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LOW-RANK-MODIFIED GALERKIN METHODS FOR THE
LYAPUNOV EQUATION∗

KATHRYN LUND† AND DAVIDE PALITTA‡

Abstract. Of all the possible projection methods for solving large-scale Lyapunov matrix equations, Galerkin
approaches remain much more popular than minimal residual ones. This is mainly due to the different nature of the
projected problems stemming from these two families of methods. While a Galerkin approach leads to the solution of
a low-dimensional matrix equation per iteration, a matrix least-squares problem needs to be solved per iteration in a
minimal residual setting. The significant computational cost of these least-squares problems has steered researchers
towards Galerkin methods in spite of the appealing properties of minimal residual schemes. In this paper we introduce
a framework that allows for modifying the Galerkin approach by low-rank, additive corrections to the projected matrix
equation problem with the two-fold goal of attaining monotonic convergence rates similar to those of minimal residual
schemes while maintaining essentially the same computational cost of the original Galerkin method. We analyze the
well-posedness of our framework and determine possible scenarios where we expect the residual norm attained by
two low-rank-modified variants to behave similarly to the one computed by a minimal residual technique. A panel of
diverse numerical examples shows the behavior and potential of our new approach.
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1. Introduction. We are interested in the numerical solution of large-scale Lyapunov
equations of the form

(1.1) AX +XA∗ + CC∗ = 0,

where A ∈ Cn×n is large and sparse and C ∈ Cn×r, r � n, has low rank. Throughout
the paper, we use plain uppercase italic letters to refer to square matrices (e.g., A), boldface
uppercase italic letters to refer to block vectors (e.g., C), and boldface lowercase italic letters
for column vectors (e.g., c). When a square matrix has block structure, it is denoted by a
script (calligraphic) letter (e.g., H), and the concatenation of block vectors into a basis is
denoted with a bold script (calligraphic) letter (e.g., V). Matrices with Kronecker structure are
formatted with upright bold sans serif font (e.g., H).

The Lyapunov equation (1.1) is encountered in many applications. For instance, in some
model reduction [1] and robust/optimal control strategies [37], a Lyapunov equation, or a
sequence of such equations, has to be solved. Moreover, the discretization of certain elliptic
partial differential equations (PDEs) leads to an algebraic problem that can be often represented
in terms of a Lyapunov equation; see, e.g., [29]. We refer the interested reader to the survey
papers [7, 33] and the references therein for more details about the aforementioned applications
and further research areas where Lyapunov equations play an important role.

We assume the matrix A to be stable: its spectrum is contained in the left-half open
complex plane C−. Therefore, the solution X to (1.1) is Hermitian positive semidefinite [35].
Moreover, it is well known that the singular values ofX rapidly decay to zero, if certain further
assumptions on A are considered; see, e.g., [3, 31]. In this case, the solution X can be well
approximated by a low-rank matrix ZZ∗ ≈ X , Z ∈ Cn×t, t� n, and the computation of the
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low-rank factor Z is the task of the so-called low-rank methods. Numerous, diverse algorithms
belong to this broad class of solvers. Some examples are projection methods [10, 32], low-
rank alternating direction implicit (ADI) methods [25, 26], sign function methods [4, 5], and
Riemannian optimization methods [36]. A more complete list of low-rank solvers can be
found in the surveys [7, 33].

We focus on projection methods, and we propose a novel framework for solving (1.1).
Given a suitable subspace K and a matrix Vm ∈ Cn×mr, mr < n, whose columns represent
an orthonormal basis of K , projection methods seek an approximate solution Xm to (1.1) of
the form Xm = VmYmV∗m. The square matrix Ym ∈ Cmr×mr can be computed in different
ways. Most of the schemes available in the literature compute Ym by imposing a Galerkin
condition on the residual matrix Rm = AXm +XmA

∗ −CC∗. Imposing such a condition,
namely V∗mRmVm = 0, is equivalent to computing Ym as the solution of the projected
Lyapunov equation

(1.2) HmY + YH∗m + E1ΓΓ∗E∗1 = 0,

whereHm = V∗mAVm, V1Γ is the economic QR factorization of C, and E1 = e1 ⊗ Ir; see,
e.g., [10, 32].

A less explored alternative consists of computing Ym by imposing a minimal residual
(MR) condition, namely, we compute Ym as follows:

(1.3) Ym = arg min
Y

‖HmY [Im 0] + [Im 0]∗YH∗m + E1ΓΓ∗E1‖F ,

whereHm = V∗m+1AVm and ‖ · ‖F is the Frobenius norm;1 see, e.g., [19, 27].
In spite of their appealing minimization property, MR methods for matrix equations are

not commonly adopted. The solution of the matrix least-squares problem in (1.3) can be
remarkably more expensive than solving (1.2); see [27], as well as our own numerical results
in Section 5. Moreover, the matrix Ym computed by (1.3) may be indefinite (in floating-point
as well as in exact arithmetic), meaning that the computed approximation Xm = VmYmV∗m
is as well, even though the solution X to (1.1) is semidefinite. For further discussion about
this peculiar drawback of MR methods for Lyapunov equations, see [30, Section 5], and
for a similar approach for algebraic Riccati equations with global Krylov subspace methods,
see [20].

Instead, we propose to compute Ym as the solution of a low-rank modification (LRM) of
(1.2), whereby the coefficient matrixHm is replaced byHm+M for a certain low-rank matrix
M. This approach is inspired by a similar technique for univariate matrix functions [13].
In particular, we consider the so-called “harmonic modification”M, which addresses some
computational issues of projection methods while maintaining interesting theoretical features.
We refer to the resulting method as a pseudo-minimal residual (PMR) method, given that it
appears to closely approximate the MR approximation for (1.1) with symmetric A.

In Section 2 we introduce a bivariate LRM framework that generalizes the univariate
one from [13]. We precisely define the PMR method in Section 3, quantify how close it is to
MR via an eigenvalue analysis, and propose another LRM that minimizes the residual over a
structured space of Kronecker sums. We show how general LRM approaches can be combined
with the compress-and-restart strategy of [24] in Section 4. Results of numerical experiments
are presented in Section 5, and we summarize our findings and contributions in Section 6.

1Computing Ym as in (1.3) is equivalent to imposing a Petrov–Galerkin condition on the residual for a specific
choice of the test space; see, e.g., [30, Section 5].
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2. Low-rank modification framework. An LRM framework for block Krylov subspace
methods (KSMs) has been previously developed for matrix functions; see, in particular, [13].
While much of the framework transfers easily to matrix equations, we must take some care,
since we are moving from a univariate framework to a bivariate one.

We begin by defining the mth block Krylov subspace for A and C in terms of the block
span, denoted here as span�:

Km(A,C) := span�{C, AC, . . . , Am−1C} =


m−1∑
j=0

AjC Γj : {Γj}dj=0 ⊂ Cr×r

 .

Note that Km(A,C) ⊂ Cn×r, i.e., its elements are block vectors. This is in contrast to
the column span treatment of block KSMs, which is often used for solving linear systems with
a column right-hand side. For a foundational resource on the different interpretations of block
KSMs and how they relate to each other, see [15].

Generating Km(A,C) via the block Arnoldi process gives rise to the block Arnoldi
relation

(2.1) AVm = Vm+1Hm = VmHm + Vm+1Hm+1,mE∗m,

where Vm+1 ∈ Cn×(m+1)r is orthonormal,

Hm =

[
Hm

Hm+1,mE∗m

]
is block upper Hessenberg, and Em = em ⊗ Ir is a unit block vector.

With the block Arnoldi decomposition, we can directly write the Galerkin approximation
to (1.1) over Km(A,C). First, we project (1.1) down and solve the mr ×mr problem

(2.2) HmY + YH∗m + E1ΓΓ∗E∗1 = 0.

Letting Y G
m ∈ Cmr×mr denote the solution to (2.2), we define the Galerkin approximation

to (1.1) as

XG
m := VmY

G
mV∗m.

We can make LRMs to the Galerkin solution in much the same way as for matrix
functions by simply replacing Hm in (2.2) with Hm +M, whereM = ME∗m for some
matrix M ∈ Cmr×r. It is possible to chooseM so thatHm +M has harmonic Ritz values –
as in the generalized minimal residual method – or so that certain Ritz values are prescribed;
see, e.g., [11, 12, 13] and Section 3. Most importantly, it is possible to chooseM so that the
resulting approximation is still in the product of the Krylov subspaces Km(A,C)×Km(A,C),
which Lemma 2.2 demonstrates.

Letting Y mod
m denote the solution to the modified problem,

(2.3) (Hm +M)Y + Y (Hm +M)∗ + E1ΓΓ∗E∗1 = 0,

leads to an approximate solution Xmod
m := VmY

mod
m V∗m, whose residual norm can be cheaply

computed, as shown in the next proposition.
PROPOSITION 2.1. Let Y mod

m be the solution to the Lyapunov equation (2.3). Then the
residual matrix Rmod

m = AXmod
m +Xmod

m A∗ + CC∗ can be written as

(2.4) Rmod
m = Vm+1Gm

 Ir
Ir −Ir
−Ir

G∗mV∗m+1 ∈ Cn×n,
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Algorithm 1 LRM Galerkin approach for Lyapunov equations.

1: input A ∈ Cn×n, C ∈ Cn×r, mmax, ε
2: output Vm =

[
V1 V2 · · · Vm

]
∈ Cn×mr, Y mod

m ∈ Cmr×mr

3: Compute an economic QR factorization of C = V1Γ
4: for m = 1, . . . ,mmax do
5: Compute the next basis block Vm+1 and updateHm

6: Compute Y mod
m as the solution of (2.3)

7: Compute ‖Rmod
m ‖F

8: if ‖Rmod
m ‖F ≤ ε · ‖C∗C‖F then

9: return Vm and Y mod
m

10: end if
11: end for

where

Gm =
[
Em+1Hm+1,m IY mod

m Em IM
]
∈ Cn×3r

and

I =

[
Imr

0

]
∈ R(m+1)r×mr.

Moreover,

(2.5)
‖Rmod

m ‖2F = 2(‖Y mod
m EmH

∗
m+1,m‖2F + ‖Y mod

m EmM∗‖2F
+ 2 · trace((E∗mY

mod
m M)2)).

Proof. Thanks to the block Arnoldi relation (2.1) and since Xmod
m := VmY

mod
m V∗m,

Rmod
m =AXmod

m +Xmod
m A∗ −CC∗

=Vm((Hm +M)Y mod
m + Y mod

m (Hm +M)∗ −E1ΓΓ∗E1)V∗m
+ Vm+1Hm+1,mE∗mY

mod
m V∗m + VmY

mod
m EmH

∗
m+1,mV ∗m+1

− VmMY mod
m V∗m − VmY

mod
m M∗V

∗
m

=Vm+1(Em+1Hm+1,mE∗mY
mod
m I

∗ + IY mod
m EmH

∗
m+1,mE∗m+1

− IMY mod
m I

∗ − IY mod
m M∗I

∗)V∗m+1.

The results follow by plugging the low-rank formM = ME∗m into the expression above.
Similarly, by recalling that E∗m+1I = 0, I∗I = Imr, and E∗m+1Em+1 = Ir, a direct
computation shows (2.5).

In Algorithm 1 the low-rank-modified Galerkin approach for (1.1) is outlined, where
mmax denotes the maximum number of block basis vectors and ε > 0 is the desired relative
residual tolerance. Note that the algorithm reduces to the standard Galerkin approach whenever
M = 0.

The connection between matrix equations and bivariate functions of matrices has been
well established by Kressner [22, 23]. In fact, the LRM framework holds for bivariate
matrix functions in general, and thus a wide array of other applications, such as Fréchet
derivatives, the Stein equation, and time-limited and frequency-limited balanced truncation
model reduction [6, 14].

Let Pk,`(C,C) denote the space of bivariate matrix polynomials of degree k in the first
variable and degree ` in the second. Like univariate matrix functions [17], bivariate matrix
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functions can be defined as Hermite interpolating polynomials evaluated on the matrices A
and B (of compatible dimension). In more detail,

f{A,B}(CD∗) := pk,l{A,B}(CD∗) :=

k∑
i=0

∑̀
j=0

αijA
iC(BjD)∗,

for some degrees k and ` and scalars αij , as long as assumptions on the eigenvalues of
A and B are met; see [22, Definition 2.3]. In particular, the solution X to the Lyapunov
equation (1.1) can be expressed as the evaluation of the function f(x, y) = 1/(x + y), i.e.,
X = f{A,A∗}(CC∗).

We state an alternative to [23, Lemma 2] that accounts for LRMs for Lyapunov equations.
LEMMA 2.2. Let H and V denote the Arnoldi matrix and basis from (2.1). For all

bivariate polynomials q of degrees m− 1,m− 1 or less, it holds that

q(A,A∗)(CC∗) = V · q{H+M, (H+M)∗}(E1ΓΓ∗E1) · V∗,

as long asM = ME∗m for some M ∈ Cn×r.
The proof follows from a straightforward combination of [23, Lemma 2] and [13, Theo-

rem 2.7]. The extension to Sylvester equations is straightforward; one just has to be careful
with the dimensions for the second Krylov subspace.

In work being developed in parallel, it has been shown that equations of the form (2.2)
arise in Krylov subspace techniques combined with sketching; see [28]. However, there is a
fundamental difference between this setting and our novel low-rank-modified Galerkin (G)
method. Indeed, while in the former the form of M is dictated solely by the use of sketching,
here we choose M to try to meet a target behavior in our solver.

3. A pseudo-minimal residual method. The generalized minimal residual method
(GMRES) is a popular approach for linear systems, precisely because of the guaranteed
monotonic behavior of the residual [16]. It can be easily shown that (block) GMRES is
equivalent in exact arithmetic to an LRM of the full orthogonalization method (FOM); see [34,
Theorem 3.3] or [11, 13]. By assumingHm is non-singular and choosing

M PMR := H−∗m EmH
∗
m+1,mHm+1,m

andMPMR := M PMRE∗m, it holds that

Vm+1H†mE1 = Vm+1(Hm +MPMR)−1E1,

which is also the GMRES solution for the linear system AX = C.
The modificationMPMR in (2.3) does not guarantee a minimal residual approximation

to (1.1), but it comes close in many cases, leading to our moniker “pseudo-minimal residual”
(PMR). The well-posedness of (2.3) is difficult to prove in general, since predicting the impact
of the low-rank modificationM on the spectral properties of Hm is seldom doable. In the
next proposition, we show that this is possible in the case ofMPMR.

PROPOSITION 3.1. Let A have its field of values in the left half of the complex plane,
denoted here as C−.2 Then for all m such that mr < n and such that the block Arnoldi
algorithm does not break down,Hm +MPMR is stable (i.e., its eigenvalues have negative real
part), implying in particular that equation (2.3) has a unique, positive semidefinite solution.

2This property has been denoted as “negative definiteness” or “negative realness” in the literature, but with
varying consistency, and we spell it out to avoid confusion.
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Proof. The proof is essentially a special case of part of the proof of [13, Corollary 4.4].
For ease of reading, we reproduce it in our setting here.

Fix m such that mr < n and assume that the Arnoldi algorithm does not break down. It
follows from (2.1) and the assumption on A thatHm also has its field of values in C−. Now
let (λ,x) be an eigenpair ofHm +MPMR, namely,

(3.1) (Hm +MPMR)x = λx.

Recall thatMPMR = M PMRE∗m = H−∗m EmH
∗
m+1,mHm+1,mE∗m. Left-multiplying (3.1) by

H∗m leads to

(H∗mHm + EmH
∗
m+1,mHm+1,mE∗m)x = λH∗mx.

Therefore,

(3.2) λ =
x∗H∗mHmx + x∗EmH

∗
m+1,mHm+1,mEmx

x∗H∗mx
.

Since the numerator in (3.2) is a positive real number whereas the denominator has negative
real part, λ has negative real part as well; consequently,Hm +MPMR is stable. To conclude,
the solution of (2.3) for PMR is positive semidefinite, as it is the solution to a Lyapunov
equation with a stable coefficient matrix and a positive semidefinite constant term given by
E1ΓΓ∗E∗1 .

We have already mentioned that, in the MR framework, the matrix Ym is not necessarily
semidefinite even in the case ofA with field of values in C−, as the former is the solution to the
least-squares problem (1.3). The semidefiniteness of Ym can be included in the formulation of
the least-squares problem as an additional constraint; see, e.g., [30]. However, this constraint
increases the already expensive computational cost of the solution of (1.3). Proposition 3.1
shows that the semidefiniteness of Y PMR

m is guaranteed in our novel setting.
In the following, we explore connections between PMR and actual minimal residual

methods.

3.1. Connections to the minimal residual method. Recall that in the minimal residual
framework, Ym solves the matrix least-squares problem (1.3). By considering the Kronecker
representations of the solutions to (1.3) and (2.3), we can more directly relate the two ap-
proaches.

Define

Hm := Hm ⊗ I + I ⊗Hm

and

g
m

= vec(E1ΓΓ∗E∗1).

The non-singularity of the Kronecker matrix Hm follows from that ofHm. Note that we work
with these quantities only theoretically, as Hm has dimensions (m + 1)2r2 ×m2r2 and is
dense, making it prohibitively expensive, in practice, to form for even moderate m and r. The
vector g

m
has length (m+ 1)2r2. We can therefore define yMR

m := −H†g
m

, which minimizes
‖Hmy + g

m
‖F. In fact, due to the equivalence between (1.3) and the Kronecker problem

‖Hmy + g
m
‖F, it holds that yMR

m = vec(Y MR
m ); see, e.g., [18, Chapter 4].

The PMR solution can be expressed in vectorized form as yPMR
m := −(Hm + MPMR

m )−1gm,
where

(3.3) MPMR
m := H−∗m Jm ⊗ I + I ⊗H−∗m Jm and Jm := EmH

∗
m+1,mHm+1,mE∗m.
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Note as well that, for MG := 0, we recover the vectorized Galerkin solution yG
m. Further-

more, the following result holds true.
PROPOSITION 3.2. Define

(3.4) MMR
m := H−∗m (Jm ⊗ I + I ⊗ Jm).

Then

yMR
m = −(Hm + MMR

m )−1gm.

Proof. The Moore–Penrose inverse (and Hm having full column rank) gives

(3.5) yMR
m = −(H∗mHm)−1H∗mg

m
.

Expanding H∗mHm results in

H∗mHm = (H∗m ⊗ I
∗ + I∗ ⊗H∗m)(Hm ⊗ I + I ⊗Hm)

= H∗mHm ⊗ I
∗I + I∗I ⊗H∗mHm +H∗mI ⊗ I

∗Hm + I∗Hm ⊗H
∗
mI

= H∗mHm ⊗ I + I ⊗H∗mHm +Hm ⊗H∗m +H∗m ⊗Hm + Jm ⊗ I + I ⊗ Jm
= H∗mHm + Jm ⊗ I + I ⊗ Jm.(3.6)

By [18, Lemma 4.3.1], it follows that

H∗mg
m

= ((H∗m ⊗ I
∗) + (I∗ ⊗H∗m)) vec(E1ΓΓ∗E∗1)

= vec(I∗E1ΓΓ∗E∗1H̄m) + vec(H∗mE1ΓΓ∗E∗1I)

= vec(E1ΓΓ∗E∗1H̄m) + vec(H∗mE1ΓΓ∗E∗1)

= ((H∗m ⊗ I) + (I ⊗H∗m)) vec(E1ΓΓ∗E∗1)

= H∗mgm,(3.7)

where H̄ = (H∗)T denotes the element-wise complex conjugate of H. Combining (3.6)
and (3.7) with (3.5) leads to the desired result:

yMR
m = −(H∗mHm + Jm ⊗ I + I ⊗ Jm)−1H∗mgm

= −(Hm + H−∗m (Jm ⊗ I + I ⊗ Jm))−1gm

= −(Hm + MMR
m )−1gm.

The modification matrices MPMR
m and MMR

m are indeed closely related.
LEMMA 3.3. With the notation above, we have

MPMR
m = MMR

m + H−∗m (H−∗m Jm ⊗H∗m +H∗m ⊗H−∗m Jm).

Proof. Multiplying MPMR
m and H∗m gives

H∗mMPMR
m = Jm ⊗ I + I ⊗ Jm +H−∗m Jm ⊗H∗m +H∗m ⊗H−∗m Jm.

Inverting H∗m immediately gives the desired result.
Lemma 3.3 implies that whenever the term H−∗m (H−∗m Jm ⊗ H∗m + H∗m ⊗ H−∗m Jm)

is small, the PMR solution is close to the MR one. This is the case, for instance, when
‖Jm‖F � 1. However, another interesting scenario where MPMR

m ≈ MMR
m is described in the

following theorem.
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THEOREM 3.4. LetHm = QmΛmQ−1m , Λm = diag(λ1, . . . , λmr) and Qm ∈ Cmr×mr,
be the eigendecomposition ofHm. Then

‖MMR
m −MPMR

m ‖
2
F ≤ 2m3r4qmc̄m max

i,j=1,...,mr

(|λj |2 + |λi|2)2

|λj |2 |λi|2 |λi + λj |2
,

where c̄m > 0 and qm = ‖Q−∗m ⊗Q−∗m ‖
2
F.

Proof. Again applying [18, Lemma 4.3.1], the pth column of MPMR (cf. (3.3)) can be
rewritten as

MPMR
m ep = (Q−∗m ⊗Q−∗m )(Λ−∗m Q∗mJm ⊗Q∗m +Q∗m ⊗ Λ−∗m Q∗mJm)ep

= (Q−∗m ⊗Q−∗m )(Λ−∗m Q∗mJm ⊗Q∗m +Q∗m ⊗ Λ−∗m Q∗mJm) vec(e`e
T
k )

= (Q−∗m ⊗Q−∗m ) vec(Q∗me`e
T
k J T

mQ̄mΛ−∗m + Λ−∗m Q∗mJme`e
T
k Q̄),

where p = (`− 1)mr + k, for some `, k ∈ {1, . . . ,mr},3 and Q̄m denotes the element-wise
complex conjugate of Qm.

Similarly for the p-th column of MMR
m (cf. (3.4)):

MMR
mep

= (Q−∗m ⊗Q−∗m )(Λm ⊗ I + I ⊗ Λm)−∗(Q∗mJm ⊗Q∗m +Q∗m ⊗Q∗mJm)ep

= (Q−∗m ⊗Q−∗m )(Λm ⊗ I + I ⊗ Λm)−∗(Q∗mJm ⊗Q∗m +Q∗m ⊗Q∗mJm) vec(e`e
T
k )

= (Q−∗m ⊗Q−∗m ) vec(Lm ◦ (Q∗me`e
T
k J T

mQ̄m +Q∗mJme`e
T
k Q̄m)),

where Lm is a Cauchy matrix whose (i, j)-th element is given by Li,j = (λ̄i + λ̄j)
−1, and ◦

denotes the Hadamard product. Note that Lm is well defined, due toHm being non-singular.
Thanks to the expression above, we first notice that the indexes of some of the zero

columns of MMR
m and MPMR

m coincide. Indeed, by recalling thatJm = EmH
∗
m+1,mHm+1,mE∗m,

Jme`e
T
k = 0 if both ` and k belong to {1, . . . , (m− 1)r}.

As a consequence, MPMR
m ep and MMR

mep may be different from the zero vector if and
only if p = (` − 1)mr + k is such that either ` or k is in {(m − 1)r + 1, . . . ,mr}.
We thus have to consider only these mr2 columns for achieving an upper bound on the
column-wise differences between MPMR

m and MMR
m . Let Dm := Q∗mJme`e

T
k Q̄m for either ` or

k ∈ {(m− 1)r + 1, . . . ,mr}. Then

‖MMR
mep −MPMR

m ep‖
2

F ≤
∥∥Q−∗m ⊗Q−∗m ∥∥2

F

∥∥Lm ◦ (DT
m +Dm)− (DT

mΛ−∗ + Λ−∗Dm)
∥∥2

F ,

otherwise, we are sure that MMR
mep = MPMR

m ep = 0.
A direct inspection of the entries of Lm ◦ (DT

m +Dm) and DT
mΛ−∗+ Λ−∗Dm shows that

eTi (Lm ◦ (DT
m +Dm))ej =

(Dm)j,i + (Dm)i,j
λ̄i + λ̄j

,

and

eTi (DT
mΛ−∗ + Λ−∗Dm)ej =

(Dm)j,i
λ̄i

+
(Dm)i,j
λ̄j

.

3Notice the abuse of notation here: ep ∈ Rm2r2 , whereas e`, ek ∈ Rmr .
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We thus have∥∥Lm ◦ (DT
m +Dm)− (DT

mΛ−∗ + Λ−∗Dm)
∥∥2

F

=

mr∑
i=1

mr∑
j=1

∣∣∣∣ (Dm)j,i + (Dm)i,j
λ̄i + λ̄j

− (Dm)j,i
λ̄i

− (Dm)i,j
λ̄j

∣∣∣∣2

=

mr∑
i=1

mr∑
j=1

∣∣∣∣ λ̄j λ̄i((Dm)j,i + (Dm)i,j)− (λ̄i + λ̄j)(λ̄j(Dm)j,i + λ̄i(Dm)i,j)

λ̄j λ̄i · (λ̄i + λ̄j)

∣∣∣∣2

≤ m2r2cm(`, k) max
i,j=1,...,mr

∣∣2λ̄j λ̄i − (λ̄i + λ̄j)
2
∣∣2∣∣λ̄j λ̄i · (λ̄i + λ̄j)
∣∣2

≤ m2r2cm(`, k) max
i,j=1,...,mr

∣∣λ̄2i + λ̄2j
∣∣2∣∣λ̄j λ̄i · (λ̄i + λ̄j)

∣∣2 ,
where cm(`, k) = ‖Dm‖2max. Notice that we can drop the conjugation in the expression above
thanks to the presence of the absolute value. Moreover, by recalling that ‖MMR

mep −MPMR
m ep‖F

6= 0 for (at most) mr2 columns, we have

‖MMR −MPMR‖2F =

m2r2∑
p=1

‖MMRep −MPMRep‖
2

F

≤2m3r4qmc̄m max
i,j=1,...,mr

∣∣λ2i + λ2j
∣∣2

|λjλi · (λi + λj)|2
,

where c̄m = max`,k cm(`, k) and qm = ‖Q−∗m ⊗Q−∗m ‖F.
Theorem 3.4 shows that the distance between MPMR

m and MMR
m can be related to the

magnitude of the function

f(x, y) :=

∣∣x2 + y2
∣∣2

|xy · (x+ y)|2
, x, y ∈ spec(Hm).

Since spec(Hm) ⊆W (A), where W (A) := {z∗Az ∈ C, ‖z‖ = 1} is the field of values of
A, one can compute an approximation of W (A) and study maxx,y f(x, y) in W (A). If this
value is small, then we can expect the PMR and MR methods to achieve similar results.

COROLLARY 3.5. Let A = A∗. With the notation of Theorem 3.4, it holds that

‖MMR
m −MPMR

m ‖
2
F ≤ 2m3r4c̄m max

i,j=1,...,mr

(λ2j + λ2i )2

λ2jλ
2
i (λi + λj)2

.

Proof. The proof follows from Theorem 3.4 by noticing that having an Hermitian A
impliesHm to be Hermitian so that Qm is unitary and spec(Hm) is real.

3.2. A residual-minimizing Kronecker sum approach. We introduce ⊕ to denote the
Kronecker sum between two matrices B,C ∈ Cp×p:

B ⊕ C := B ⊗ Ip + Ip ⊗ C.

Define Jm := Jm ⊕ Jm. It follows from Proposition 3.2 and the definitions in (3.3) that

yMR
m = −(Hm + H−∗m Jm)−1gm
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FIG. 3.1. Relative residuals with respect to iteration index for various methods and A as a 1D Laplacian.
“M-diff” is ‖MPMR −MNKS‖2/‖MPMR‖2.

and

yPMR
m = −((Hm +H−∗m Jm)⊕ (Hm +H−∗m Jm))−1gm.

It is tempting to conjecture that (Hm + H−∗m Jm) ⊕ (Hm + H−∗m Jm) is the closest
Kronecker sum to Hm + H−∗m Jm, under the Frobenius norm. In particular, it is possible to
find MNKS ∈ Cmr×r, where NKS stands for “nearest Kronecker sum,” such that

yNKS
m = −((Hm + M NKSE∗m)⊕ (Hm + M NKSE∗m))−1gm

and MNKS minimizes the Frobenius norm of (2.4), thereby potentially achieving a much lower
residual for the problem (1.1) than the PMR approach. More explicitly,

(3.8) MNKS := arg min

∥∥∥∥∥∥Gm(M)

 Ir
Ir −Ir
−Ir

Gm(M)∗

∥∥∥∥∥∥
F

,

where

Gm(M) :=[
Em+1Hm+1,m − I vec(((Hm + ME∗m)⊕ (Hm + ME∗m))−1gm)Em IM

]
and

I :=

[
Imr

0

]
.

Unfortunately, this conjecture is not true, as is demonstrated by the following script,
test_kron_sum_conj.m, in our toolbox, LowRank4Lyap, described in further detail
in Section 5. In this script, A is a one-dimensional discretization of the Laplace operator, and
the optimization problem (3.8) is solved via a general unconstrained optimization routine,
fminunc, with M PMR as an initial guess. See Figure 3.1 for a plot of the relative residuals
alongside the relative difference ‖M PMR −M NKS‖2/‖M PMR‖2 and Table 3.1 for the final
iterations of the plot. Although NKS, PMR, and MR appear to overlap, there are small visible
differences when one zooms in.

Although the NKS approach fits the LRM framework, as it is currently implemented, it
is not scalable in practice. Furthermore, for Hermitian A, NKS and PMR appear to be very
close, meaning that PMR may be sufficient for such scenarios. We also examine NKS for a
non-symmetric problem; see Example 5.6 in Section 5.
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TABLE 3.1
Relative residuals for final iterations in Figure 3.1.

Galerkin PMR MR NKS
46 1.2120e-02 5.3767e-03 5.1983e-03 5.1996e-03
47 5.3607e-03 3.7351e-03 3.6560e-03 3.6565e-03
48 5.0699e-03 3.0104e-03 2.9629e-03 2.9632e-03
49 1.0686e-02 2.8980e-03 2.8543e-03 2.8548e-03
50 7.0699e-14 5.5865e-14 7.8170e-14 5.5956e-14

4. Compress-and-restart strategy. Following earlier work with Kressner and Mas-
sei [24], we note that a compress-and-restart strategy is also viable for the LRM framework in
Section 2. The key is to express the residual in a factored form with a “core” matrix. For the
following, we drop the mod superscript to allow space for restart cycle indices, expressed as
(k), k = 1, . . . , kmax. The cycle length and block size are denoted as mk and rk, respectively,
and in the case of redundancies, they may be dropped in favor of just the cycle index.

From Proposition 2.1, recall that

R(1) := Vm1+1G
(1)L(1)(G(1))∗V∗m1+1 ∈ Cn×n,

where, for all k ∈ {1, . . . , kmax},

L(k) :=

 Irk
Irk −Irk

−Irk

 .
Denote C(2) := Vm1+1G

(1) ∈ Cn×r2 , where here r2 = 3r1. To restart, we compute the
next Krylov subspace Km2

(A,C(2)) and obtain the basis Vm2+1 ∈ Cn×(m2+1)r2 and block
Hessenberg Hm2+1 ∈ C(m2+1)r2×m2r2 . To compute an update to the solution from k = 1,
we then solve the projected problem

(4.1) (Hm2
+ M (2)E∗m2

)Y + Y (Hm2
+ M (2)E∗m2

)∗ + E1Γ(2)L(2)(Γ(2))∗E∗1 = 0,

where M (2) ∈ Cm2r2×r2 is an LRM and here E1 ∈ Rn×m2r2 . Letting Y (2) denote the
solution to (4.1), we can then compute Z(2) := Vm2

Y (1)V∗m2
and add it back to X(1). Doing

this iteratively leads to a final solution of the form

X = X(1) +

kmax∑
k=2

Z(k),

where each Z(k) = Vmk
Y (k)V∗mk

, Y (k) is the solution of the projected problem

(Hmk
+ M (k)E∗mk

)Y + Y (Hmk
+ M (k)E∗mk

)∗ + E1Γ(k)L(k)(Γ(k))∗E∗1 = 0,

V∗mk
C(k) = E1Γ(k),

C(k) := Vm(k−1)+1G
(k−1) ∈ Cn×r(k−1) ,

and

G(k) :=
[
Emk+1Hmk+1,mk

IY (k)Emk
IM (k)

]
∈ Cn×3rk .
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Although the residual at each iteration can be computed as in Proposition 2.1,

R(k) := Vmk+1G
(k)L(k)(G(k))∗V∗mk+1 ∈ Cn×n,

one clear downside to this approach is that the rank of R(k) triples each restart cycle. As
discussed in more detail in [24], we therefore need a compression strategy of the starting vector
C(k) from one cycle to the next. We do this in a symmetric fashion via [24, Algorithm 3].
We also employ a memmax parameter that dictates how many column vectors can be stored
per cycle and toggle the block size rk and maximum basis size mk accordingly per cycle.
See [24, Algorithm 4] for more details.

5. Numerical results. All numerical tests were written and run in MATLAB 2022a
and can be found in the repository LowRankMod4Lyap,4 hosted on GitLab. Every test was
run on a single, standard node of the compute cluster Mechthild,5 housed at the Max Planck
Institute for Dynamics of Complex Technical Systems in Magdeburg, Germany. A standard
node consists of two Intel Xeon Silver 4110 (Skylake) CPUs, each with eight cores, 64 kB L1
cache, and 1024 kB L2 cache at a clock rate of 2.1 GHz, as well as 12 MB of shared L3 cache.
We set maxNumCompThread in MATLAB to 4.

We consider a wide variety of numerical tests in this section. In Section 5.1 we compare
the convergence results among the G, MR, and PMR methods for both Hermitian and non-
Hermitian matrices A and plot the bound from Theorem 3.4 for problems with Hermitian A.
We study the performance of these methods for varying ranks r in Section 5.2. We see how
the compress-and-restart strategy works for PMR compared to G in Section 5.3.

Test matrices have either been generated by our own code or taken from the SuiteSparse
Matrix Collection [9] (and, in particular, originally from the Oberwolfach Benchmark Collec-
tion [21]) or the SLICOT Benchmark Collection [8].6 We provide descriptions for each matrix
below.

• bad_cond_diag: A is a diagonal matrix with logarithmically spaced values rang-
ing from 1 to 1012.

• conv_diff_3d: Central finite-differences stencil of three-dimensional convection–
diffusion operator. The matrix A has size n = N3, where N is the number of
discretization points in each direction. The parameter ε controls the viscosity domi-
nance, whereby smaller ε correlates with low viscosity and high convection.

• laplacian_2d: Central finite-differences stencil of the two-dimensional Lapla-
cian operator. The matrixA has size n = N2, whereN is the number of discretization
points in each direction.

• log_diag: Example 4 from [30]; A is non-normal but diagonalizable with loga-
rithmically spaced eigenvalues from 1 to 100.

• rail_1357: A symmetric, heat transfer, steel profile cooling matrix of size 1357×
1357 in the Oberwolfach Collection; C is determined by the problem.7

• iss: Component 1r of the International Space Station problem in the SLICOT
Collection; non-symmetric; C is determined by the problem.

Unless otherwise noted, the constant term CC∗ is built from uniformly distributed random
numbers (i.e., rand in MATLAB).

4https://gitlab.com/katlund/LowRankMod4Lyap
5https://www.mpi-magdeburg.mpg.de/cluster/mechthild
6The collection can currently be found at

https://github.com/SLICOT/Benchmark-ModelReduction.
7Note that the data is provided as a generalized Lyapunov equation, which we transform into a standard one. For

details, please see the code.
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5.1. Convergence behavior. For all examples in this section, we restrict ourselves to
the non-restarted version of each algorithm. In addition to the convergence results, we also
plot the eigenvalues of the solution Ym to the small problem (1.2), (1.3), or (2.3), as well as a
Ritz-value function based on the bound from Theorem 3.4,

f(x, y) :=

∣∣x2 + y2
∣∣2

|xy · (x+ y)|2
,

where the coefficients have been dropped. In each example, the function is evaluated on the
spectrum ofHm. All algorithms are halted after surpassing a relative residual of 10−6.

EXAMPLE 5.1. For the first example, we consider a log_diag problem with n = 1000
and r = 3. Notice that, in this example, A has field of values in the right half of the complex
plane C+, so the exact solution X to (1.1) is negative semidefinite.

The results are shown in Figure 5.1 and all methods perform similarly. However, MR
suffers from a slightly positive solution eigenvalue. Neither the Galerkin nor PMR approaches
produce positive eigenvalues, as expected from our theoretical analysis. The Ritz-valued
function shows that the difference between PMR and MR should be relatively small, confirming
what we see for the residual behavior.
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FIG. 5.1. Convergence results for Example 5.1.

EXAMPLE 5.2. We now consider a bad_cond_diag problem with n = 500 and
r = 3, with results shown in Figure 5.2. Both MR and PMR achieve nearly the same relative
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residual in the early iteration and improve over the Galerkin approach until later residuals, at
which point all methods overlap. The cluster of eigenvalues of A near zero poses numerical
challenges for all algorithms, leading to some positive eigenvalues in Ym. However, the
PMR approach minimizes the positive eigenvalues the best, with the largest having magnitude
O(10−16), while that of the Galerkin approach is O(10−11) and that of MR is O(10−7). As
for the Ritz-value function, it remains relatively small until near convergence, at which point
Jm is close to zero, causing a spike.
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FIG. 5.2. Convergence results for Example 5.2.

EXAMPLE 5.3. We begin to see a clearer advantage of the PMR approach for the
laplacian_2d problem with n = 104 and r = 3 in Figure 5.3. The PMR method overlaps
with MR very closely and reaches 10−6 ten iterations before the Galerkin method. As for the
solution spectra, there are fewer eigenvalues for MR and PMR due to the earlier convergence,
but we can see that all methods closely approximate the same spectra overall. The Ritz-value
function also remains relatively small for all iterations.

EXAMPLE 5.4. The conv_diff_3d problem, with n = 253 and r = 3 allows us to see
the effect that non-normality has on the behavior of each method. For a problem with strong
diffusion (ε = 10−2, left panel in Figure 5.4), we see that PMR overlaps with MR relatively
well and converges one iteration before the Galerkin method. As diffusion becomes weaker
(ε = 10−3, right panel in Figure 5.4), PMR drifts from MR and is unable to capture its more
drastic reduction in iterations (nine fewer versus three fewer, for MR and PMR, respectively).
This confirms our intuition that PMR better approximates MR for symmetric matrices A.
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Residual Solution spectra
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FIG. 5.3. Convergence results for Example 5.3.
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FIG. 5.4. Convergence results for Example 5.4.

EXAMPLE 5.5. With the rail_1357 problem, we get a look at a more practical
application. Although not reported in the plots in Figure 5.5, we first note that the Galerkin
and PMR methods both took about 2 minutes, while MR needed more than 35 minutes, to
achieve the same relative residual tolerance. We can also clearly see that the Galerkin method
does not produce a monotonic residual, while PMR follows the minimal residual of MR very
closely. In terms of iteration counts, there is practically no improvement over the Galerkin
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method, but residual monotonicity for the same computational cost is incredibly useful in
practice. The Ritz-value function is, however, counter-intuitive, given how well PMR visually
overlaps with MR. This suggests that a more precise metric might be needed to better measure
when PMR could be relied on to approximate MR. No method produces erroneous solution
eigenvalues.
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FIG. 5.5. Convergence results for Example 5.5.
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FIG. 5.6. Convergence results for Example 5.6.
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EXAMPLE 5.6. For the final example in this section, in Figure 5.6 we demonstrate how
badly PMR can behave when A comes from the iss problem and is far from symmetric.
Although PMR is in some ways less bad than Galerkin, both are far from monotonic, especially
with respect to the MR approach. We also compare both methods with NKS as described in
Section 3.2. As implemented, NKS is far from practicable, because an optimization problem
has to be solved each iteration. However, it is clear that it achieves a much lower residual with
fewer large jumps.

5.2. Performance relative to block size. We now examine how effective each approach
is relative to varying rank sizes. We consider just the laplacian_2d and conv_diff_3d
problems. All results are presented as heatmaps scaled by the results from the Galerkin
approach, to facilitate comparisons. We consider r ∈ {1, 2, 4, 8, 16}. The blue-green heatmaps
display timings ratios, while the orange-pink ones display a ratio of iteration counts. All tests
are run on a standard node of Mechthild as described at the beginning of Section 5.

EXAMPLE 5.7. Results for the laplacian_2d problem can be found in Figure 5.7. For
small r, both MR and PMR appear to have a strong advantage over the Galerkin approach in
terms of both timings and iteration counts. In fact, MR and PMR always have fewer iteration
counts. However, MR clearly begins to suffer for r = 4, and its overall timings become
increasingly worse as r increases. PMR in contrast remains competitive, always requiring
fewer iterations than Galerkin and being slightly faster in terms of timings, although the gains
decrease as r increases.
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FIG. 5.7. Performance results for Example 5.7.

EXAMPLE 5.8. For this conv_diff_3d problem we have fixed ε = 10−2. The results
in Figure 5.8 are similar to those for Example 5.7, with both MR and PMR outperforming the
Galerkin approach for r = 1. However, as r increases, MR becomes slower. Meanwhile, PMR
continues to demonstrate a slight advantage over Galerkin, with the advantage decreasing as r
increases.

5.3. Restarting. For the final set of examples, we study the behavior of the compress-
and-restart strategy and compare between the Galerkin and PMR approaches. We no longer
consider the MR approach, as it is ill-suited for a compress-and-restart strategy, due to it
lacking the appropriate type of low-rank modification formulation.

Our primary goal in this section is to study restarts and their effect on the monotonicity of
the residual. We therefore set the compression tolerance to machine epsilon (i.e., approximately
10−16 for IEEE int64) to effectively turn off compression.
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FIG. 5.8. Performance results for Example 5.8.

EXAMPLE 5.9. We again consider the bad_cond_diag problem with n = 100 and
r = 3 and residual plot in Figure 5.9. The maximum number of columns to be stored is set
to 100. Although PMR only improves over the Galerkin approach by a few iterations, its
monotonic residual makes it more reliable in practice.
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FIG. 5.9. Convergence results for Example 5.9.

EXAMPLE 5.10. We also look at the laplacian_2d once again, with n = 104 and
r = 3 and maximum number of columns set to 96. The results are shown in Figure 5.10.
Although the convergence of PMR is almost perfectly monotonic, it is notably slower than that
of the Galerkin method. It may therefore be reasonable to combine and switch methods after a
certain point – perhaps after the residual hits 10−4 – but determining a reliable heuristic in
practice remains an open challenge.

EXAMPLE 5.11. Finally, we return to the rail_1357 problem, whose results for
different maximum memory limits are shown in Figure 5.11. For the lower memory limit in
the left panel, we see a situation similar to that of Example 5.10, whereby the PMR residual
is smooth and monotonic but ultimately converges more slowly than that of the Galerkin
approach. In the right panel, we see how the behavior changes with a higher memory tolerance:
the PMR method is able to improve slightly and remain monotonic.

6. Conclusions and outlook. In this paper we have presented a new general framework
for solving large-scale Lyapunov matrix equations. Low-rank-modified Galerkin methods,
which include the Galerkin method as a special case with the zero modification, introduces
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FIG. 5.10. Convergence results for Example 5.10.
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FIG. 5.11. Convergence results for Example 5.11.

a suitable low-rank correction in the projected equation aimed at achieving a certain target
behavior. Driven by the goal of designing a computationally affordable scheme able to show a
convergence rate similar to a minimal residual approach, we have proposed two non-trivial
options for such a low-rank correction.

The first one, PMR, is defined by taking inspiration from the relation between FOM and
GMRES in the linear system setting. We showed that, under certain hypotheses on A, adopting
this correction leads to a projection method that is well defined. Moreover, we have depicted
possible scenarios where we expect the performance of our new solver to be close to that
achieved by MR. Our numerical results have confirmed such findings. On the other hand,
further analysis is needed to fully understand the relation between the two approaches and
other situations where PMR may be applicable.

The second low-rank correction we have proposed, NKS, is computed by minimizing the
current residual norm at each iteration. In spite of its appealing theoretical features, computing
this low-rank correction directly is unreasonably expensive, making its use limited in practice.
Designing ad-hoc, more efficient, optimization procedures is an avenue worth pursuing to
make this approach affordable in terms of computational cost. To this end, sketch-and-solve
methods like, e.g., the Blendenpik algorithm [2] could be a valid option.

Our new framework is sufficiently flexible to handle low-rank corrections different from
the ones we have proposed, and it would also be useful in designing low-rank corrections
targeting other goals as, e.g., a certain spectral distribution ofHm +M. We have also showed
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that, thanks to the low-rank format of the residual matrix computed by our novel low-rank-
modified Galerkin method, the latter can be successfully integrated in a compress-and-restart
scheme for matrix equations.

For the sake of simplicity, we have restricted our analysis to the use of polynomial
Krylov subspaces. However, generalizing our approach to the case of more sophisticated
approximation spaces like extended and rational Krylov subspaces is just a technical exercise.

As a possible outlook, we envision our new low-rank-modified Galerkin framework could
be applied to the solution of other matrix equations like, e.g., generalized Lyapunov equations
or algebraic Riccati equations.
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