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Gaussian universality of perceptrons with random labels

Federica Gerace ,1,2 Florent Krzakala ,3 Bruno Loureiro ,3,4 Ludovic Stephan ,3 and Lenka Zdeborová2

1International School of Advanced Studies (SISSA), Trieste, Via Bonomea, 265, 34136 Trieste, Italy
2EPFL Statistical Physics of Computation (SPOC) Laboratory, Rte Cantonale, 1015 Lausanne, Switzerland

3EPFL, Information, Learning and Physics (IdePHICS) Laboratory, Rte Cantonale, 1015 Lausanne, Switzerland
4Département d’Informatique, École Normale Supérieure (ENS)–PSL & CNRS, F-75230 Paris Cedex 05, France

(Received 3 March 2023; revised 18 September 2023; accepted 8 December 2023; published 8 March 2024)

While classical in many theoretical settings—and in particular in statistical physics-inspired works—the
assumption of Gaussian i.i.d. input data is often perceived as a strong limitation in the context of statistics
and machine learning. In this study, we redeem this line of work in the case of generalized linear classification,
also known as the perceptron model, with random labels. We argue that there is a large universality class of
high-dimensional input data for which we obtain the same minimum training loss as for Gaussian data with
corresponding data covariance. In the limit of vanishing regularization, we further demonstrate that the training
loss is independent of the data covariance. On the theoretical side, we prove this universality for an arbitrary
mixture of homogeneous Gaussian clouds. Empirically, we show that the universality holds also for a broad
range of real data sets.
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I. INTRODUCTION

Statistical physics studies of artificial neural networks have
a long history, including many works that continue to have an
impact on the current investigations of deep neural networks.
A large fraction of this ongoing work has focused on Gaussian
input data; see [1–3] for some of the earliest and most influen-
tial examples. However, the Gaussian data assumption is not
limited to works from statistical physics of learning. Indeed, it
is a widespread assumption in the high-dimensional statistics
literature, where it is also known under the umbrella term
of Gaussian design; see, for example, Refs. [4–6]. Despite
being both common and convenient for doing theory, i.i.d.
Gaussian data might come across as a stringent limitation at
first glance, out of touch with the real-world practice in which
data are structured. Indeed, an important branch of statistical
learning theory is data-agnostic and avoids making overly
specific assumptions on the data distribution [7]. However, a
number of recent observations (both heuristic and rigorous)
suggest that the Gaussian assumption is not always that far-
fetched for high-dimensional data (see, for instance, [8–12]
and references therein). The goal of the present work is to
redeem the Gaussian hypothesis for perhaps the simplest, yet
deeply fundamental, problem of high-dimensional statistics,
namely the perceptron problem, also known as generalized
linear classification, with random labels.

Models with random labels are ubiquitous in the theory
of machine learning. The problem of how many randomly
labeled patterns a perceptron model can fit, known as the
storage capacity problem, is at the root of the historical inter-
est of the statistical physics community for machine learning
problems. Indeed, works on this classical subject span more
than four decades [1,2,13–19]. Interestingly, it was noted in
these early works that the asymptotic storage capacity of the
perceptron is equivalent for both binary and Gaussian input

data. This observation is one of the early manifestations of
universality in this literature. The interest in random labels
is also not bound to the statistical physics of learning com-
munity. They appear in several contexts in statistical learning
theory, such as in the definition of Rademacher complexities
[7,20], in the pioneering studies of Wendel and Cover [21,22],
or in thought-provoking numerical experiments with deep
learning [23,24],

In this work, we ask the following: How would these the-
ories for random labels change if we used a realistic data set
instead of a Gaussian one? We consider the training loss of
generalized linear classifiers (perceptrons) trained on random
labels, including ridge, hinge, and logistic classification [25],
but also kernel methods [26] and neural networks trained in
the lazy regime [27] (the so-called neural tangent kernel [28]),
as well as with engineered features such as the scattering
transform [29]. We focus on the thermodynamic limit (known
as the high-dimensional setting in statistics) where both n (the
number of training samples) and p (the input dimension) go
to infinity at a fixed rate α = n/p.

Our main result is to argue that in the aforementioned
setting with random labels, many input data distributions ac-
tually have the same learning properties as Gaussian data,
thus providing a rather surprising Gaussian universality re-
sult for this problem. In particular, the minimum training
loss for a wide range of settings is the same as that of a
corresponding Gaussian problem with matching data covari-
ance. Furthermore, in the limit of vanishing regularization,
we show that Gaussian universality is even stronger, as the
minimum training loss is independent of the data covariance
(and therefore the same as that of i.i.d. Gaussian data). In
other words: as far as random labels are concerned, it turns
out that the theoretical results derived under the Gaussian data
assumptions capture what is actually happening in practice.
Certainly, the value of the interpolation (or capacity) threshold

2470-0045/2024/109(3)/034305(18) 034305-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8992-5506
https://orcid.org/0000-0003-2313-2578
https://orcid.org/0000-0002-6327-4688
https://orcid.org/0000-0001-5612-3577
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.109.034305&domain=pdf&date_stamp=2024-03-08
https://doi.org/10.1103/PhysRevE.109.034305


FEDERICA GERACE et al. PHYSICAL REVIEW E 109, 034305 (2024)

FIG. 1. Training loss as a function of the number of samples n per input dimension p at regularization λ = 10−15. Left panel: the square
loss; right panel: the hinge loss. The black solid line represents the outcome of the replica calculation for i.i.d. Gaussian inputs, namely when
the covariance matrix � corresponds to the identity matrix. Dots refer to numerical simulations on different full-rank data sets. In particular,
blue dots correspond to MNIST with Gaussian random features and error function nonlinearity, red dots correspond to fashion-MNIST with
wavelet scattering transform, green dots correspond to CIFAR10 in grayscale with Gaussian random features and ReLU nonlinearity, yellow
dots correspond to a mixture of Gaussians, with means μ± = (±1, 0, . . . , 0), covariances �± both equal to the identity matrix, and relative
class proportions ρ± = 1

2 . Finally, black dots correspond to i.i.d. Gaussian inputs.

was known to be universal and occurs (for full-rank data) at
n = p for ridge regression, and at n = 2p for linear classifiers
(perceptrons) [22] (in fact, Cover’s result is stronger, since
it establishes the universality of the number of hyperplanes
separating the inputs). However, the fact that the loss itself
is universal is a stronger statement that redeems an entire
line of work using the Gaussian data assumption, and in
particular a large part of those from statistical physics of
learning.

Summary of main results

The main points of the present work can be summarized
by Figs. 1 and 2, which show the training loss of real-world
data sets trained with random labels and various feature maps,
compared with the (analytical) prediction derived for Gaus-
sian data with matching covariance. The code used to run
these experiments is publicly available in a GitHub reposi-
tory [30]. As illustrated in these plots, Gaussian universality
seems to hold even for finite-dimensional data, and for actual
real data sets. Notably, we observe that when using random
labels, the training losses plotted as a function of the ratio
between the number of samples and the dimension α = n/p
are indistinguishable from results obtained for Gaussian in-
put data when using MNIST [31], fashion-MNIST [32], or
CIFAR10 [33] preprocessed through various standard feature
maps. This conclusion seems robust and holds for different
features of the raw data, such as random features [34] or the
convolutional scattering transform [29,35]. It also holds, as we
prove, if we simply use a synthetic Gaussian mixture model, a
classical model for complex multimodel data. The agreement
between the real world and the asymptotic Gaussian theory
is striking. While we may expect that such data could be
approximated by a multimodal distribution such as a Gaussian
mixture with enough modes, it is rather puzzling that they
lead to the same loss as a single Gaussian cloud. Our main
contribution is to provide a rigorous theoretical foundation for
these observations that vindicates the classical line of works

on Gaussian design, in particular the one stemming from
statistical physics.

Our main results are as follows:
(a) We provide a strong universality theorem for linear

interpolators corresponding to ridgeless regression (with van-
ishing regularization) in high dimensions and random labels,
Theorem 5. Informally, we prove that a perceptron trained
on randomly labeled Gaussian mixture data (a setting that
encompasses complex multimodal distributions) has the same
minimum asymptotic loss as a perceptron trained on ran-
domly labeled Gaussian data with isotropic covariance, that is,
E�(α) = 1

2 (1 − 1
α

)+. This provides a theoretical explanation
for the phenomena illustrated in Fig. 1 (left).

(b) Under an additional homogeneity assumption on the
different modes of the data, Gaussian universality can be
generalized to any convex loss (and we conjecture that it is
valid for nonconvex losses as well), Theorem 4. This provides
a theoretical explanation of the phenomena illustrated in Fig. 1
(right).

(c) At finite regularization and under the same homogene-
ity assumption, we show that the asymptotic training loss
depends solely on the data covariance matrix, such that it is,
again, the same loss as that of a single Gaussian cloud with
matching covariance, Theorem 3. This is illustrated in Fig. 2.

The proof technique used to establish these universal-
ity theorems is of interest on its own. It builds on recent
progress in high-dimensional statistics and in mathemati-
cal insights drawn from the replica method in statistical
physics. In particular, we provide an explicit matching of
the expression (obtained from a rigorous proof of the replica
prediction) for the asymptotic minimal loss [12,36–38].
We further demonstrate the strong universality for ridge
regression with vanishing regularization, again by show-
ing explicitly that the exact solution [12,39,40] reduces
to one of the homogeneous Gaussian cases. These results
are obtained through methods that have been developed
from statistical physics and mathematical physics-inspired
techniques.
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FIG. 2. This figure shows the training loss as a function of the number of samples n per dimension p at finite regularization λ. Top
panel: the square loss; bottom panel: the hinge loss. The first column refers to MNIST with Gaussian random features and error function
nonlinearity, the second column corresponds to fashion-MNIST with wavelet scattering transform, the third column corresponds to CIFAR10
in grayscale with Gaussian random features and ReLU nonlinearity, and the fourth column corresponds to a mixture of Gaussians, with
means μ± = (±1, 0, . . . , 0), and covariances �± both equal to the identity matrix and relative class proportions ρ± = 1

2 . Black solid lines
correspond to the outcome of the replica calculation, obtained by assigning to � the covariance matrix of each data set plus the corresponding
transformation. The colored dots correspond to the simulations for different values of λ, as specified in the plot legend. Simulations are
averaged over 10 samples, and the error bars are not visible at the plot scale.

Further related work

The perceptron. The question of how many samples can
be perfectly fitted by a linear model is a classical one. For
a ridge classifier, it amounts to asking whether a linear sys-
tem of n equations with p unknowns is invertible so that for
full-rank data the transition arises at n = p. For the 0/1 loss
or its convex surrogate such as the hinge loss, the question
of linear separability was famously discussed by Cover [22],
who showed that for full-rank data the transition is given by
n = 2p. In both cases, the transition is universal and does not
depend on details of the data distribution (provided it is full
rank, otherwise the rank replaces the dimension). The capacity
problem for a multiclass perceptron has been studied in [41],
where it was shown that for a specific rule it is independent of
the number of classes. For Gaussian data, such questions have
gotten a large amount of attention in the statistical physics
community [1,2,13,14,42,43] but also recently in theoretical
computer science [15–19]. In a complementary line, there has
been significant effort to extend these results to structured data
models [44–47]. It is one of our goals to attract attention to
these works, given that the Gaussian universality we present
shows that their relevance is not limited to idealistic Gaussian
data.

Random labels. Random labels are a fundamental and
useful concept in machine learning. The pioneering work of
Ref. [23], for instance, was instrumental in the modern crit-
ics of classical measures of model complexity, including the
Rademacher complexity or the VC dimension. These consid-
erations have driven an entire line of research aiming to find
substantial differences between learning with true and random
labels, for instance in training time [48–50], in minima sharp-
ness [51,52], or in what neural networks can actually learn

with random labels [24]. It has also been recently claimed [24]
that pretraining on random labels under a given initial condi-
tion scaling can consistently speed up neural network training
on both true and random labels, with respect to training from
scratch.

Gaussian universality. There has been much progress on
a similar, though more restricted, Gaussian universality for
random feature maps on Gaussian input data [34]. Following
early insights in Ref. [53], the authors of Refs. [54,55] showed
that the empirical distribution of the Gram matrix of random
features is asymptotically equivalent to a linear model with
matched covariance. This was extended to generic convex
losses in Ref. [56] using the heuristic replica method, and
proven in Ref. [57]. A specific Gaussian equivalence principle
[8] for learning with random features has been proven in a
succession of works for convex penalties in Refs. [58,59] and
some nonconvex ones in Ref. [60]. Early ideas on Gaussian
universality have also appeared in the context of signal pro-
cessing and compressed sensing in Refs. [4,61–64]. These
theoretical results, however, fall short when considering real-
istic data sets as we do in this work. Indeed, these previous
works considered only unimodal Gaussian data (observed
through random feature maps), a situation far from realis-
tic multimodal, complex, real-world data sets. Instead, the
authors of Refs. [9,65,66] argued that real data sets can be ef-
ficiently approximated in high dimensions by a finite mixture
of Gaussians. These, of course, are multimodal distributions
that cannot be approximated by a single Gaussian. Gaussian
mixtures will be the starting point of our theory.

Finally, we note that the observation that Gaussian data
can fit or represent well some real data has been heuris-
tically observed in many situations, but without theoretical
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justification and often limited to ridge regression; see, e.g.,
Refs. [10,12,67–69].

II. SETTING, NOTATION, AND ASYMPTOTIC FORMULAS

The focus of the present work is the analysis of high-
dimensional binary linear classification (also known as
perceptron) on a data set D = {(xμ, yμ)}n

μ=1. We shall con-
sider a minimization problem of the form

R̂∗
n(X , y) = inf

θ∈Rp

1

n

n∑
μ=1

�(θ�xμ, yμ) + λ

2
||θ||22, (1)

where the xμ ∈ Rp are input vectors, and yμ ∈ {−1,+1} are
binary labels. We assume that the loss � only depends on the
inputs xμ through a one-dimensional projection θ�xμ with θ

being the perceptron learning weights, and we work in the so-
called thermodynamic or proportional high-dimensional limit,
where n, p go to infinity with

n

p
→ α > 0.

In practice, practitioners seldom use the raw data x directly
in their linear classifiers and usually perform a preprocessing
step. For instance, instead of using the raw MNIST, a classical
approach is to use a fixed feature map, and to observe the
data as x = σ (Fx), with F a random matrix. This is called
the random feature map [34], and it has the advantage, among
others, that the effective data x are full-rank. One may use
a more complicated approach such as the convolutional scat-
tering transform [13,29], or even pretrained neural networks,
a situation called transfer learning [70,71]. We shall apply
such transforms to our real data as well in order to avoid
theoretical pitfalls in direct space (in images some pixels are
always zero, for instance, so that the data may not even be
full-rank). There is another advantage of using fixed features:
they correspond to deep learning (with actual multilayer nets)
in the so-called lazy regime [27,28]. In this case, the feature
matrix is a random matrix. Therefore, our results go beyond
linear models and are also relevant to deep learning in the lazy
regime. In our numerical experiments, we shall thus not only
work with the original data (see Appendix C, and in particular
Fig. 4), but also—and mainly—with random feature maps and
fixed feature maps (as in Figs. 1 and 2).

For the labels, we shall focus in this work on the random la-
bel model, where the yμ are independent of the inputs xμ, and
they are generated independently according to a Rademacher
distribution:

yμ ∼ Unif({−1, 1}). (2)

In our theoretical approach, we shall use mainly two data
models:

(i) The simplest one is the Gaussian covariate model
(GCM), where the inputs xμ ∈ Rp are independently drawn
from a Gaussian distribution:

xμ ∼ N (0p,�). (3)

The Gaussian covariate model has been the subject of much
attention recently [6,12,36,39,40,55,72–76]. In particular, the
asymptotic statistics of the minimizer of Eq. (1) for differ-
ent models for the labels can be computed using the replica

method, and rigorously proven as well. In particular, the ran-
dom label limit relevant to our discussion can be obtained as
a limit of the expressions derived using the replica method of
statistical physics and mathematically proven in [12]. We shall
use the following expressions here (see also Appendix A 3):

Theorem 1. Asymptotics of the GCM for random labels,
adapted from [12], informal. Consider the minimization prob-
lem in Eq. (1), with the inputs xμ generated according to a
Gaussian covariate model. Assume that the loss � is strictly
convex (or that � is convex and λ > 0). Under mild regu-
larity conditions on �, as well as the loss and regularizer,
we have the asymptotic training performance of the empir-
ical risk minimizer Eq. (A2) for the random label Gaussian
mixture model satisfying the scalings (A4) in the proportional
high-dimensional limit as n → ∞:

R̂∗
n(X , y(X ))

P−→ Egcm
� (α, λ)

:= 1

2

∑
y∈{−1,+1}

Eξ∼N (0,1)[�(proxV 
�(·,y)(
√

q
ξ ), y)], (4)

where proxτ f (·) is the proximal operator associated with the
loss:

proxτ�(·,y)(x) := arg minz∈R

[
1

2τ
(z − x)2 + �(z, y)

]
, (5)

and the parameters (V 
, q
) are the (unique) fixed point of the
following self-consistent equations:

V̂ = α

2

∑
y∈{−1,+1}

Eξ∼N (0,1)[∂ω f�(y,
√

qξ,V )],

q̂ = α

2

∑
y∈{−1,+1}

Eξ∼N (0,1)[ f�(y,
√

qξ,V )2],

V = 1

p
tr�(λIp + V̂ �)−1,

q = 1

p
q̂tr�2(λIp + V̂ �)−2, (6)

where fg(y, ω,V ) := V −1(proxV �(·,y)(ω) − ω).
(ii) A more generic model of data, which has the advantage

of being multimodal to befit complex situations, is the Gaus-
sian mixture model (GMM). In this case, the inputs xμ ∈ Rp

are independently generated as

xμ ∼
∑
c∈C

ρc N (μc,�c), (7)

where C := {1, . . . , K} indexes the K Gaussian clouds, and
ρc ∈ [0, 1] is the density of points in each cloud and satisfies∑

c∈C ρc = 1. The analysis of Gaussian mixture models in the
high-dimensional regime has been the subject of many works.
The exact asymptotic expression for the minimum training
loss has been derived for a range of particular cases in, among
others, Refs. [77–82] and in full generality for arbitrary means
and covariances in Ref. [38]. We shall thus use the random
label limit of their expression in the binary classification
case:

Theorem 2. Asymptotics of the GMM for random labels,
adapted from [38], informal. Consider the minimization prob-
lem in Eq. (1), with the inputs xμ generated according to a
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Gaussian mixture as in (7). Assume that the loss � is strictly
convex (or that � is convex and λ > 0). Under mild regularity
conditions on the μc, �c, as well as the loss and regularizer,
we have the training performance of the empirical risk mini-
mizer Eq. (A2) for the random label Gaussian mixture model
satisfying the scalings (A4) given by

R̂∗
n(X , y(X ))

P−→ Egmm
� (α, λ, K )

:= 1

2

∑
c∈C

ρc

∑
y∈{−1,+1}

Eξ∼N (0,1)

× [�(proxV 

c �(·,y)(m



c + √

q

cξ ), y)], (8)

where � is the loss function used in the empirical risk min-
imization in Eq. (A2), proxτ f (·) is the proximal operator
associated with the loss:

proxτ�(·,y)(x) := arg minz∈R

[
1

2τ
(z − x)2 + �(z, y)

]
, (9)

and (m

c,V 


c , q

c )c∈C are the unique fixed points of the follow-

ing self-consistent equations:

V̂c = α

2
ρc

∑
y∈{−1,+1}

Eξ∼N (0,1)[∂ω f�(y, mc + √
qcξ,Vc)],

q̂c = α

2
pc

∑
y∈{−1,+1}

Eξ∼N (0,1)[ f�(y, mc + √
qcξ,Vc)2],

m̂c = α

2
pc

∑
y∈{−1,+1}

Eξ∼N (0,1)[ f�(y, mc + √
qcξ,Vc)],

Vc = 1

p
tr�c

(
λIp +

∑
c′∈C

V̂c′�c′

)−1

,

qc = 1

p

∑
c′∈C

[
tr
(
q̂c′�c′ + m̂cm̂c′μc′μ�

c

)

× �c

(
λIp +

∑
c′′∈C

V̂c′′�c′′

)−2]
,

mc = 1

p

∑
c′∈C

m̂cm̂c′

⎡⎣trμc′μ�
c

(
λIp +

∑
c′′∈C

V̂c′′�c′′

)−1
⎤⎦, (10)

where f�(y, ω,V ) := V −1(proxV �(·,y)(ω) − ω).
Although Eqs. (6) and (10) look cumbersome at first

glance, they are simply self-consistent equations for a few
scalar variables, also known as order parameters, over-
laps, or summary statistics. Differently from the original
high-dimensional problem (1) for the weights θ ∈ Rp, the
self-consistent equations for the overlaps can be efficiently
solved numerically by iteration from a chosen initial con-
dition, with strong convexity of the original problem (1)
guaranteeing the convergence to the unique minimizer. The
reduction of a random high-dimensional optimization prob-
lem to a set of deterministic low-dimensional self-consistent
equations is a common theme in statistical physics and high-
dimensional probability. Indeed, Eqs. (6) and (10) can be
independently derived using different techniques from these
fields, such as the replica method [83], the leave-one-out or

cavity method [84,85], Gordon minimax inequalities [36],
and message passing schemes [86]. As we will show in the
section that follows, valuable analytical insights can be drawn
from a careful analysis of these equations.

III. THE MAIN THEORETICAL RESULTS:
FROM MIXTURES TO A SINGLE GAUSSIAN

In this section, we present the main theoretical results of
the present work and discuss their consequences: We show
that with random labels, GMM models can be reduced to
a single GCM model. This provides an explanation of the
universality observed in Figs. 1 and 2.

We would like the reader to note that we state our results
using theorems because indeed we were able to rigorously
establish them mathematically. However, the proofs are de-
ferred to the Appendixes, and the reasoning and derivations
presented in this section follow the level of rigour common in
theoretical physics. We made this choice to ensure readability
to both physics- and mathematics-oriented audiences.

The starting point is the Gaussian mixture model. This is
a very generic model of data, and standard approximation re-
sults (e.g., the Stone-Weierstrass theorem) show in particular
that one can approximate data density to arbitrary precision
by Gaussian mixtures. While in the worst case this would
require a diverging number of Gaussians in the mixture, it
can be shown that (as far as the generalized linear model
is concerned) a mixture of a small number of Gaussians is
actually able to approximate very complex data set in high
dimension [9,65,87]. More precisely, in the proportional high-
dimensional regime, data generated by generative adversarial
networks (GANs), one of the state-of-the-art techniques to
generate realistic looking data, behave as Gaussian mixtures
for such classifiers [66]. We shall thus use this model as our
benchmark of “complex” data distribution.

If a mixture model is a good approximation of reality in
high dimension, the question remains: Why is it that we can
fit real data set with a single Gaussian? Our main technical
question will thus be the following: If we use random labels,
what is the difference between a GMM and a single Gaussian
model?

A. Mean invariance with random labels

We thus now move to the random label case and show
how we can surprisingly use a simple Gaussian distribution
instead of the GMM. We are going to use Theorems 1 and
2. Note that the asymptotic value of the energy, or loss, only
depends on the probability vector ρ ∈ [0, 1]K (with entries
ρc corresponding to the respective sizes of the K clusters),
the matrix of averages M ∈ RK×p (with rows μc ∈ Rp), and
the concatenation of covariances �⊗ ∈ RK×p×p (with rows
�c ∈ Rp×p), and therefore we denote

E� = Egmm
� (ρ, M,�⊗).

Similarly, for the Gaussian covariate model we define the
limiting value

E� = Egcm
� (�),
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where in both cases we omitted the explicit dependence on the
parameters (α, λ). We are now in a position to state a lemma
crucial to our first main universality result:

Lemma 1. Single mean lemma for random labels. In the
random label setting (2), assume that the loss � is symmetric,
in the sense that �(x, y) = �(−x,−y) for x, y ∈ R. Then, the
limiting value E� of the risk is independent from the means,
i.e., for all choices of ρ, M, and �⊗ we have

Egmm
� (ρ, M,�⊗) = Egmm

� (ρ, 0K×p,�
⊗).

The symmetry condition on the loss is not really restric-
tive and is satisfied by virtually all losses used in binary
classification [in particular, margin-based losses of the form
�(x, y) = φ(xy)]. Since a mixture of Gaussians with equal
means and covariances is equivalent to a single Gaussian, we
can now write the following theorem:

Theorem 3. Gaussian universality for random labels. Con-
sider the same assumptions as in Lemma 1, and assume further
that the data are homogeneous, i.e.,

�c = � for all c ∈ C.

Then the asymptotic risk is equivalent to that of a single
centered Gaussian:

Egmm
� (ρ, M,�⊗) = Egcm

� (�).

This is our first main universality theorem: a mixture of
homogeneous Gaussians [88] can be replaced, when using
random labels by a single Gaussian.

This surprising fact, alone, explains the empirical obser-
vation presented in Figs. 1 and 2, at least if we accept that
the different modes are homogeneous (see the discussion in
Sec. IV).

Proof sketch. Both Lemma 1 and Theorem 3 stem from
the detailed analysis of the replica free energy for the GMM
[38]. Indeed, to prove our claims, it suffices to show that
the fixed points of the replica equations are the same. This
is done in detail in Appendix B, using the replica equa-
tion that we provide in Appendix A. In a nutshell, we
show that the expression of the GMM reduces to those of
the GCM. �

B. Generic loss with vanishing regularization

Additionally, we note that in Fig. 1 at vanishing regular-
ization, we did not even require a matching covariance, and
instead we used a trivial one. This is because of the following
consequence of Lemma 1:

Theorem 4. Gaussian universality for vanishing regulariza-
tion. Consider the same assumptions as in Theorem 3. Then if
the minimizer of � is unique and the data covariance full-rank,
then the asymptotic minimal loss for Gaussian data does not
depend on the covariance when the regularization is absent,
λ = 0.

Proof. Consider the empirical risk minimization problem in
Eq. (1) with data from the Gaussian covariate model Eq. (3)
with random labels. Without loss of generality, we can write
xμ = �1/2zμ, with zμ ∼ N (0p, Ip). Then, making a change of

variables θ′ = �1/2θ, we can write

R̂∗
n(X , y) = inf

θ∈Rp

1

n

n∑
μ=1

�(θ�xμ, yμ) + λ

2
||θ||22

= inf
θ′∈Rp

1

n

n∑
μ=1

�(θ′�zμ, yμ) + λ

2
||�−1/2θ′||22,

where we have used the fact that yμ are independent of xμ.
Since the minimizer of � is unique, the result follows from
taking λ → 0+.

Note that in particular Theorem 4 implies that for random
labels, the GCM model with a covariance � is equivalent to a
Gaussian i.i.d. model with a different regularization given by
the norm || · ||�−1 induced by the inverse covariance matrix
�−1. Therefore, in the case in which � has several minima,
the λ → 0+ limit will give the performance of the solution
with minimum || · ||�−1 norm.

Finally, we also note that this analysis also allows us to an-
swer the following important question: What is being learned
with random labels? This was discussed in particular in the
machine learning literature in [24]. For generalized linear
models: the model is simply fitting the second-order statistics
(the total covariance �).

C. Ridge regression with vanishing regularization

Even though it seems to be well obeyed in practice, one
may wonder if we can in some cases get rid of the homogene-
ity condition. As we shall see, the answer is no: in general,
a mixture of inhomogeneous Gaussians cannot be strictly re-
placed by a single one. It turns out, however, that there is one
exception, and that the hypothesis can be lifted in one case,
namely ridge regression with vanishing regularization with
the squared loss �(x, y) = 1

2 (x − y)2:
Theorem 5. Strong universality for ridge loss. In the ridge

regression case with vanishing regularization, i.e., when λ →
0+, we have

lim
λ→0+

Egmm
� (ρ, M,�⊗) = 1

2

(
1 − 1

α

)
+

for any choice of ρ, M, or �⊗.
In particular, it means that in the unregularized limit,

any Gaussian mixture behaves in terms of its loss as a sin-
gle cluster Gaussian model with identity covariance, whose
asymptotic training loss is given by limλ→0+ Egcm

� (α, λ) =
1
2 (1 − 1/α)+.

Proof sketch. The proof of the strong universality, which
follows from a rigorous analysis of the replica predictions,
amounts to showing that the replica free energy for GMM
reduces to that of a single Gaussian. Interestingly, although
the fixed points of the replica equations differ between the
GMM and Gaussian case, they do give rise to the same free
energy. Details can, again, be found in Appendix B 2. �
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FIG. 3. Ridge/square loss (left) and hinge loss for a single Gaussian vs a mixture of inhomogeneous Gaussians at finite λ. Lines are the
asymptotic exact results while dots are simulation (p = 900, dark lines for mixture, lighter ones for single Gaussian). When the homogeneity
assumption is not obeyed, then a mixture of two Gaussians does not yield results equal to those of a single Gaussian with matching covariance.
(Here, a mixture with zero mean and a block covariance with, respectively, diagonal elements equal to 0.01, 0.98, and 0.01 for the first one,
and 0.495, 0.01, and 0.495 for the second). Note, however, that the universality is restored in the Ridge case when λ → 0, as stated in Theorem
5. It is also very well obeyed with large enough λ, and deviations appear small in general.

IV. NUMERICAL EXPERIMENTS

In this section, we describe more in detail the numerical
experiments of Figs. 1 and 2. The colored dots represent the
outcome of the simulations on several full-rank data sets. In
particular, the blue and the green dots refer to both MNIST
and grayscale CIFAR-10 preprocessed with random Gaussian
feature maps [34]. In this case, the input data points are
constructed as xμ = σ (zμF ), with zμ ∈ Rd being a sample
from one of the two data sets, F ∈ Rd×p representing the
matrix of random features, whose row elements are sam-
pled according to a normal distribution, and σ being some
pointwise nonlinearity, namely erf for MNIST and relu for
grayscale CIFAR-10. The red dots correspond instead to
fashion-MNIST preprocessed with wavelet scattering trans-
form, an ensemble of engineered features producing rotational
and translational invariant representations of the input data
points [29]. The orange dots correspond to simulations on the
synthetic data set built as a mixture of two Gaussians, with
data covariance of the two clusters both equal to the iden-
tity matrix [�1 = �2 = I, μ1/2 = (±1, 0, . . . , 0), and ρ1/2 =
1/2]. Further technical details are given in the Appendixes.

Experiments with finite regularization. Figure 2 illustrates
the Gaussian universality taking place at finite regularization.
The colored dots correspond to the outcome of the simulations
for several values of the regularization strength. As we can see
from this set of plots, the theoretical learning curve of a single
Gaussian with matching covariance perfectly fits the behavior
of multimodal and more realistic input data distributions. In
fact, even though the experiment is performed for a realistic
data set and finite n and p, the asymptotic Gaussian theory
gives a perfect fit of the data.

Experiments with vanishing regularization. Figure 1 pro-
vides an illustration of the universality effect occurring at
vanishing regularization. Here we use λ → 0, and following
Theorem 4, we observe a collapse on a single curve given by
the asymptotic theory for a single Gaussian with unit covari-
ance. It is quite remarkable that our asymptotic theory, which

is valid only in the infinite high-dimensional limit, is validated
by such experiments with finite dimension, and finite sample
size.

Homogeneity assumption. A remarkable point is that the
homogeneity assumption (often called homoskedasticity in
statistics) we use in Theorem 3, which can be relaxed only
for ridge regression, does not seem to be that important in
practice, as we observed on our experiments on real data. One
may thus wonder if the strong universality of Theorem 5 could
be proved in full generality, and not only for the ridge loss. It
turns out that the answer is no. Using Theorem 2, we can ac-
tually construct an artificial mixture of Gaussians, using very
different covariances for each individual Gaussians, and we
observe small deviations from the strict universality. A mix-
ture of nonhomogeneous Gaussians is not strictly equivalent to
a single one with random labels (except, as stated in Theorem
5, for the least squares that obey a strong universality). This
is illustrated in Fig. 3, where we show the disagreement in
the behavior of the training loss between a single Gaussian
and a mixture of two nonhomogeneous Gaussians. This is a
simple counterexample to the existence of a universal strong
form of Gaussian universality, even for ridge regression (see
the discussions in, e.g., Refs. [10,58,69,89,90]).

It may thus come as a surprise that real data sets, which
certainly will not obey such a strict homogeneity of the dif-
ferent modes, display such a spectacular agreement with the
theory. We believe that this is due to two effects: first, the
deviations we observed, even in our designed counterexample,
are small, so they might not even be seen in practice. Sec-
ondly, and especially after observing the data through random
or scattering features, it turns out that when we measure the
empirical correlation matrix of the different modes, they look
quite similar. In fact, it has even been suggested that neural
networks are precisely learning representations that find such
homogeneous Gaussian mixtures [91].

A remark on Rademacher complexity. A final comment is
that the discussed universality indicates that, in high dimen-
sion, the Rademacher complexity can be effectively replaced
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by the one for Gaussian i.i.d. data. Rademacher complexity is
a key quantity appearing in generalization bounds for binary
classification problems [7,20] that measures the ability of
estimators in a hypothesis class H to fit i.i.d. random labels
yμ ∼ Rad( 1

2 ):

Radn(H) = E

⎡⎣sup
h∈H

1

n

n∑
μ=1

yμh
(
xμ

)⎤⎦. (11)

It is explicitly dependent on the specific distribution of the
input data points xμ. As discussed in Ref. [17], there exists
a direct mapping between the Rademacher complexity and
the minimum 0/1 training loss—or ground-state energy in the
statistical physics parlance. Indeed, for a binary hypothesis
class H = {h : Rp → {−1,+1}} the two are asymptotically
related by the following equation:

lim
n→∞ inf

h∈H
1

n

n∑
μ=1

P (h(xμ) �= yμ) = α

2
[1 − Radn(H)]. (12)

Moreover, Ref. [17] discussed how to explicitly compute the
Rademacher complexity for Gaussian data using the replica
method from statistical physics. This is actually a classical
problem, studied by the pioneers of the application of the
replica method and spin glass theory to theoretical machine
learning [1,2,42,43]. Given the universality advocated in this
present work, these Gaussian results thus seem to be of more
relevance than previously thought, and in fact they allow
us to compute a closed-form asymptotic expression for the
Rademacher complexity for realistic data. This is a very in-
teresting outcome of the Gaussian universality with random
labels.

However, while we prove universality for convex losses,
at this point we only conjecture it for nonconvex objectives,
such as the ones appearing in the definition of the Rademacher
complexity. The proof that a Gaussian mixture approximates
well real data sets is still valid for nonconvex losses. The
identification of these mixtures with a single Gaussian is,
however, using the replica formulas of [12,38], which have
been proven only for the case of convex losses. Our conjecture
thus depends on proving a similar result for nonconvex (as
well as replica symmetry breaking) losses. This (and similar
questions on multilayer networks) is left for future work.

V. CONCLUSION

For the classical problem of fitting random labels with
perceptrons, also known as generalized linear models in high
dimensions, we showed that, far from being only a toy exam-
ple, the Gaussian i.i.d. assumption is an excellent model of
reality. The conclusion extends to deep-learning models in the
lazy regimes as those are essentially random feature models.
There are a number of potentially interesting extensions of
this work, including nonconvex losses and multilayer neural
networks, and beyond the random label cases, that should be
investigated in the future.

These results, we believe, are of special interest given the
number of theoretical studies with the Gaussian design and
its variants that are amenable to exact characterization, and
that turn out to be less idealistic, and more realistic, than

perhaps previously assumed. We believe, in particular, that
these strengthen considerably the ensemble of results obtained
within the statistical physics community, as well as in the
statistical analysis of high-dimensional data. We anticipate
that such redemption of the Gaussian assumption will lead to
more work in this direction using the Gaussian assumption
and for those aiming to extend out universality results.
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APPENDIX A: EXACT ASYMPTOTIC PERFORMANCES
OF GCM AND GMM

In this Appendix, we summarize the exact asymptotic for-
mulas for the performance of the generalized linear classifiers
on random labels for the two structured data models studied
in the main body of the text: the Gaussian covariate model
(GCM) and the Gaussian mixture model (GMM).

1. Preliminaries: The setting

Before moving to the key formulas, let us recap the setting.
We are interested in the performance of generalized linear
classifiers:

ŷ(x) = sgn(θ̂
�

x), (A1)

where θ̂ ∈ Rp is trained by minimizing the following empir-
ical risk on n independent training samples (xμ, yμ)μ∈[n] ∈
Rp × {−1,+1}:

R̂∗
n(X , y) = inf

θ∈Rp

1

n

n∑
μ=1

�(θ�xμ, yμ) + λ

2
||θ||22 (A2)

for a compact subset Sp ⊂ Rp and a convex loss function �.
In particular, we are interested in the case in which the labels
yμ ∈ {−1,+1} are randomized (i.e., not correlated with the
inputs xμ),

yμ ∼ Unif({−1, 1}), (A3)

and the inputs are generated independently from one of the
following two structured models: (i) The Gaussian covariate
model (GCM): xμ ∼ N (0p,�), and (ii) the Gaussian mix-
ture model (GMM): xμ ∼ ∑

c∈C ρc N (μc,�c), where C =
{1, . . . , K} is the label set for the Gaussian clouds, and
ρc ∈ [0, 1] are the density of points in each class, satisfying∑

c∈C ρc = 1. Note that in this random label setting, the GCM
model is a special case of the GMM, where K := |C| = 1 and
μ1 = 0p.

In the following, we will be interested in describing the
exact asymptotic limit of the following performance metrics
in the proportional high-dimensional limit where n, p → ∞
with the ratio α := n

p and the number of clusters K are

fixed: (i) Training loss: Ê�(X , y) := 1
n

∑n
μ=1 �(θ̂

�
xμ, yμ), and
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(ii) 0/1 training error: Ê0/1(X , y) := 1
n

∑n
μ=1 P (sgn(θ̂

�
xμ) �=

yμ), where we have defined the design matrix X ∈ Rp×n and
the label vector y ∈ {−1,+1}n. Note that for convenience in
this Appendix, we will focus the discussion on these two mea-
sures. But all results could have been stated for R̂


n instead. In
particular, the training loss Ê� differs from the empirical risk
R̂


n by the regularization term.
Note on scalings. Although the model above is well defined

for any scaling, in the following we focus in the case in which
the means and the covariances satisfy:

||μc||22 = O(1), tr�c = O(p). (A4)

This scaling of the mean and variance is indeed the natural one
(see, e.g., [80,92–95]) as well as the most interesting in high
dimensions. If the means have a larger norm, then the problem
becomes trivial (i.e., the Gaussians are trivially completely
separable), while if the means are smaller, it is impossible
to separate them (i.e., they become trivially indistinguishable
from a single Gaussian cloud).

Ridge and ordinary least-squares classification. Note that
for the special case of the ridge classification in which
�(x, y) = 1

2 (y − x)2, the empirical risk minimization problem
defined in Eq. (A2) admits a closed-form solution:

θ̂ = (λIp + XX�)−1Xy (A5)

and therefore the computation of the asymptotic training error
or loss boils down to a random matrix theory problem, with a
solution equivalent to the one we will discuss shortly below.
However, some qualitative features can be drawn just from
this expression. First, note that for λ > 0, the ridge estimator
above will always have a nonzero training loss because of the
bias introduced by the regularization term 1

2λ||θ||22. This can
only be achieved in the limit of vanishing regularization λ →
0+, in which case the ridge estimator simplifies to

θ̂ols := (X�)†y, (A6)

where X † ∈ Rn×p is the Moore-Penrose inverse of X . In
the simplest case in which X is a full-rank matrix (which
ultimately depends on the covariances), it can be explicitly
written as

X † :=
{

(X�X )−1X� if α < 1,

X�(XX�)−1 if α > 1.
(A7)

An important property of the estimator in Eq. (A6) is that it
corresponds to the least �2-norm interpolator when the system
is underdetermined. Indeed, in the strict case when λ = 0 (i.e.,
least-squares regression), the ERM problem in Eq. (A2) is
equivalent to inverting a linear system:

y = X�θ, (A8)

i.e., to solve a system of n equations for p unknowns. Again,
assuming the data are full-rank [96], for α = n

p < 1 the system
is underdetermined, meaning that there are infinitely many
solutions that perfectly interpolate the data. Among all of
them, θ̂ols is the one that has the lowest �2-norm. Instead, when
α > 1, the system is overdetermined, and no interpolating
(zero-loss) solution exists.

2. Gaussian mixture model with general labels

Exact asymptotics of generalized linear classification with
Gaussian mixtures in the proportional regime have been
derived under different settings in the literature [77–82]. Of
particular interest to our work are the formulas proved in
[38] under the most general setting of a multiclass learning
problem with convex losses and penalties and generic means
and covariances. In their work, the asymptotic performance of
the minimizer in Eq. (A2) was proven in the case in which
the labels are correlated to the mean. The formula we state
in the text as Theorem 2 is a straightforward adaptation of
their result in the particular case of binary classification with
K clusters and randomized labels.

Zero mean limit: Of particular interest for what follows is
the zero-mean limit μc = 0p of the above equations, which is
simply given by

m̂c = 0,

V̂c = α

2
ρc

∑
y∈{−1,+1}

Eξ∼N (0,1)[∂ω f�(y,
√

qcξ,Vc)],

q̂c = α

2
pc

∑
y∈{−1,+1}

Eξ∼N (0,1)[ f�(y,
√

qcξ,Vc)2],

mc = 0,

Vc = 1

p
tr�c

(
λIp +

∑
c′∈C

V̂c′�c′

)−1

,

qc = 1

p

∑
c′∈C

⎡⎣q̂c′ tr�c′�c

(
λIp +

∑
c′′∈C

V̂c′′�c′′

)−2
⎤⎦. (A9)

A particular case: ridge classification. The self-consistent
equations above crucially depend on the loss function �. A
particular case of interest in this work—and for which the
expressions simplify considerably—is the case of ridge re-
gression where �(x, y) = 1

2 (x − y)2. In this case, the proximal
can be explicitly written as

proxτ�(·,y)(x) = x + τy

1 + τ
⇔ f�(y, ω,V ) = y − ω

1 + V
(A10)

and therefore the asymptotic training loss admits a closed-
form expression:

Egmm
� =

∑
c∈C

ρc
1 + q


c

2(1 + V 

c )2

(A11)

for (V 

c , q


c )c∈C solutions of the following simplified self-
consistent equations:

V̂c = αρc

1 + Vc
, q̂c = αpc

1 + qc

(1 + Vc)2
,

Vc = 1

p
tr�c

(
λIp +

∑
c′∈C

V̂c′�c′

)−1

,

qc = 1

p

∑
c′∈C

⎡⎣q̂c′ tr�c′�c

(
λIp +

∑
c′′∈C

V̂c′′�c′′

)−2
⎤⎦. (A12)
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Note that in particular at the fixed point, we can also express
the training loss Eq. (A11) as

Egmm
� =

∑
c∈C

q̂∗
c

2α
. (A13)

3. Gaussian covariate model

The asymptotic training loss for the Gaussian covariate
model for a fairly general teacher-student setting was first
proven in [12]. Although the random label limit can be ob-
tained from this work, as discussed in Appendix A 1 the
random label Gaussian covariate model can also be seen as
a particular case of the general Gaussian mixture model with
K = 1 and μ1 = 0p. Therefore, its asymptotic performance is
included in the discussion above. This leads to Theorem 1 in
the main text.

It is worth noting that, for the square loss the expressions
simplify considerably. The training loss is given by

Egmm
� = 1 + q


2(1 + V 
)2
, (A14)

where (V 
, q
) are solutions of the following simplified self-
consistent equations:

V̂ = α

1 + V
, q̂ = α

1 + q

(1 + V )2
, V = 1

p
tr�(λIp + V̂ �)−1,

q = 1

p
q̂tr�2(λIp + V̂ �)−2. (A15)

Since the covariance � is positive-definite (and therefore in-
vertible), in the overdetermined regime (for which the training
loss is nonzero), the limit λ → 0+ can be easily taken, and the
equations reduce to

V̂ = α

1 + V
, q̂ = α

1 + q

(1 + V )2
, V = 1

V̂
, q = q̂

V̂
,

(A16)

which is completely independent of the covariance matrix �

[97]. Moreover, it admits a closed-form solution given by

V 
 = q
 = 1

α − 1
, V̂ 
 = q̂
 = α − 1. (A17)

Therefore, the full training loss is given by

lim
λ→0+

Egcm
� (α, λ) =

{
0 for α � 1,
1
2

(
1 − 1

α

)
for α > 1.

(A18)

APPENDIX B: FROM GAUSSIAN MIXTURE
TO SINGLE GAUSSIAN

1. Mixture of Gaussians with zero means

We first prove Lemma 1 in the main text. First, by
Theorem 2, the asymptotic loss Egmm

� (ρ, M,�⊗)
[Egmm

� (ρ, 0,�⊗)] is a deterministic function of
(m


c, q

c,V 


c )c∈C , which are the unique fixed points of (10)
[(A9)]. Since both saddle point equations differ only by
setting mc = m̂c = 0, Lemma 1 is a consequence of the
following:

Lemma 2. Let (V 

c , q


c )c∈C be the solutions of Eqs. (A9).
Then, (0,V 


c , q

c )c∈C satisfy the general fixed point equa-

tions of (10).

Proof. If we plug in mc = m̂c = 0 for all c ∈ C, the equa-
tions for Vc, V̂c, qc, q̂c become identical in (10) and (A9). It is
also easy to check that m̂c = 0 for all c implies that mc = 0;
what remains is to show that the last equation holds, i.e.,

α

2
ρc

∑
y∈{−1,+1}

Eξ∼N (0,1)[ f�(y,
√

q

cξ,V 


c )] = 0. (B1)

Define the function

g(ω,V ) = f�(−1, ω,V ) + f�(+1, ω,V ),

so that

m̂

c ∝ Eξ∼N (0,1)[g(

√
q


cξ,V 

c )].

We shall show that g is odd in ω; since ξ is centered, the
lemma will be proven. To do so, we shall show that

f�(y, ω,V ) = − f�(−y,−ω,V )

for all y ∈ {−1,+1}, ω ∈ R, and V ∈ R. By definition, we
have

f�(y, ω,V ) = V −1[proxV �(·,y)(ω) − ω],

and the linear term in ω is immediate. For the proximal oper-
ator, we use the symmetry of � and write

proxV �(·,y)(ω)

= arg minz∈R

[
1

2τ
(z − ω)2 + �(z, y)

]
= arg minz∈R

[
1

2τ
[(−z) − (−ω)]2 + �(−z,−y)

]
= −proxV �(·,−y)(−ω),

which concludes the proof.

2. Strong universality of ordinary least-squares

We now have all the elements we need to establish the
universality of the ordinary least-squares estimator stated in
Theorem 5 in the main text. Our starting point is the ordinary
least-squares problem for the Gaussian mixture model in the
overdetermined regime α > 1. In this case, the training loss is
given by Eq. (A11) with (V 


c , q

c )c∈C unique solutions of the

following equations:

V̂c = αρc

1 + Vc
, q̂c = αρc

1 + qc

(1 + Vc)2
,

Vc = 1

d
tr�c

(∑
c′∈C

V̂c′�c′

)−1

,

qc = 1

d

∑
c′∈C

⎡⎣q̂c′ tr�c′�c

(∑
c′′∈C

V̂c′′�c′′

)−2
⎤⎦. (B2)

We shall now show how to reduce these equation to a sim-
ple analytical formula, equivalent to that of a single Gaussian.
Combining the equations for V̂c and Vc, one sees that the fixed
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Algorithm 1 Generating data set D = {xμ, yμ}n
μ=1

Input: Integer p, flag data set, matrix F ∈ Rd×p of random
Gaussian features
If the data set type is i.i.d. Gaussian:

Sample each input data-point as xμ ∼ N (0, I), with I ∈ Rp×p

the identity matrix;
Else if the data set type is a Gaussian Mixture:

Sample each input data-point as xμ ∼ ∑K
k=1 ρk N (μk, �k ), with

μk being the centroid of the kth cluster and �k the
corresponding covariance matrix;

Else if the data set type is a real data set preprocessed with
random Gaussian features:

Load the real data-set samples zμ ∀μ = 1, . . . , n with Pytorch
dataloaders;
Assign xμ → σ (zμF );

Else if the data set type is a real data set preprocessed with
wavelet scattering:

Load the real data-set samples zμ ∀μ = 1, . . . , n;
Apply wavelet scattering transform on zμ;

Sample the labels according to the Rademacher distribution as
yμ ∼ 1

2 (δ+1 + δ−1)
Return: D = {xμ, yμ}n

μ=1

point must satisfy the following identity:∑
c∈C

V̂ 

c V 


c = 1. (B3)

Similarly, multiplying the equation for qc by V̂c, summing over
c ∈ C, and doing the same for the equation for q̂c with Vc, we
get a second identity satisfied by the fixed point:∑

c∈C
(V̂ 


c q

c − V 


c q̂

c ) = 0. (B4)

Note that, at this point these relations could have been derived
for any loss functions. For the specific case of the square
loss, further substituting the hat variables, these conditions are
equivalent to ∑

c∈C
ρc

V 

c

1 + V 

c

= 1

α
, (B5)

∑
c∈C

ρc
Vc − qc

(1 + Vc)2
= 0. (B6)

We thus find, combining Eq. (B2) for q̂c with Eq. (B6),∑
c∈C

q̂

c =

∑
c∈C

αρc
1 + V 


c

(1 + V 

c )2

=
∑
c∈C

αρc
1

1 + V 

c

. (B7)

Our goal is to evaluate the loss at the fixed point, which is
given by Eq. (A13):

Egmm
� =

∑
c∈C

q̂

c

2α
. (B8)

Combining this definition with Eqs. (B6) and (B7), we find
that

2Egmm
� + 1

α
=

∑
c∈C

ρc
1

1 + V 

c

+
∑
c∈C

ρc
V 


c

1 + V 

c

= 1 (B9)

so that finally we reach the promised result:

lim
λ→0+

Egmm
� (α, λ, K ) = 1

2

(
1 − 1

α

)
+

= lim
λ→0+

Egcm
� (α, λ)

(B10)

as claimed in Theorem 5 in the main text.

APPENDIX C: NUMERICAL SIMULATIONS

In this Appendix, we provide further details concerning the
protocol we used to perform the numerical simulations (see
Fig. 4), which corroborate the theoretical results exemplified
in the main manuscript. All codes are publicly available on the
GitHub repository associated with the current paper [30].

1. Datasets

We consider different types of datasets. Two of them are
synthetic datasets and correspond to i.i.d Gaussian input data
points and Gaussian Mixtures. Four of them are instead real
datasets which represent standard benchamarks in machine
learning experiments. In particular, the first one is MNIST
[31], consisting in a collection of 70.000 images of size 28
× 28 pixels of handwritten digits and ten different classes,
namely, the digits from 0 to 10 [31], with 7000 images per
class. The second one, is fashion-MNIST, composed of 70.000
images of size 28 × 28 pixels of Zalandos articles and ten
different classes corresponding to ten different articles [32],
with 7000 images per class. The third one is grayscale CI-
FAR10, consisting in a collection of 60000 natural images
of 32 × 32 pixels and 10 different classes, with 6000 im-
ages per class. The fourth is grayscale tiny-Imagenet, which
corresponds instead to a smaller version of the well-known
Imagenet benchmark [98] and it is made of 100.000 natural
images, downsampled to 64 × 64 pixels each and grouped into
200 different classes. Contrary to Fig. 2 in the main text, Fig.
4 shows the predictions of the Gaussian theory with respect
to the numerical simulations on MNIST, fashion-MNIST, CI-
FAR10 and tiny ImageNet when no preprocessing is applied.
As can be seen, despite the overall quite good agreement be-
tween theory and numerical experiments, we start observing
some (very) small deviations from the Gaussian predictions.
Indeed, as shown in Sec. D, the covariance matrices associated
to the different modes of the underlying real data distribution
are, in this case, more heterogeneous than the ones observed
when a preprocessing stage is applied. This is consistent with
the homogeneous assumption in Theorem 3 and implying
Gaussian Universality.

2. Preprocessing

In the numerical experiments shown in Figs. 1 and 2 of
the main text, we have both normalized and preprocessed
the real data sets with either random feature maps [34] or
through wavelet scattering transform [29]. For concreteness
and completeness, Fig. 5 illustrates these simulations with yet
another data set, namely grayscale tiny-Imagenet, with respect
to what was already presented in the main text in Fig. 5. The
procedure used to preprocess the real data sets is exemplified
in Sec. IV. For the sake of clarity, we summarized it through
the pseudocode in Algorithm 1.
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FIG. 4. This figure shows the training loss as a function of the number of samples n per dimension p at finite regularization λ. Top panel:
the square loss; bottom panel: the hinge loss. The first column refers to MNIST, the second column corresponds to fashion-MNIST, the third
column corresponds to CIFAR10 in grayscale, and the fourth column corresponds to tiny ImageNet in grayscale. Black solid lines correspond
to the outcome of the replica calculation, obtained by assigning to � the covariance matrix of each data set. The colored dots correspond to
the simulations for different values of λ, as specified in the plot legend. Simulations are averaged over 10 samples, and the error bars are not
visible at the plot scale.

The real data sets are loaded through Pytorch dataloaders
[99]. In particular, the dataloader of CIFAR10 includes a
grayscale transformation of the data set in order to reduce
the number of input channels of the RGB color encoding
scheme to one. The wavelet scattering transform is instead
implemented by means of the Kymatio Python library [35].
Note that with the purpose of speeding up the realization of the
learning curves and to reduce fluctuations, the preprocessed
real data sets are generated once for all through Algorithm 1
and then stored in a hdf5 file.

3. Learning phase

Given the data set generated as in Algorithm 1, the aim is
to infer the estimator θ minimizing the empirical risk as in
Eq. (1) of the main paper. In the present work, we consider
three distinct kinds of loss functions:

(i) Square loss. In this specific case, the goal is to solve the
following optimization problem:

R̂∗
n(X , y) = inf

θ∈Sp

1

2n

n∑
μ=1

(θ�xμ − yμ)2 + λ

2
||θ||22. (C1)

FIG. 5. Numerical simulations of universality: As in Fig. 2, this figure shows the training loss as a function of the number of samples n per
dimension p at various values of λ for another data set we used here for completeness. Here we used a grayscale tiny-Imagenet preprocessed
with Gaussian random features and tanh nonlinearity. Left panel: the square loss; middle panel: the logistic loss; right panel: the hinge loss.
The colored dots refer to numerical simulations while the black solid lines correspond to the theoretical prediction of a single Gaussian with
corresponding input covariance matrices. The numerical simulations are averaged over ten different realizations.
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FIG. 6. Input data correlation matrix of grayscale CIFAR10, conditioned on the true labels, e.g., airplane (leftmost), automobile (middle),
truck (rightmost). Lighter colors refer to stronger correlation.

The estimator can be determined here through the Moore-
Penrose inverse as follows, without relying on any learning
algorithm:

θ =
{(

X�X + λIp
)−1

X�y if n > p,

X�(
XX� + λIn

)−1
y if p > n.

(C2)

(ii) Logistic loss. In this specific case, the goal is to solve
the following optimization problem:

R̂∗
n(X , y) = inf

θ∈Sp

1

n

n∑
μ=1

log(1 + exp(−yμθ�xμ)) + λ

2
||θ||22.

(C3)

Since the estimator of logistic regression cannot be deter-
mined through an explicit closed formula, we made use here
of the lbgfs solver with penalty set to �2. This optimizer
corresponds to a gradient descent (GD) -like second-order
optimization method, and it is implemented in the Logisti-
cRegression class of the Scikit-Learn Python library [100].
The GD algorithm stops either if a maximum number of
iterations has been reached or if the maximum component
of the gradient goes below a certain threshold. We fixed this
tolerance to 1 × 10−5 and the maximum number of iterations
to 1 × 104.

(iii) Hinge loss. In this specific case, the goal is to solve the
following optimization problem:

R̂∗
n(X , y) = inf

θ∈Sp

1

n

n∑
μ=1

max(0, 1 − yμθ�xμ)) + λ

2
||θ||22.

(C4)
As for logistic regression, even in this case where we cannot
rely on any explicit formula for the estimator, it is inferred
by means of a learning algorithm. In particular, for the sim-
ulations at finite regularization strength, we made use of the
LinearSVC class provided by Scikit-Learn [100] and imple-
menting the Support Vector Classification (SVC) with linear
kernels and L2 regularization if the penalty is set to �2. In
this case, we set the tolerance of convergence to 1 × 10−5 and
the maximum number of iterations to 1 × 105. Unfortunately,

LinearSVC struggles to converge for vanishing regularization
strengths. Therefore, we made use of CVXPY [101,102] in
order to perform the simulations at λ = 1 × 10−15. CVXPY
is an open-source Python-embedded modeling language for
convex optimization problems. We set the solver option to
none; in this way, CVXPY chose automatically the most spe-
cialized solver for the optimization problem type. While being
slower than LinearSVC, CVXPY guarantees convergence at
vanishing regularization strengths.

At the end of the training process, we evaluate the training
loss � on the minimizer of the corresponding empirical risk
minimization problem. To get the learning curves, we then
repeat the whole process for a specified range of n/p and
for a certain number of different realizations of the learning
problem, as exemplified in Algorithm 2.

Algorithm 2 Learning curve

Input: range of n/p, flag data set type, flag which estimator
For seed in a specified number of seeds do:

For n/p in a specified range do:
Choose the data set according to data set type;
Compute the estimator according to the desired optimization

problem as in (i)–(iii);
Compute the training loss � at fixed n/p;

Update the mean train loss and its standard deviation with the new
contribution from the current seed.
Return: Mean train loss and standard deviation as a function of n/p.

APPENDIX D: EMPIRICAL EVIDENCE
OF THE HOMOGENEITY ASSUMPTION

As seen in the counter example illustrated in Fig. 3, in
the case of very heterogeneous Gaussian mixtures, we can
observe small deviations from universality both at zero and
finite regularization. However, this disagreement between a
single Gaussian and Gaussian mixtures does not appear in the
experiments with real data sets of Figs. 1 and 2, despite their
certainly multimodal and mode-heterogeneity nature. First,
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FIG. 7. Input data correlation matrix of grayscale CIFAR10 preprocessed with Gaussian random features and erf nonlinearity. The
correlation matrices are conditioned on the true labels, e.g., airplane (leftmost), automobile (middle), truck (rightmost). Lighter colors refer to
stronger correlation.

we must acknowledge that deviations are, in general, observed
to be small with respect to the homogeneous case, and that
the data presented in Fig. 3 were carefully tuned so that the
difference is visible.

Additionally, in this Appendix, we also empirically demon-
strate the similarity among the empirical correlation matrices
of the various modes characterizing real data-set distribu-
tions. Figure 6 shows the correlation matrix of all grayscale
CIFAR-10 images depicting airplanes (leftmost), automobiles
(middle), and trucks (rightmost), respectively. The point we
wish to convey in this plot is that, despite the fact that there

exist some modes of the CIFAR-10 empirical distribution that
display a consistently different correlation structure (airplane
mode) with respect to the other modes (automobile and truck
mode), there are some others that look more similar to each
other (automobile and truck mode).

As can be seen in Figs. 7 and 8, the structure similarity
of the covariance matrices of the various mode is further
enhanced when preprocessing grayscale CIFAR-10 with both
Gaussian random feature maps and wavelet scattering trans-
forms, at the point that even the less similar modes in the raw
data set conform to the others (see airplane mode).

FIG. 8. Input data correlation matrix of grayscale CIFAR10 preprocessed with wavelet scattering transform. The correlation matrices are
conditioned on the true labels, e.g., airplane (leftmost), automobile (middle), truck (rightmost). Lighter colors refer to stronger correlation.
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