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In this paper, a new algorithm for the computation of
workspace boundaries of continuum parallel robots (CPRs)
is proposed. State-of-the-art techniques are mainly based
on time-consuming joint space discretization approaches or
task-space discretization algorithms, and only a few ap-
proaches are dedicated to the computation of workspace
boundaries. The proposed approach for the computation of
the workspace boundaries, is based on i) a free-space explo-
ration strategy and ii) a boundary reconstruction algorithm.
The former is exploited to identify an initial workspace
boundary location (exterior, interior boundaries, and holes),
while the latter is used to reconstruct the complete boundary
surface. Moreover, the algorithm is designed to be employed
with CPRs modelling strategies based on general discretiza-
tion assumptions, in order to increase its applicability for
various scopes. Our method is compared with two state-of-
the-art algorithms in four cases studies, to validate the re-
sults, and to establish its merits and limitations.

1 Introduction
Continuum robots (CRs) are manipulators usually made

of slender flexible components, developed to respond to the
increasing necessity of safe interactions between robots and
the environment. CRs are well suited for applications where
the stiffness of rigid-link robots is considered a disadvantage,

∗Corresponding author.

such as surgical tasks [1], and applications with mandatory
safety requirements [2].

Continuum parallel robots (CPRs) have been proposed
to mitigate the disadvantages of serial continuum robots
(SCRs) [3], such as their reduced payload capability [4].
CPRs are commonly made by flexible beams disposed in a
parallel arrangement, and connected to a rigid end-effector
(EE). Possible applications of CPRs may include medium-
to-large-scale applications where interaction and safety re-
quirements are mandatory, and the robot environment is
shared with humans: these applications may benefit from the
flexibility-by-design and the reduced overall mass of CPRs.

Despite the great effort dedicated to CRs accurate mod-
elling, research on their design is still complex. Several as-
pects need to be considered, such as the choice of actuation
systems [5], beam arrangement [6], material selection [7],
and performances [8]: the resulting architecture may consid-
erably differ from the Gough-Stewart-like platforms firstly
proposed in [3]. Workspace computation [9], namely the
process of identifying a set of manipulator poses that sat-
isfy given criteria, is a mandatory step toward the solution of
CPRs design problems.

In CPRs, like any CRs, the geometry of the manipula-
tor is not sufficient to describe the pose of the robot, and its
configuration is also defined by the elastic deformation of its
links. Thus, the equilibrium-configuration problem is said
to be geometrico-static, and the static workspace evaluation
of CPRs becomes complex since forward and inverse prob-
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lems do not admit an analytical solution, in general. CPRs
workspace may be limited by several phenomena: CPRs may
admit singular configurations that define the workspace lim-
its but also stable-to-unstable transitions [10], [11]. More-
over, mechanical limits (e.g active of passive joint limits),
material-strain limits, and mechanical interference may addi-
tionally reduce the robots workspace, and a workspace com-
putation algorithm should consider all these aspects.

CRs workspace computation algorithms are gener-
ally based on two fundamental tools: the solution of a
geometrico-static problem over different inputs (inverse or
forward problems), and an algorithm dedicated to exploring
workspace configuration candidates, which varies depend-
ing on the workspace computation needs. The choice of the
exploration technique and the modelling strategy is usually
the real bottleneck in the computational performance of the
workspace evaluation tool. In general, CRs workspace com-
putation algorithms should desirably be able to i) be gener-
ally applicable to different robot architectures and loading
conditions, ii) find a suitable trade-off between accuracy and
computational time, iii) consider mechanical and physical
limits, and iv) assess singularity loci and equilibrium stabil-
ity.

1.1 Brief state-of-the-art
In this Section, a brief state-of-the-art analysis of

workspace computation algorithms of CRs is reported, to
properly place our work over the current state-of-the-art,
and to discuss the advantages and drawbacks of existing ap-
proaches. In this paper, we distinguish between algorithms
that evaluate the full workspace of CRs (Section 1.1.1), and
algorithms designed to find workspace boundaries (Section
1.1.2).

1.1.1 Full workspace computation algorithms
Full workspace computation algorithms evaluate the

CR workspace by calculating each robot configuration sat-
isfying workspace inclusion criteria. In the literature,
two approaches can be mainly distinguished for exploring
workspace candidates: i) actuation space sampling, and ii)
task space sampling techniques.

The former is based on the discretization of the CRs
actuation space and the iterative solution of a forward
geometrico-static problem (FGSP). These algorithms bring
simplicity and reduced complexity, while the main limit is
related to their computational time, that can be significantly
high, since it increases with the sampling density as well
as the number of actuators [12]. Additionally, strain lim-
its are considered only after the workspace computation,
leading to unnecessary computations. Actuation-space sam-
pling approaches have been used for the workspace compu-
tation of a pneumatically actuated SCR [13], concentric tube
SCRs [14], and for a 6-degrees-of-freedom (DoF) CPR [15].
Similarly to geometrical approaches of rigid-link parallel
robots, an approximation of the CPRs workspace was ob-
tained by sampling the actuation space of each leg, comput-
ing its workspace, and obtaining the CPR workspace as the

intersection of each leg workspace [16], [17]. However, the
wrench exchanged between each arm and the EE cannot be
considered and this may be a strong source of inaccuracy in
the obtained results.

Task-space sampling techniques are based on the dis-
cretization of the CRs task space and the iterative solution
of the inverse geometrico-static problem (IGSP). This way,
the computational time can be reduced with respect to (w.r.t.)
actuation-sampling strategies, since the overall time depends
only on the sampling density but not on the number of actu-
ators [12]. Preliminary results on the workspace evaluation
of a 2-DoF CPR were shown in [18] with the results strictly
limited to the planar case. A task-space sampling approach
was employed in [19] for a 3-DoF planar CPR, and in [20]
for a spatial CPR with an intermediate platform, but singular-
ity analysis and equilibrium stability assessment are not per-
formed. Similarly, singularity identification was preliminary
performed in [21] during workspace computation thanks to
a simplified mathematical model, but the accuracy may be
reduced when the robot does not fit the constant curvature
modelling assumptions. Flooding algorithms were employed
in [10] for planar CPRs with a focus on singularity identi-
fication, and equilibrium stability assessment. An adaptive
grid flooding algorithm was introduced in [22] to reduce the
computational time of [10]. The certification of the numeri-
cal results was also discussed with the aim of preserving the
same working mode [23] of the robot during the computa-
tion. Finally, a task space exploration strategy has recently
been proposed in [24], with the workspace computation al-
gorithm being based on the generation of several trajectories
in the task space, and the iterative solution of the IGSP over
these trajectories. Computationally efficiency is reached, but
the identification of singularity loci has not been considered.

We may conclude that full workspace computation al-
gorithms are applicable for general CRs. The computational
time may be high, in particular if an actuation sampling strat-
egy is employed. Even if most of the workspace exploration
strategies are not dependent on the CR modelling strategy,
the latter influences the capability to evaluate several fea-
tures, such as singularities and equilibrium stability.

1.1.2 Boundary workspace computation algorithms
Boundary workspace computation algorithms are usu-

ally employed when full workspace computation algorithms
require significant computational time. In contrast to full
workspace computation approaches, workspace boundary
computation algorithms aim to reconstruct the external and
internal borders of the robot workspace only. They are
usually faster than full workspace computation approaches,
since they do not need to completely explore the task space.
In the case of CRs, boundary-computation strategies are
mainly based on i) the identification of closed-form analyti-
cal solutions, ii) continuation approaches, and iii) optimiza-
tion approaches.

The closed-form equations of the workspace boundary
may often be identified for rigid-link robots [25]. However,
the complexity of the CR models makes such an identifica-

2 Copyright © by ASME



tion particularly challenging, and exact solutions were found
only in a few cases [26].

Continuation algorithms [27] provide efficient tools,
but they are generally limited to planar cases and three-
dimensional workspaces are obtained only by superimposi-
tion of several planar slices. Additionally, inequality con-
straints (e.g. related to stability assessment or material lim-
its) are hard to include, since they usually require to refor-
mulate the problem as a set of equivalent equalities with the
use of slack variables. Multiple boundaries of the workspace
(such as voids or holes) are tricky to identify as well: the
continuation approaches require the identification of a first
point of the workspace boundary, and several boundaries are
usually identified by an ad-hoc selection of this initial guess.
A continuation approach is used in [28] for the boundary
workspace computation of tendon-driven SCRs.

Finally, optimization approaches are a class of tools for
the computation of workspace boundaries, firstly introduced
in [29] for rigid-link robots. These approaches find bound-
ary location by solving a constrained optimization problem,
where the cost function is the distance between the robot end-
effector and a user-defined point placed out of the workspace,
while the constraints include the robot equilibrium equations.
Optimization approaches lead to quite general algorithms,
and several equality and inequality conditions can be addi-
tionally included in the constraints set. However, in case the
robot admits multiple working modes [23], the numerical op-
timization may be directed toward a different working mode
that provides a lower value of the cost function, which leads
to incorrect solutions as it will be illustrated further. As for
continuation approaches, voids are difficult to detect. Opti-
mization algorithms for CRs were employed in [30], [31].

In conclusion, boundary workspace computation algo-
rithms offer an alternative to full workspace algorithms, in
particular when we look for better computational perfor-
mances. As a drawback, these algorithms are less generally
applicable than full computation algorithms: holes and voids
in the workspace are difficult to identify, and usually the se-
lection of the modelling strategy affects not only the perfor-
mance of the algorithm, but also their applicability.

1.2 Contributions
In this paper, we propose a boundary workspace com-

putation algorithm for CPRs. We aim at reducing the com-
putational time w.r.t. full workspace computation algorithms
while preserving their general applicability. Our algorithm is
suitable for the boundary computation of any type of planar
CPRs workspace, but only for translational (i.e. constant ori-
entation) and orientation (i.e. constant position) workspace
of spatial CPRs [9], since it is based on a three-dimensional
grid exploration1. To do this, we originally propose i) a suit-

1Reachable, total orientation and dextrous workspace would require six-
dimensional grid explorations. We explored three-dimensional task spaces
because i) this covers the most frequent cases of interest in parallel robots,
ii) the possibility of graphical representation of the results, and iii) to keep
the computational cost of the algorithm reasonable. Authors believe that a
possible extension of this paper to six-dimensional cases may be developed,
but this is outside of the scope of the paper.

able exploration strategy for identifying all borders, and ii) a
boundary reconstruction algorithm. The exploration strategy
is introduced in order to identify a first boundary location,
starting from a guess initial point. The exploration strategy
is repeated several times in different directions, that depends
on the location of previously identified border locations. This
way, not only exterior borders but also interior borders and
voids (that may occur in the CPRs workspace) can be iden-
tified efficiently. Then, a boundary reconstruction algorithm
is proposed to compute the boundary surface: the border is
identified over a fixed grid by exploring the neighborhood
of previously identified border points, with the exploration
being based on the solution of the IGSP over several EE lo-
cations. In comparison to the state-of-the-art, this algorithm
requires reduced computational time w.r.t. full workspace
computation algorithms while preserving general applicabil-
ity.

The proposed algorithm offers several advantages with
the respect to the state of the art. First, our algorithm is not
related to a specific CPR modelling strategy: it requires the
use of discretization techniques which encompass a large va-
riety of approaches, as it will be described in Section 2. Con-
sequently, our algorithm may be applied to a broad spectrum
of CPRs, and a large number of workspace-limiting con-
straints that may reduce the CPRs workspace can be simul-
taneously considered. Second, to the authors knowledge, no
state-of-the-art algorithm for the boundary computation of
continuum robots demonstrated the ability to identify holes
in the workspace, while our approach does not suffer of this
issue. Holes and voids identification is a declared limita-
tion of optimization algorithms [31], and no implementation
or simulation results have been shown for continuation ap-
proaches [28] concerning hole detection capabilities. Finally,
optimization approaches [30] may fail when the robot ad-
mits multiple working modes (as we will show later in the
case-study section), while this is not the case for the pro-
posed workspace algorithm. Continuation approaches [28]
requires the superimposition of several slices for the three-
dimensional workspace computations, which may be tricky
with complex workspace shapes (as we will show in the case
studies). In contrast, our approach overcome this issue by
computing directly workspace boundary surface.

The paper is structured as follows. Section 2 recalls a
state-of-the-art CPRs modelling framework, and it discusses
the discretization process, while Section 3 describes in de-
tail the proposed workspace computation algorithm. In Sec-
tion 4, our approach is applied to four different CPRs and
compared with state-of-the-art workspace computation al-
gorithms (while maintaining constant the CPRs modelling
strategy). Section 5 draws conclusions, and Section 6 dis-
cusses limitations of our works, and future directions.

2 Modelling
In this Section, we describe the CPRs modelling frame-

work employed in this paper. The aim of this Section is to
make the paper self-contained and to help the reader in un-
derstanding what follows. A brief description of the con-
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(a) (b)

Fig. 1: (a) Schematics of a CPR, and (b) continuous parametrization of a slender beam.

sidered CPRs architecture is firstly proposed. Then, CPRs
potential energy is derived (Section 2.1), and the energy-
discretization procedure is discussed (Section 2.2) to estab-
lish the inverse geometrico-static problem equations (IGSP).
Finally, equilibrium stability assessment and singularity con-
ditions are discussed in Section 2.3.

Here we consider a CPR composed by n continuous
beam (called legs, Fig. 1a). Each beam is connected at one
extremity (point Ai, i = 1, · · · , n) to a motor and, at the op-
posite end, to a rigid platform with a passive joint (points
Bi)2. The robot base frame is denoted with F0, and a frame
Fp is attached to the rigid platform. The i-th actuated vari-
able is called qai, and the vector qa = [qa1, · · · , qan] ∈ Rn

collects the actuated variables. The vector qp ∈ Rnp collects
the controlled variables, and we assume n = np. For in-
stance, for a 6-DoF spatial CPR, qp = [pp,ϕ] ∈ R6 where
pp ∈ R3, ϕ ∈ R3 represent the position and orientation
parameters of the platform frame w.r.t. the fixed frame, re-
spectively.

In the next Sections, we recall the geometrico and
kinemato-static modelling and analysis of CPRs by using en-
ergetic considerations and discretization strategies. Further
details can be found in [10], [33].

2.1 CPR potential energy
In the static case, and for fixed actuated variables, each

beam can be modelled as a clamped beam at the point Ai,
as represented in Fig. 1b. The beam is assumed to be ini-
tially straight of length Li and the variable si ∈ [0, Li] is
introduced to represent the curvilinear abscissa of the beam.
Moreover, shear and extensibility are assumed to be negligi-
ble. A frame Fi(si) is attached at each cross-section of the
beam, and the pose of the cross-section is defined by gi(si)

2Tendon-actuated parallel CRs [21], or CPRs with variable length beams
[3] could be also modelled. Also, the model is able to take into account
passive [6] or intermediate [32] components, and the reader is referred to
those papers for additional modelling details hereby not provided for the
sake of brevity.

as:

gi(si) =

[
Ri(si) pi(si)

0 1

]
(1)

where Ri(si) ∈ SO(3),pi(si) ∈ R3 represent the rotation
matrix and the position of the frame Fi(si) w.r.t. F0, respec-
tively. The curvature and the torsion of the beam expressed
in Fi(si) are represented by the vector ui(si) ∈ R3, which
can be obtained as [34]:

ûi(si) = RT
i (si)R

′

i(si) (2)

where ûi(si) ∈ so(3) is the skew-symmetric matrix obtained
from the vector ui(si), and the superscript (.)

′
denotes the

derivative w.r.t. si. The total potential energy of the robot is
given by:

Vtot = Vplat +

n∑
i=1

Vrodi
, Vrodi

= Vdi + Vei (3)

where Vplat = −fTp pp represents the potential energy of the
rigid platform, fp is a conservative force, Vrodi

is the total
potential energy of the i-th beam, Vei the deformation en-
ergy, and Vdi the contribution of distributed loads. Three-
dimensional moments, that are non conservative, are con-
sidered to not appear [35]. Assuming that only distributed
(conservative) forces fi act on the beam, Vdi can be obtained
as:

Vdi = −
∫ L

0

fTi pi(si)ds (4)

Then, we consider shear and extensibility to be negligible
(Bernoulli assumptions), material properties as elastic, lin-
ear, isotropic, and constant over the beams length. In this
case, the deformation energy of the beam is given by [34]:

Vei =

∫ L

0

(ui(si)− u∗i (si))
T
KBT (ui(si)− u∗i (si)) ds

(5)
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(a) (b) (c)

Fig. 2: General overview of the BFA. (a) initial grid exploration, (b) boundary computation, and (c) successive iteration of the
algorithm. Points on the task space that lie in the workspace are represented in blue, while points outside of the workspace
in red.

with u∗i is the initial curvature of the beam (null in the case
of initially straight beam), KBT = diag(EIx, EIy, GIz), E
is the Young modulus, G is the shear modulus, and Ix, Iy, Iz
are the principal inertia moments of the cross-section.

2.2 Discretized CPR equations and equilibrium condi-
tions

CPRs equilibrium configurations are associated with
critical points of the robot potential energy Vtot, where Vtot

depends on qa,qp and on a set of continuous functions ui.
However, finding the values of qa,qp and the exact func-
tions ui that lead to equilibrium conditions of the CPR is not
trivial. A practical way to solve this problem is to employ
discretization strategies. Discretization of the potential en-
ergy equations through a finite number of coordinates brings
mathematical simplicity where the accuracy of the numeri-
cal solution depends on the number of variables, and on the
employed discretization strategy [36].

Piecewise constant curvature (PCC) modelling ap-
proaches enable significant simplification is CRs modelling
[37]. Being applied successfully in many applications (e.g
[38]), PCC assumptions brings the advantage of enabling the
kinematics to be composed by two simple mappings [39].
However, in case the CRs does not have constant curvature
shape, modelling inaccuracies may occur. In the direction of
developing more accurate CRs models, piecewise constant
strain (PCS) modelling assumptions were introduced [40].
PCS introduces the possibility to have torsion, shear and
extensibility on the CRs model, which enables more com-
plex shapes that a PCC model may difficultly represent [41].
However, the number of discretization variables may become
high in the case of complex shapes or accurate solutions are
required. Variable strain discretization approaches are then
proposed [42]: these modelling techniques discretizes the
continuum Cosserat beam into a finite set of strain basis func-
tions. Also known as assumed strain modes approaches [43],
variable strain discretization approaches bring significant ac-

curacy, but frequently at the cost of high model complex-
ity. Finite differences provide simple and effective expres-
sions for CRs models [33], that simplifies robot analysis.
These approaches have been applied in several CRs appli-
cations, such as for concentric tube robot modelling [44]
and equilibrium stability analysis [45]. The literature of dis-
cretization strategies for CRs modelling is significantly large,
and finite-element approaches [46], [47], [48], Galerkin-Ritz
methods [49], collocation methods [50], [51] also need to be
mentioned. However, a deep state-of-the-art analysis of CRs
modelling technique is out of the scope of this article.

In this paper we employed the assumed strain mode ap-
proach of [52] for the simulations proposed in Section 4.
We selected this approach because of its good trade-off be-
tween accuracy and computational time, and because of the
reduced number of elastic variables required to achieve accu-
racy [53], [54]. However, any other discretization approach
could have been used. This approach is mainly based on the
discretization of ui through base functions as:

ui(si) ≃ N(si)
Tqei (6)

where N ∈ R3×Nf is a matrix of base functions, Nf is the
number of variables that discretizes ui, and qei ∈ RNf is
the vector that collects the discretization variables of the i-th
beam. We assume Nf to be equal for each beam, and the
vector qe = [qe1, · · · ,qen] ∈ RnNf is introduced to collect
all the discretization variables.

After introducing the discretization, Vtot becomes a
function of actuated, platform, and discretization variables,
that is Vtot = Vtot(qa,qe,qp) = Vtot(qa,x), with
x = [qe,qp]. Due to the closed-loop architecture of CPRs,
position and orientation geometric constraints have to be en-
forced. Without loss of generality, the constraints are repre-
sented by:

Φ(qa,x) = 0 (7)

5 Copyright © by ASME



where a vector Φ ∈ RnΦ is introduced to stack all the geo-
metric constraints in homogeneous form [10], [33].

A robot configuration is an equilibrium configuration
if, for fixed values of qa, x is a critical point of Vtot [55].
However, variables are related by geometric constraints, and
critical points of Vtot are characterized by Lagrange condi-
tions [55]. Assuming that ∇xΦ is full rank, x is a critical
point if Lagrange multipliers λ ∈ RnΦ exist such as [55]:

{
∇xL(qa,x,λ) = 0

Φ(qa,x) = 0
(8)

with L = Vtot(qa,x) + ΦT (qa,x)λ. Equations (8) rep-
resent the implicit geometrico-static model of a CPR. The
IGSP problem requires to find a value of qa so that an as-
signed value of qd

p corresponds to a static equilibrium, that
is, to solve [33]:

F(y) =


∇xVtot(qa,x) +∇xΦ

T (qa,x)λ = 0

Φ(qa,x) = 0

qp − qd
p = 0

(9)

Equations (9) form a square system of equations of (nNf +
n) + nΦ + n equations in y = [qa,qe,qp,λ]. Since Eq. (9)
is nonlinear, root-finding techniques are employed to identify
numerical solutions.

2.3 Equilibrium Configuration Analysis
If a solution of Eq. (9) is found, we want to evaluate if

it is feasible for the robot to achieve it: equilibrium stability,
singularity conditions, strain limits and joint limits should
be considered. To this end, a linear approximation of con-
ventional strain quantities used in beam mechanics is con-
sidered [34]:

ϵ(s) = [γxz, γyz, ϵz] = −r(s)× u(s) (10)

where r = [xs, ys, 0] is the position of a point that lies over
the cross-section in s, and it has coordinate xs, ys, 0 w.r.t.
the local frame F(s). γxz, γyz represent shear strains ap-
proximation, and ϵz is the normal strain. Strain limits are
considered by checking if each of the CPRs beam does not
exceed the material limits. Actuator limits are verified if:

qai ∈ [qi−min, qi−max] , i = 1, · · · , n (11)

and qi−min, qi−max are the minimum and maximum posi-
tion or orientation limits of the i-th actuator3. Motor efforts

3In a similar fashion, passive joint range limits can be considered by
recovering their values from the IGSP solution, and by verifying if the joint
limits are respected

τi (such as torques for revolute actuators) can be recovered
as [10]:

τi = ∇qai
Vtot(qa,x) +∇qai

ΦT (qa,x)λ (12)

Then, to analyze equilibrium stability and singularity condi-
tions, the Jacobian matrix J of the IGSP equations is com-
puted as [22]:

J =
∂F

∂y
=

AL UL PL ΛL
AΦ UΦ PΦ 0
0 0 I 0

 (13)

where:

1. AL = ∇qa
(∇xL) , UL = ∇qe (∇xL)

2. PL = ∇qP
(∇xL) , ΛL = ∇λ (∇xL)

3. AΦ = ∇qa
Φ , UΦ = ∇qe

Φ , PΦ = ∇qP
Φ

Singularity conditions occurs by the degeneracy of the fol-
lowing matrices [10]:

T1 =

[
ZTAL ZTUL
AΦ UΦ

]
(14)

T2 =

[
ZTPL ZTUL
PΦ UΦ

]
(15)

where Z spans the left nullspace of ΛL, i.e ZTΛL = 0.
While the degeneracy of T1 is associated with serial (or Type
1) singularities, rank deficiency of T2 is related to parallel
(or Type 2) singularities. Then, under the assumption that
only external conservative loads act on the robots platform,
equilibrium stability can be assessed by evaluating the pos-
itive definiteness of the reduced Hessian matrix Hr of the
total potential energy4 [33] , [55] that is:

Hr = ZT ∂2L
∂x2

Z = ZT
[
UL PL

]
Z (16)

3 Workspace Algorithm
This Section describes the workspace computation

methodology introduced in this paper, called boundary flood-
ing algorithm (BFA). We first give a general overview of BFA
to ease the reader’s comprehension. Then, boundary identi-
fication is discussed in Sec. 3.1, and details of the algorithm
are given in Sec. 3.2.

Similarly to conventional discretization approaches (e.g
[19]), our algorithm is a task-space discretization algorithm,
and a grid of dimension at most three is generated to dis-
cretize the task-space of the robot. The IGSP of CPRs

4The notation Hr is used in accordance with [10], [33] to distinguish
between the reduced Hessian matrix, and the Hessian matrix H of the total
potential energy.
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(a) (b) (c)

Fig. 3: Boundary identification over a discrete grid. (a) IGSP solution over the grid, (b) border identification, and (c) border
reconstruction.

Algorithm 1: Boundary flooding algorithm.
1 Initialize grid, toDo, Qstart,A,B;
2 for k = 1: nexp do
3 toDo = Space Exploration(QAk,B,Qstart);
4 Boundary Computation(toDo);
5 end
6 Function Space Exploration(QAk,B,Qstart):
7 Qinit = Qstart;
8 while flag = true do
9 Qend = getNewPoint(Qinit,QAk,B, iter);

10 flag = GetWKconditions(Qinit,Qend);
11 if flag = true then
12 Save Results;
13 iter = iter + 1;
14 Qinit = Qend;
15 end
16 end
17 Stack [Qinit,Qend] ∈ toDo;
18 Stack Qend in B;
19 return
20 Function Boundary Computation(toDo):
21 while toDo ̸= ∅ do
22 Extract Qg,Qi from toDo;
23 N i = get neighbors of Qi not yet computed.;
24 Sort N i w.r.t. distance from Qg ;
25 while N i ̸= ∅ do
26 Qn1 = N i(1);
27 N i ← N i\Q1;
28 Nw1 = get neighbors of Q1 ∈WK;
29 if Nw1 ̸= ∅ then
30 Qw = Nw1 with best conditioning of J;
31 flag = GetWKconditions(Qw,Qn1);
32 if flag = true then
33 Save Results.
34 else
35 Stack [Qw,Qn1] ∈ toDo
36 end
37 end
38 end
39 end
40 return
41 Function GetWKConditions(Q0,Q1):
42 y0 = robot configuration at Q0;
43 y = Solve IGSP starting from y0;
44 flag = evaluate if Q1 ∈WK;
45 return flag;

is solved repeatedly over the grid, but not on all its loca-
tions, since the goal of the algorithm is to reconstruct the
workspace boundaries only. We decided to investigate at
most three-dimensional task-spaces, thus excluding reach-
able, total orientation and dextrous workspace of spatial
CPRs, because i) this covers the most frequent cases of in-
terest in parallel manipulators, ii) the possibility of graphical

visualization of the results, iii) to keep the computational cost
of the algorithms reasonable, and iv) to compare with state-
of-the-art-results. Authors believe that a possible extension
of the BFA to six-dimensional cases may be developed, but
this is outside of the scope of this paper. The algorithm is
designed as a two-sequential-stage process:

1. starting from a known location, the grid is explored by
repeatedly solving the IGSP over different points until
a border point of the workspace is reached, as shown in
Fig. 2a. This stage is described in detail in Sec. 3.2.1;

2. then, the border is computed thanks to a flooding al-
gorithm specifically designed for this scope. This al-
gorithm is based on the repeated solution of the IGSP
(Fig. 2b), and the determination of new points to ex-
plore in the neighborhood of previously identified bor-
ders. This stage is illustrated in Sec. 3.2.2

These two stages can be repeated several times: successive
explorations directions are pointed toward different regions
of the grid to possibly identify holes and voids that the CPRs
workspace may possess (Fig. 2c). The exploration strategy
takes advantage of previously detected borders to scan only
regions on the grid where no borders were identified.

3.1 Boundary Identification
A crucial point of the BFA is how boundaries are identi-

fied. As shown in Fig. 3a, points are placed at the center of
each box of the grid. Then, we assume that the point Q0 lies
in the workspace and we want to verify whether a neighbor
point Q1 is included in the workspace as well. To do that,
being y0 the robot configuration at Q0, the IGSP is solved
with initial guess y0, and the resulting configuration y1 is
obtained. Then, we check if Q1 lies in the workspace: this
is done by verifying:

1. singularity conditions, identified by the conditions re-
ported in Eq. (15);

2. equilibrium stability conditions, verified thanks to
Eq. (16);

3. strain limits and actuator limits, that can be recovered
from Eq. (10), Eq. (11), Eq. (12).
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(a) (b) (c)

Fig. 4: Exploration strategy: (a) first exploration, (b) subsequent exploration and influence of previously computed points,
(c) conditions for which an equilibrium is reached without attractive points.

Fig. 5: Space exploration strategy. On the left, points on the physical space. On the middle, points converted into the unitary
space. On the right, computation of the new exploration direction.

Other conditions may delimit the robot workspace, and gen-
eral inequalities (and equalities) can be considered, but we
limit our analysis to the aforementioned criterions.

Then, if the configuration y1 violates one of the afore-
mentioned conditions, the boundary of the workspace is
crossed, and Q1 is considered as an out-of-the-workspace
point. Since the task-space is discretized with a grid, the
real boundary is placed in a location between Q0 and Q1, as
represented in Fig. 3b. Thus, the boundary can be approxi-
mately reconstructed as shown in Fig. 3c and the accuracy of
the workspace estimation depends on the grid sampling size.

3.2 Detailed Description
In this section, we describe in detail the workspace com-

putation algorithm objective of this paper. We firstly illus-
trate the space exploration strategy in Sec. 3.2.1, and then
the boundary computation strategy is proposed in Sec. 3.2.2.

3.2.1 Space Exploration Strategy
The main goal of the space exploration strategy (Alg. 1,

lines 6-19) is to explore the grid and to identify a point that
lies on the workspace boundary. As previously mentioned,
the exploration attempts to scan unexplored grid regions by
considering where previous explorations were directed. In
order to explain how the exploration directions are obtained,
we need to introduce two different concepts: the unitary
space, and the attractive points.

Unitary Space: since we seek to explore task spaces that
may involve positions and orientations at the same time, the
computation of the exploration direction is performed on a

unitary space (Fig. 5), that is, a space with [0, 1] limits at each
direction algebraically similar to the euclidean space. Given
a generic point in the task-space Q, its similarity transfor-
mation S into the unitary space point H is given by:

H = S(Q) (17)

As an example, being Q = [x, y, z], and xlim = [a, b],
ylim = [c, d], zlim = [e, f ] the task-space limits, the point
H is obtained as:

H =

(
x− a

b− a
,
y − c

d− c
,
z − e

e− f

)T

(18)

Attractive Points: these points are introduced in order
to define exploration directions, and they are positioned at
the limits of the grid. These grid limits are usually placed
at regions not reachable by the manipulator (e.g. at a dis-
tance longer than the robot leg lengths), and attractive points
are placed uniformly over the grid perimeter. Being nexp

the total number of explorations, A = [QA1, · · · ,QAnexp ]
collects the attractive points.

After unitary space and attractive points are introduced,
let us explain how the exploration works. To do that, let us
consider a task-point Qstart that lies in the workspace where
the exploration starts5. We seek to solve the IGSP over differ-

5The identification of the first point is not trivial, since IGSP Eqs. (9)
are nonlinear. An efficient heuristic employs constant curvature assump-
tions [21], where the inverse problems admits simple (and possibly not ac-
curate) purely geometric solutions. These constant curvature solutions are
employed as initial guess for the first solution of Eqs. (9).
8 Copyright © by ASME



ent grid locations until a border of the workspace is reached.
Thus, we need to sequentially i) solve the IGSP and ii) find
a new task-space point where to solve the IGSP. The latter
is the key point of the exploration strategy: at each step, we
need to find an exploration direction on the task space that
defines the new IGSP point by taking into account the previ-
ous explorations (to not explore the same grid regions).

During the first exploration (k = 1 with k =
1, · · · , nexp the index representing the exploration number)
the grid is explored by solving the IGSP over sequential new
locations in the direction of QA1 until a border is identified
(Fig. 4a). Being QB1 the point where the border is identi-
fied, the exploration is then stopped and QB1 is stored in B,
which is the set of all the border points. Then, for the sec-
ond exploration, we consider QA2 and the exploration restart
from Qstart. However, we would like to consider also the in-
fluence of QB1 and the exploration should be directed also
in a direction opposite to QB1 to explore a different region
than the previous one. Therefore, the exploration direction is
obtained as a combination of the direction that points toward
QA2, and the direction opposite to QB1, as qualitatively rep-
resented in Fig. 4b.

To obtain the mathematical expression of the explo-
ration direction, let us consider the generic k-th explo-
ration, where B = [QB1, · · · ,QB(k−1)] collects out-of-the-
workspace point locations identified in the previous k − 1
iterations. During the k-th exploration, Qinit represents
the current workspace point and we seek to select a new
point in its neighborhood where to solve the IGSP, with
initial guess Qinit. Thus, we need to identify a direc-
tion dT in the task space that is used to select the next
IGSP point. To do that, we employ the unitary space:
all the points of interest in the task-space are mapped
into the unitary space by employing the transformation S,
and Hinit,HAk,HB1, · · · ,HB(k−1) are the unitary space
counterparts of Qinit,QAk,QB1, · · · ,QB(k−1) (Fig. 4c).
Then, the exploration direction is given by:

dT = S−1(dU ) , dU =
cAdA − cBdB

∥cAdA − cBdB∥
(19)

with dU the exploration direction in the unitary space
(Fig. 5), dA the unitary vector defined by the k-th attrac-
tive point, dB the unitary vector defined by the k − 1 border
points, cA = 1− exp(−iter/τ), cB = exp(−iter/τ), iter
being the cumulative number of IGSP solved during the k-
th exploration, and τ a constant that defines the behaviour
of the exploration. This way, at the start of the exploration,
the influence of previous computation is relevant, and only
after several IGSP solutions the direction is pointed mainly
toward the attractive point.

We now detail the terms of Eq. (19). Attractive point
direction dA is given by:

dA =
Hinit −HAk

∥Hinit −HAk∥
(20)

Then, for the computation of dB we propose the following
heuristic:

dB =

∑Nb

j=1 cBjdBj

∥
∑Nb

j=1 cBjdBj∥
, dBj =

Hinit −HBj

∥Hinit −HBj∥
(21)

Authors experienced good results by employing this heuristic
during the simulations of Sec. 4. From Eq. (21) we can see
that dB is a weighted sum of the directions dBj

defined by
each border point, with weights cBj defined as:

cBj = ∥1− (Hinit −HBj) ∥ (22)

The meaning of the coefficient cBj is not trivial: since
we operates on the unitary space, each components of
(Hinit −HBj) is bounded between 0, 1. Thus, when Hinit

approaches HBj the value of cBj increases and HBj have
a larger influence on the calculation of dB . This way, if
the exploration approaches a previously identified border, its
weight on dB increases and dU is modified accordingly.

To resume, at each step of the exploration k-th , we pro-
ceed in this way:

1. all the point of interest (attractive point QAk, cur-
rent workspace point Qinit, and border points B), are
mapped into the unitary space;

2. then, the exploration direction is computed into the uni-
tary space and mapped back into the task space by em-
ploying Eq. (19);

3. given the exploration direction dT , the neighbor of
Qinit that points in the direction closer to dT is selected
as new point. This task-space point is called Qend.

These three steps are performed at line 9 of Alg. 1. Then, the
IGSP is solved and we check if Qend lies on the workspace.
The computation continues point-by-point until a border is
identified. Once the boundary is found, QBk is saved in B
for next explorations, and Qinit,Qend are stored in toDo
for the boundary computation phase described in Sec. 3.2.2.
Before going to the description of the boundary computation
strategy, we need to remark few details:

• Necessity of attractive points: even if attractive points
seem to be unnecessary after the first exploration (the
exploration direction could be defined by points in B
only), it can happen that previously computed borders
define directions for which the computation stalls. An
example is reported in Fig. 4c: since Qstart is placed
in the middle of the two border points QB1,QB2, the
blocked direction dB of Eq. (21) is indeterminate. Thus,
attractive points are required to ensure the algorithms
does not stall, and to drive the exploration away from
the stall condition.

• Exploration parameter. The coefficient τ is user-defined
and it should be selected in relation to the scope of
the workspace exploration. An high value of τ causes
more complex exploration path, at the cost of more iter-
ations. On the other hand, a reduced value of τ should
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(a) (b) (c)

Fig. 6: Boundary computation strategy: (a) boundary conditions, (b) sorting strategy, (c) point evaluation.

be employed when the user has a previous knowledge
of the workspace shape (e.g. slight robot design mod-
ifications), the exploration is mainly pointed toward at-
tractive points placed at location useful to identify all
the workspace boundary components. Typical values of
τ are related to the grid sampling size sg , and the grid
size. Empirically, the authors experienced optimal re-
sults when initializing τ so that sgτ is approximately
half of the grid size.

• Number of explorations. nexp is a user-defined param-
eter and it depends on the scope of the workspace ex-
ploration. In the case no previous knowledge of the
workspace shape is available, the authors experienced
optimal results with high values of nexp (nexp ≥ 20);
even though this number is quite high and results in
a higher computational time than needed most of the
times, it gives higher assurance to find all the workspace
borders sought. However, if the algorithm is supposed
to be used several times (e.g. when performing slight
design variations), nexp should and could be reduced to
save computational time, since there is a-priori knowl-
edge of the workspace borders6.

3.2.2 Boundary Computation Strategy
In this subsection, the algorithm for the reconstruction

of the workspace boundaries is detailed. The pseudocode of
this routine is reported in Alg. 1, lines. 20-38. The algorithm
starts from a situation where a point Qi outside the boundary
is identified after the solution of the IGSP, with initial guess
Qg (Fig. 6a). These two points are extracted from toDo, an
array that stores out-of-the-workspace points and their pre-
viously employed initial guesses. Subsequently, the goal is
to explore the grid in order to identify new points outside the
workspace, and to reconstruct the complete boundary. To do
that, we identify neighbors points to Qi over the grid, and
we store in N i the neighbors where the IGSP has not been
computed (Fig. 6b).

Points in N i represent possible candidate to be out-of-
the-workspace points: in order to verify whether they lie or
not in the workspace, the IGSP should be solved and an ap-

6Some workspace slices can be computed a priori with the algorithm
of [10], or [22], to detect the presence of eventual holes, and then nexp

adjusted consequently

propriate initial guess should be identified for each point.
However, the order on which points in N i are treated may
influence the resulting prediction, since a point may have
an appropriate initial guess that is not yet found during the
workspace computation. In this work, we propose to test
points N i w.r.t. to their distance from Qg , starting from the
closer7 (see Fig. 6b). Authors experienced good results with
this approach, but other heuristics may be proposed.

The next step requires to solve the IGSP for all the
points in N i. Being Qn1 the first point to be computed in
N i, we seek to solve the IGSP, and an initial guess should
be identified. To do that, neighbor points of Qn1 that lie
in the workspace are collected in Nw1

(Fig. 6c). In case
Nw1

is not empty8, the point with the best conditioning of
J (Eq. (13)) is extracted among the possible initial guesses
in Nw1

, and named as Qw (Fig. 6c). By selecting the initial
guess with this heuristic, we obtain high probability that the
new configuration preserves the working mode of the initial
guess, but no analytical proof is available. In the case the
preservation of the working mode becomes important, au-
thors previous work can be employed [22]. Finally, we eval-
uate if Qn1 lies on the workspace. In case Qn1 is included in
the robot workspace, no additional points are stored in toDo.
On the opposite case, Qw,Qn1 are stored in toDo for next
computation.

The algorithm continues by at first evaluating all the
points in N i and solving the IGSP at all these points. Once
N i is empty, new points are extracted from toDo. When also
toDo is empty, the algorithm stops. In the next Section, we
apply the proposed algorithm for the workspace computation
of four different CPRs.

4 Case Studies
In this Section, we propose four case studies to show the

main features of the proposed workspace border computa-
tion algorithm. We compare two workspace algorithms with
our approach to validate applicability of our method, high-
light its merits, and also show its main limitations. We com-
pare our approach with the full workspace algorithm [10]
that supports three-dimensional investigations (in contrast to
our previous work [22] that focuses on planar cases only),

7In case points have the same distance, we randomly selected one.
8In case Nw1 = ∅, the point Qn1 is skipped, and the IGSP not solved.
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(a) RFRFR robot (b) RFRFR robot working mode 1 (c) RFRFR robot working mode 2

Fig. 7: Workspace computation of the RFRFR robot: the robot architecture (a), and the workspace computation of two
different working modes (b),(c). Exploration trajectories are depicted in light blue, results obtained with the approach of [10]
in dark blue, Type-1 and Type-2 singularities are represented in red, and black, respectively.

(a) Strain investigation (b) Results with [30] (c) Comparison

Fig. 8: Workspace computation of the RFRFR robot. Influence of strain limits on the robot workspace (a), with in green
the inner borders with different strain limits. In (b), the results obtained with the approach of [30]. In (c), comparison on the
external border prediction between our approach and the approach of [30].

to verify the correctness of the results. Also, we compare
the BFA with the boundary computation algorithm of [30],
since it presents interested features in terms of computational
time and, even if it is designed for serial CRs, it can be used
also for CPRs. However, we keep the same modelling strat-
egy detailed in Section. 2 for each workspace algorithm, and
we selected Nf = 4 in Eqs. (6) (u is approximated with
four orthogonal Legendre polynomials). For all case stud-
ies, beams are made of harmonic steel with Young modulus
E = 210 GPa, beam length is equal to L = 1 m. Beams
are of circular cross-section with radius r = 1 mm. Sim-
ulations of this Section are performed with a PC equipped
with a CPU Intel Core i7-6700, 3.4GHz, 32Gb RAM, in a
Matlab environment. The IGSP is solved by Matlab fsolve
routine, and equations are precompiled as .mex function to
speed up the computation. A trust-region algorithm is se-
lected since it required less computational time than other
available algorithms (e.g. Levenberg-Marquardt), and the
maximum allowed iteration number for the trust-region al-

gorithm is set as 20. If the number of iterations reaches 20,
we consider that no solution to the IGSP exists. Despite a
reduced number of iterations is usually required in regions
not close to the border (e.g 4-5 iterations), the IGSP solution
in regions near workspace boundaries related to singulari-
ties of the IGSP problem (Type-1 singularities [10]) usually
requires numerous iterations that could slow down the algo-
rithm. In this way, Type-1 singularities can be detected more
rapidly.

4.1 RFRFR robot
The RFRFR robot has been introduced in [18], and

its workspace computation was investigated in our previous
work [22]. The RFRFR robot has two revolute actuators
(R) placed at the base (points A1, and A2 in Fig. 7a) that ro-
tate the base of two flexible beams (F ). Beams are connected
at the opposite side through a passive revolute joint (R). For
this case study, the distance between the motors LA1A2 is
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(a) 3-PFR (b) Total orientation workspace of 3-PFR with θ ∈ [−π, 0]

(c) Slice at θ = −30◦ (d) Slice at θ = −80◦ (e) Slice at θ = −90◦

Fig. 9: Workspace computation of the 3− PFR robot: the robot schematics (a), total orientation workspace in θ ∈ [−π, 0]
(b), constant orientation slices at θ = −30◦ (c) ,−80◦ (d) ,−90◦ (e). Type-1 singularities are represented in red, results
obtained with the approach of [10] in dark blue, and boundaries generated by actuator limits are represented in green.

chosen as 0.4 m. No external forces and gravitational effects
are included.

At first, the results obtained by the BFA are compared
with the flooding algorithm of [10] which computes the full
workspace, and not the borders only. The xy plane is dis-
cretized with a sampling size sg = 5mm over the range
[−1,+1] m in both directions. Then, we initialize τ so that
sgτ is approximately half of the grid size, that is τ = 200
(in accordance with the heuristic proposed in Sec. 3.2.1).
By choosing nexp = 8, we obtained the results reported
in Fig. 7b, where workspace borders caused by Type-1 and
Type-2 singularities are depicted in black, red, the results
of [10] are reported in dark-blue, and the exploration trajec-
tories in light blue. The computational time is significantly
reduced, passing from approximately 12 mins [10] to 48 s for
the BFA. Also, a different working mode has been considered
by starting from a second initial robot configuration obtained
with a different constant-curvature initial guess. The BFA has
been employed to obtain the workspace depicted in Fig. 7c,
the obtained results are in accordance with the one provided
by [10] (dark-blue in Fig. 7c), and the computational time
has been reduced from 130 s to 31 s. We also investigated

the influence of the material strain limit on the workspace
size, as shown in Fig. 8a: we computed the RFRFR robot
workspace with strain limit equal to 0.60%, 0.75%, 0.90%
and the results are superimposed. By increasing the material
resistance, the workspace area increases consequently, and
regions closer to the workspace center become more acces-
sible.

Then, the BFA has been compared with the optimiza-
tion algorithm proposed in [30]. We decided to compare our
approach with [30] because of the interesting performances
of the optimization algorithm, its simplicity, and the possi-
ble application to CPRs. The optimization algorithm is an
iterative algorithm for the computation of CRs boundaries,
based on the selection of some points v∗ placed in regions
assumed out of the workspace (Fig. 8b). Then, an opti-
mization problem is set up to find the robot configuration
y for which the distance between the EE position pp and
v∗ is minimum, subjected to the verification of equilibrium
Eq. (8). Additional constraints may be included in the op-
timization problem as well (e.g equilibrium stability, strain
limits). The solution of the constrained optimization prob-
lem is solved repeatedly with various v∗ to reconstruct the
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(a) 6-RFS (b) Transnational workspace at Rp = I
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(c) xz slice at y = 0m
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(d) xy slice at z = 0.650m
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(e) xy slice at z = 0.590m
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(f) xy slice at z = 0.500m.

Fig. 10: Workspace computation of the 6−RFS robot: the robot schematics (a), the translational workspace (b), xz slice at
y = 0m (c), xy slices at z = 0.65m (d), z = 0.59m (e), z = 0.50m (f). Results obtained with the approach of [10] in dark
blue, Type-1 and Type-2 singularities are represented in red, and black, respectively.

workspace boundary. At first, we focus on the reconstruc-
tion of the external workspace border of Fig. 7b: to achieve
comparable accuracy in the workspace prediction, the opti-
mization approach required 300 points placed over a circum-
ference of radius of 1.3 m and a total computational time of
22 s whereas our algorithm required 48 s. The optimization
approach performs a reduced computational time since it re-
quires the solution of a single optimization problem to find
points on the border while the border reconstruction strat-
egy of the BFA requires multiple IGSP solutions to approx-
imate the border as shown in Fig. 3c. However, the opti-
mization algorithm [30] is not capable to identify holes in
the workspace, (as the one present in the RFRFR robot
workspace), and a different placement of points v∗ is re-
quired to attempt the inner hole identification. This is a
known limitation of the optimization algorithm, previously
mentioned in [30] and, in this direction, the BFA performs
better since it is able to identify the workspace hole by run-
ning a second exploration routine.

A second issue worthy to be mentioned is related to the
prediction of the exterior border: the optimization approach
may fail when the robot admits multiple working modes
(Fig. 8c). In general, the optimization approach finds the
robot configuration that minimizes the distance between the
EE and a user-selected outer point, but there is no constraint

that prevents the change in the robot working mode. An ex-
ample of this issue is reported in Fig. 8c: the optimization
approach individuates stable solutions that present a shorter
distance from points v∗, but these configurations are reach-
able only by crossing the Type-1 singularity that the opti-
mization approach is not able to individuate. On the other
hand, the BFA does not suffer this issue, since it is based on
the exploration of the boundary by successive iteration in the
vicinity of a previously detected boundary.

4.2 3-PFR robot
This subsection investigates the workspace of a 3 −

PFR robot. In this case study the capability of investigating
workspace that involves the position and the orientation si-
multaneously. Following the terminology of [9], we seek to
compute the total orientation workspace of a planar CPR.

The 3 − PFR robot has been the focus of the authors
previous work [22] where its workspace has been analyzed:
in this work, a different arrangement of the prismatic actua-
tors has been employed (Fig. 9a) with the goal of obtaining
wider workspaces. The 3 − PFR robot has three prismatic
actuators (P ): we denote with Lr = 2 m the finite length of
the actuators. The beam extremity is actuated by the move-
ment of the rails and the beam tip is passively connected to
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(a) Orientation workspace at pp =
[0; 0; 0.8]m (b) Zero torsion workspace. (c) Constant torsion slice at γ = 25◦

Fig. 11: Workspace computation of the 6 − RFS robot: the orientation workspace at pp = [0; 0; 0.8] (a), the zero-torsion
workspace (b), the constant torsion workspace at γ = 25◦ (c). Results obtained with the approach of [10] in dark blue,
Type-1 and Type-2 singularities are represented in red, and black, respectively.

a platform of diameter dP = 0.15 m through passive rev-
olute joints. Joint limits are taken into account during the
workspace evaluation.

In order to investigate the orientation ability of the
3 − PFR robot over the workspace, we evaluate the to-
tal orientation workspace by exploring the end-effector po-
sition p = [x, y] and orientation θ over a three-dimensional
grid that discretizes xyθ. The xy plane is sampled with a
grid size of 10 mm, while θ is discretized by a 2◦ sam-
pling over the range [−180, 0]◦, and τ = 100, nexp = 20
according to the heuristics of Sec. 3.2.1. The resulting to-
tal orientation workspace is displayed in Fig. 9b. Even if
the workspace is connected in the interval θ ∈ [−90, 0]◦,
by increasing the EE orientation, the constant orientation
workspace splits into three non-connected components, as
highlighted in Figs. 9d,9e: these slices may be difficult to
compute with state-of-the art approaches based on the iter-
ative computation of several xy slices with different orien-
tations. Concerning the computational time comparison, the
BFA required 53 mins. while 4h 33 min are required with the
approach of [10].

4.3 6-RFS robot
This subsection investigates the workspace of a 6−RFS

robot. As commonly done in parallel robots [9], there is lim-
ited interest in the evaluation of the 6-DoF capabilities simul-
taneusly and frequently position and orientation abilities are
evaluated separately. Thus, following the terminology of [9],
this case study shows the possibility of efficiently evaluating
translational workspace and orientation workspace of spatial
CPRs.

The 6−RFS robot (Fig. 10a) was previously character-
ized in [10], and it has six revolute actuators that actuate the
beams proximal section placed at the robot base over a circle
of diameters dB = 0.8 m. Flexible beams are connected to
a rigid platform through passive spherical joints (S), such as
the one employed in the design of [56]. The platform diam-

eter is dP = 0.4 m, and its overall mass is 100 g. Beams
are arranged over the platform as described in Fig. 10a, with
do = 0.1 m being the distance of adjacent joints on the same
corner. Platform weight and legs gravity aligned along −z
are considered during the simulations.

The investigation of the 6 − RFS robot workspace
starts with the translational workspace computation where
the platform orientation is fixed as Rp = I3. A three-
dimensional uniform grid samples the xyz space with grid
limits of [−1,+1] m at each direction and a sampling size of
10 mm. The exploration parameters are selected as τ = 100
and nexp = 20. The translational workspace is displayed in
Fig. 10b: by employing the BFA we reduced the computa-
tional time to 2h and 30 mins in comparison to the 14 h 30
mins required by [10]. Moreover, state-of-the-art approaches
based on slice evaluation of the workspace boundaries may
difficultly evaluate the robot workspace in cases of slices as
the one represented in Fig.10e,10f since holes or not con-
nected components are present.

Then, the orientation workspace of the 6−RFS robot is
evaluated at pP = [0, 0, 0.8] m. To perform the evaluation,
a Tilt-and-Torsion orientation parametrization is employed
[57], and the platform rotation matrix Rp is defined as:

Rp = Ra(α, β)Rz(γ) (23)
Ra = Rz(α)Ry(β)Rz(−α) (24)

with Rz,Ry being elementary rotation matrices and α, β, γ
three orientation angles: while α, β defines the tilt of the plat-
form, the angle γ defines it torsion. A uniform grid of step
2◦ discretized the angle values, with α ∈ [−180, 180]◦, β ∈
[0, 90]◦, γ ∈ [−90, 90]◦. In this case, to define τ , we con-
sidered the longer task-space direction (α direction), which
results in a higher τ and more complex exploration paths.
Thus, τ = 45 and nexp = 20.

The resulting orientation workspace, displayed in cylin-
drical coordinates, is reported in Fig. 11a. Concerning the
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(a) 6− FR with an intermediate constaint. (b) Side view. (c) Top view.

Fig. 12: The 6− FR with an intermediate constraint. The robot architecture is shown in (a); side and top views of the robot
are proposed in (b), and (c) respectively, to illustrate beam connections and relevant design dimensions.

computational time, the BFA required 1 h and 52 mins while
the flooding algorithm [10] employed 10 h and 3 mins. Then,
the zero Torsion slice is extracted from the volume and re-
ported in Fig. 11b. Maximum tilt abilities (β = 59◦) are
reached with γ = 25◦ (Fig. 11c).

4.4 6-FR with an intermediate constraint
This subsection focuses on the workspace evaluation of

a CPR with a more complex structure than the previous case
studies to further demonstrate the generality of the BFA. We
focus on a 6−FR with an intermediate constraint (Fig. 12a),
similar to the prototype of [32]. As before, we investigate
position and orientation abilities separately.

The 6−FR has six linear actuators that vary the lengths
of the beams placed at the robot base over a circle of diame-
ters dB = 0.12 m (Fig. 12b). Beam distal sections are con-
nected to a rigid platform through passive revolute joints (R),
with platform diameter dP = 0.08 m, and an overall mass of
100 g. An intermediate disk of diameter dd = 0.10 m, which
prevents large nonlinear beam deflections [32], is placed
between the base and the platform. Cylindrical pairs are
mounted over the disk and, differently from [32], the disk
is mounted over a passive flexible beam of constant length
Lb. Beams are arranged as described in Fig. 12c: the i-th
beam is actuated by the linear motor installed on Ai. Then,
the beam passes through the cylindrical disk pair placed in
Di, and the distal section of the beam is connected to the
platform revolute joint in Bi. The distances between adja-
cent joints on the same corner are dOp = dOb = 0.02 m for
the platform and the base, respectively. Platform and disk
weights, aligned along −z, are considered during the simu-
lations. We consider linear actuator bounds of [0.2, 1.0] m.

As done for the previous case study, we investigate posi-
tion and orientation capabilities separately. We focus on the
translational workspace computation, with platform orienta-
tion fixed as Rp = I. A three-dimensional uniform grid of

dimension [−1,+1] in each direction samples the xyz space,
with a sampling size of 10 mm in each direction and τ, nexp

initialized to 100, 20, respectively.
We computed the translational workspace by consider-

ing three different values of Lb Fig. 13) and, for each simula-
tion, we considered the workspace volume (obtained by us-
ing the boundary Matlab function) to measure the workspace
extension. With Lb =0.6 m (Fig. 13a), the BFA required ap-
proximately 1h 40 mins compared to the approximately 12 h
of [10]. The workspace volume, mainly delimited by actua-
tors limits boundary, is 0.0137 m3. Instead, a larger volume
of 0.0376 m3 is obtained by lowering the disk to Lb =0.4 m
(Fig. 13b). In this case, the BFA required 4h 46 mins and the
flooding algorithm of [10] almost 28 h. By further reducing
Lb to 0.2 m, we obtain the workspace represented in Fig. 13c.
The workspace volume is reduced to 0.0175 m3 and the re-
quired computational time is 202 min for the BFA (almost
13h for [10]). In both Lb =0.2, Lb =0.6 we obtained similar
workspace volumes, but the computational time drastically
differs: for Lb = 0.2, the workspace is mainly delimited
by Type-1 singularities where the solver requires several it-
erations to converge while, for Lb = 0.6, the boundary is
defined mostly by mechanical limits where the IGSP can be
solved with reduced computational cost.

Concerning the orientation capabilities, we describe the
platform orientation by employing a Tilt-and-torsion de-
scription and the platform orientation matrix Rp is obtained
by Eq. (24). Figure 14 compares zero torsion workspace at
pp = [0; 0; 0.8] by varying Lb. The maximum tilt angle of
β = 48◦ is reached with Lb =0.6 m (Fig. 14a), but the ori-
entation abilities are more uniform w.r.t. α if Lb =0.4 m
(Fig. 14b). The orientation abilities are instead reduced for
Lb =0.2 m (Fig. 14c).

5 Conclusion
In this paper, we proposed an algorithm for the computa-

tion of workspace boundaries of CPRs. Our algorithm, based
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(a) Lb = 0.6 m (b) Lb = 0.4 m (c) Lb = 0.2 m

Fig. 13: Comparison of translational workspaces at Rp = I by varying Lb. Type-1 singularities are represented in red,
Type-2 singularities in black, results obtained with the approach of [10] in dark blue, and boundaries generated by actuator
limits are represented in green.

(a) Lb = 0.6 m (b) Lb = 0.4 m (c) Lb = 0.2 m

Fig. 14: Comparison of zero torsion workspaces at pp = [0; 0; 0.8]m by varying Lb. Type-1 singularities are represented
in red, Type-2 singularities in black, results obtained with the approach of [10] in dark blue, and boundaries generated by
actuator limits are represented in green.

on a free-space exploration strategy and on a boundary re-
construction algorithm, reduced the computational time w.r.t.
to actuation or task-space discretization strategies by identi-
fying only the boundaries of CPRs’ workspace. Addition-
ally, the BFA included several kinds of constraints such as
singularities, equilibrium stability, joint and material lim-
its, all simultaneously during the workspace computation.
In comparison to state-of-the-art boundary computation ap-
proaches, the BFA provided a useful tool to identify holes
in the workspace that may occur in CPRs: this is possible
thanks to the proposed space exploration strategy. With the
aim of being a general workspace evaluation tool, the BFA
works with CPRs modelling strategies based on general dis-
cretization assumptions, which increases the algorithm gen-
erality. Four case studies demonstrated the effectiveness
of the proposed approach in terms of i) computational-time
reduction w.r.t. actuation or task-space discretization ap-
proach, ii) general applicability and results correctness that
some state-of-the-art approach may not achieve. We believe
our algorithm is well suited for design explorations, where
the reduced computational time and the algorithm generality
are relevant advantages. In this scenario, the user explores

the robot workspace various times by changing the values of
some design variables. The user stops the process when the
robot workspace volume and shape satisfy some task-driven
requirements.

6 Limitations and future development.
In this Section, we stress the main limitations of our

work. First, we recognize that the use of attractive points
is effective, but it may fail when parameters are defined im-
properly. As any heuristic methods, we acknowledge that
parameter tuning is critical for the best performance of the
algorithm. For our algorithm, the number of explorations
nexp and the exploration parameter τ require trial-and-error
tuning. At the end of Section 3, we discussed how to pos-
sibly tune the parameters. However, we do not exclude that
better heuristics may be defined.

Even though our algorithm is able to identify inter-
nal workspace boundaries (namely, holes in the workspace)
thanks to the proposed exploration strategy, there is no cer-
tainty of identifying all of them. However, to the authors
knowledge, no state-of-the-art algorithm for the boundary
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computation of continuum robots demonstrated the ability to
identify holes in the workspace. A correct tuning of τ, nexp

gives higher assurance to find all the workspace borders, but
no proof is available.

The computational time of our methods is higher than
the one of highly specialized boundary computation algo-
rithms (e.g. [30]), usually defined for a single class of CRs,
or even a single CR. In the authors opinion, this limitation
is the price to be paid for a more generally applicable algo-
rithm, with the additional benefits outlined in the paper.

Future work will be directed toward the application of
the BFA for more complex workspace explorations. We be-
lieve that a possible extension of the BFA for the reachable
workspace computation may be envisioned. For example,
a first exploration of the translational workspace (orienta-
tion parameters are fixed to ϕ1) may be conducted to find a
point on the workspace boundary. Then, at the boundary lo-
cation, the end-effector orientation is explored by using the
boundary flooding algorithm for the orientation workspace
exploration. If there exists a set of the orientation parame-
ters ϕ2 where the robot lies within the workspace, ϕ2 may
be selected as the new orientation parameters, and the trans-
lational boundaries further explored.
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