 
mtry =2) to obtain a DNA methylation signature, hereafter 
termed EPIAZA. A hierarchical clustering analysis using the 
EPIAZA signature classified patients with MDS according 
to clinical response to azacitidine (Fisher exact test, p-value 
<0.001) (Figure 1F). Having demonstrated the EPIAZA sig-
nature ability to predict HMA-response in the discovery co-
hort, we assessed its performance in the validation cohort. 
The EPIAZA signature predicted response to azacitidine 
therapy with 91.7% accuracy (95% CI = 62%–99%; κ = 0.82), 
80% sensitivity and 100% specificity in the MDS validation 
cohort. We further interrogated the model performance 
using the receiver operating characteristic curve, obtaining 
an area under the curve (AUC) value of 0.89 (Figure  1D). 
The application of the EPIAZA signature in the hierarchi-
cal clustering for the validation cohort of patients with MDS 
also distinguished HMA responders and non-responders 
(Fisher's exact test, p-value <0.001) (Figure 1G). Interestingly, 
EPIAZA prediction for clinical response to azacitidine was 
observed for both high and low blast percentages in BM: BM 
blasts 5%–19% (97% accuracy; 95% CI = 83%–99%; κ = 0.93; 
92% sensitivity and 100% specificity) and BM blasts <5% 
(100% accuracy; 95% CI = 74%–100%; κ = 1.00; 100% sensi-
tivity; 100% specificity). According to higher and lower risk 
patients with MDS by the IPSS-R classification (information 

available for 42 patients), 95.24% (40 of 42) of our cases were 
IPSS-R >3.5%, where the EPIAZA signature was also associ-
ated with HMA response (98% accuracy; 95% CI = 87%–99%; 
κ = 0.94; 94% sensitivity; 100% specificity). The existence of 
only two patients with IPSS-R <3.5 precluded any meaning-
ful statistical analysis for this subgroup.

CONCLUSION

We have herein unveiled the DNA methylation changes that 
take place at a global scale in patients with MDS upon HMA 
treatment and found global epigenomic signatures and par-
ticular CpG sites with potential power to predict clinical 
response to the DNA demethylating drug. Our results indi-
cate that, although HMA induces a profound remodelling 
of the DNA methylation landscape of patients with MDS, 
those that respond to the therapy show preferentially hypo-
methylating events at the CpG island regulatory genomic 
regions. Beyond biology, from the clinical standpoint, the 
analyses of the DNA methylome in the MDS sample prior to 
the epigenetic therapy already provides some clues about the 
course of the disease. In this regard, the obtained EPIAZA 
signature could be a useful companion to aid treatment deci-
sion by anticipating a likely response to the HMA therapy in 
MDS. The relevant findings from our multicentre retrospec-
tive study encourage the development of prospective assess-
ments with higher number of patients with MDS (expanding 
to the effect of venetoclax combination)14,15 to broad our 
understanding about the potential of DNA methylation pat-
terns in the prediction of the clinical response to azacitidine.
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