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Simple Summary: This article discusses the potential of deep learning (DL) models in aiding
the diagnosis of endometrial pathologies through hysteroscopic images. While hysteroscopy with
endometrial biopsy is currently the gold standard for diagnosis, it heavily relies on the expertise of
gynecologists. The study aims to develop a DL model for automated detection and classification of
endometrial pathologies. Conducted as a monocentric observational retrospective cohort study, it
reviewed records and videos of hysteroscopies from patients with confirmed intrauterine lesions.
The DL model was trained using these images, with or without incorporating clinical factors. Results
indicate that while the DL model showed promising results, its diagnostic performance remained
relatively low, even with the inclusion of clinical data. The best performance was achieved when
clinical factors were included, with precision, recall, specificity, and F1 scores ranging from 80 to 90%
for classification and 85 to 93% for identification tasks. Despite slight improvements in clinical data,
further refinement of DL models is warranted for more accurate diagnosis of endometrial pathologies.

Abstract: Background: Although hysteroscopy with endometrial biopsy is the gold standard in the
diagnosis of endometrial pathology, the gynecologist experience is crucial for a correct diagnosis.
Deep learning (DL), as an artificial intelligence method, might help to overcome this limitation.
Unfortunately, only preliminary findings are available, with the absence of studies evaluating the
performance of DL models in identifying intrauterine lesions and the possible aid related to the
inclusion of clinical factors in the model. Aim: To develop a DL model as an automated tool for de-
tecting and classifying endometrial pathologies from hysteroscopic images. Methods: A monocentric
observational retrospective cohort study was performed by reviewing clinical records, electronic
databases, and stored videos of hysteroscopies from consecutive patients with pathologically con-
firmed intrauterine lesions at our Center from January 2021 to May 2021. Retrieved hysteroscopic
images were used to build a DL model for the classification and identification of intracavitary uterine
lesions with or without the aid of clinical factors. Study outcomes were DL model diagnostic metrics
in the classification and identification of intracavitary uterine lesions with and without the aid of
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clinical factors. Results: We reviewed 1500 images from 266 patients: 186 patients had benign focal
lesions, 25 benign diffuse lesions, and 55 preneoplastic/neoplastic lesions. For both the classification
and identification tasks, the best performance was achieved with the aid of clinical factors, with an
overall precision of 80.11%, recall of 80.11%, specificity of 90.06%, F1 score of 80.11%, and accuracy
of 86.74 for the classification task, and overall detection of 85.82%, precision of 93.12%, recall of
91.63%, and an F1 score of 92.37% for the identification task. Conclusion: Our DL model achieved a
low diagnostic performance in the detection and classification of intracavitary uterine lesions from
hysteroscopic images. Although the best diagnostic performance was obtained with the aid of clinical
data, such an improvement was slight.

Keywords: endometrium; uterus; polyps; fibroids; endometrial hyperplasia; endometrial cancer;
malignancy; neoplasia; carcinoma; endoscopy; minimally invasive

1. Introduction

Hysteroscopy with endometrial biopsy is an endoscopic tool that can be considered
the gold standard in the diagnosis of abnormal uterine bleeding (AUB) and endome-
trial pathology, as it allows the direct visual assessment of endometrium and subsequent
histopathological examination [1–4]. AUB can be caused by benign lesions, such as endome-
trial polyps, intracavitary myomas, and endometrial hyperplasia without atypias [5–7],
or pre-malignant and malignant lesions, such as atypical endometrial hyperplasia and
endometrial carcinomas [8]. Unfortunately, the experience of the gynecologist plays a
crucial role in identifying suspicious areas to be sampled and distinguishing between
several endometrial pathologies, with the possibility of failing the correct diagnosis [9].

A valuable help to overcome this limitation could be provided by deep learning
(DL), an artificial intelligence (AI) method. AI has recently been introduced in medicine,
particularly in disciplines based on the analysis of images, such as pathology, ultrasound,
and radiology [10]. For example, AI has shown interesting results in many medical image
analysis tasks, such as screening for breast cancer and prediction of lymph node metastasis
in cervical cancer [11,12]. In the realm of AI techniques, the utilization of DL for processing
and analyzing medical images emerges as highly promising. Deep Convolutional Neural
Networks stand as the prevalent DL method for pattern identification in images and videos.
Deep Convolutional Neural Networks are able to automatically learn a set of feature
detectors, usually over a number of layers (making the model “deep”), from a labeled
dataset that “trains” the model to recognize pathologies through image analysis [13,14]. To
prepare a DL model for operation, the main dataset is typically divided into two subsets:
a training set and a test set. The training set consists of data that are fed into the deep
learning network during the iterative training process, known as epochs. Throughout these
epochs, the network’s parameters are adjusted to enhance the desired outcome. Following
the completion of training, the test dataset is employed to evaluate the performance of
the finalized model [15]. DL applications for these tasks may represent a useful tool for
clinicians in decision-making and treatment planning [16]. To the best of our knowledge,
only two preliminary studies evaluated the performance of DL using hysteroscopy images
for diagnosis of benign and malignant endometrial lesions, with favorable results [17,18].
However, none of these studies assessed the performance of DL models in the identification
task of intrauterine lesions, as they only reported its accuracy in classifying intrauterine
pathologies. In addition, no study evaluated the inclusion of specific clinical factors in the
DL model to improve the performance. Moreover, preliminary data on DL performance
must be confirmed by different studies before accepting it as a potential clinical aid [19].

In the present study, we aimed to develop a DL model to provide an automated tool for
detecting endometrial pathologies and classifying them as benign or malignant intrauterine
lesions using hysteroscopic images from a consecutive series of women with pathologically
confirmed endometrial lesions.
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2. Materials and Methods
2.1. Study Protocol and Selection Criteria

The study followed an a priori-defined study protocol and was reported according to
the Standards for Reporting of Diagnostic Accuracy (STARD) [20]. The study was designed
as a monocentric observational retrospective cohort study.

We reviewed clinical records, electronic databases, and stored videos of hysteroscopies
from all consecutive patients with pathological confirmation of intracavitary uterine lesions
at IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, from January
2021 to May 2021. Retrieved hysteroscopic images were used to build a DL model for the
classification and identification of intracavitary uterine lesions with and without the aid of
clinical factors.

Intracavitary uterine lesions included endometrial polyps, fibroids, endometrial hy-
perplasia with and without atypia, and endometrial cancer diagnosed at histological
examination of hysteroscopic specimens.

The exclusion criteria were the absence of adequate histological examination, ab-
sence of iconographic documentation, presence of uterine dysmorphism, and absence of
intrauterine pathology.

2.2. Study Outcomes

The primary outcome was the accuracy of the DL model in the classification of in-
tracavitary uterine lesions (overall and by category of lesion) without the aid of specific
clinical factors to DL model performance.

The secondary outcomes were the following:

• accuracy of the DL model in the classification of intracavitary uterine lesions
(overall and by category of lesion) with the aid of specific clinical factors to DL
model performance;

• precision, sensitivity, specificity, and F1 score (i.e., the harmonic mean of precision
and sensitivity) of the DL model in the classification of intracavitary uterine lesions
(overall and by category of lesion), with and without the aid of specific clinical factors
to DL model performance;

• precision, sensitivity, and F1 score of the DL model in the identification of intra-
cavitary uterine lesions, with and without the aid of specific clinical factors to DL
model performance;

• the best performance of the DL model during testing in the identification and classifi-
cation of intracavitary uterine lesions (overall and by category of lesion).

Classification refers to the discrimination between three categories of intracavitary
uterine lesions: benign focal lesions (i.e., polyps and myomas), benign diffuse lesions
(i.e., non-atypical endometrial hyperplasia), and pre-neoplastic/neoplastic lesions (i.e.,
atypical endometrial hyperplasia and endometrial cancer). Instead, identification referred
to the detection of intracavitary uterine lesions. Given the inclusion of only patients with
intracavitary uterine lesions diagnosed at histological examination, true negatives were
absent for identification metrics. On the other hand, intracavitary uterine lesions of other
categories were considered as false negatives for classification metrics.

Clinical factors assessed for aiding DL model performance were age, menopausal
status, AUB, hormonal therapy, and tamoxifen use.

2.3. Hysteroscopy and Image Processing

Hysteroscopy with targeted biopsies of intracavitary uterine lesions through 5 French
instruments was performed in outpatient settings using 0.9% saline solution distension
and a Bettocchi hysteroscope (Karl Storz, Tuttlingen, Germany). Stills and images from
hysteroscopic videos of eligible patients were processed for DL model building. Images
and videos were captured with two different hysteroscopic systems, one high-definition
system and one standard-definition system. Features were extracted from the original
image. The system extracts the area of interest for the lesion detected at 224 × 224 pixels
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required for the classification task. Manual segmentation was performed by an experi-
enced hysteroscopist.

2.4. Deep Learning

We developed an end-to-end DL model for intracavitary uterine lesion identification
and classification. The deep learning process comprises three parts: training, validation,
and testing. The dataset was divided into three groups at random with a ratio of 60:20:20.
Two groups were used for training and validation, and the remaining group was used
for testing.

ResNet50 was used as a deep learning model since it can exhibit relatively high
accuracy with smaller size datasets and less expensive learning costs. ResNet50 was pre-
trained by a million natural images from the Microsoft Common Objects in Context dataset
and was fine-tuned using images from the training and validation dataset.

We used established techniques to reduce over-fitting during the validation process
with an iterative method: (a) data augmentation, which is a process synthetically generating
additional training examples by using random image transformations; (b) “early stopping”,
by which the weights of the network at the point of best performance are saved, as opposed
to the weights obtained at the end of training. The performance of the DL model was
evaluated using a balanced sampler on image units.

In our methodology, data augmentation was implemented online, meaning it was
applied in real-time during the training of the model. This approach differs significantly
from the traditional offline augmentation, where an augmented dataset is prepared in
advance before the training process begins. Each training batch underwent a unique set of
random transformations, ensuring that the model encountered a diverse range of variations
in the training images. This dynamic approach to augmentation is crucial in preventing the
model from overfitting, as it learns to generalize better from a constantly varying dataset.
The specific augmentation steps included in our process were as follows:

• Random Vertical and Horizontal Flipping: each image in the training batch had a
chance of being flipped either vertically or horizontally. This step introduces a variety
of orientations, helping the model to learn features that are orientation-invariant.

• Random Brightness Adjustment: the brightness of each image was altered using a
random factor ranging from 0.8 to 1.2. This variance in brightness ensures the model’s
robustness against different lighting conditions.

• Random Contrast Adjustment: similarly, the contrast of each image was modified
with a random factor within the same range (0.8 to 1.2). This step helps in training the
model to identify features under various contrast levels.

By incorporating these random transformations, our DL model benefits from a
more comprehensive and challenging training environment. This online method of data
augmentation plays a significant role in enhancing the model’s ability to accurately
classify and identify lesions under diverse imaging conditions, ultimately improving its
diagnostic efficacy.

Optimization of hyperparameters was performed using TPESampler as a sample,
and SuccessiveHalvingPruner as a pruner, and the train of each set of hyperparameters
was replicated 3 times. We used RepeatFactorTrainingSampler with the threshold op-
timized by hyperparameter optimization. The F1 score average was the optimization
metric on the validation set. The hyperparameters are shown in Table 1. Table 2 shows
the optimal hyperparameters.
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Table 1. Hyperparameters.

Hyperparameter Sampling Method Range/Options

Learning Rate (lr) Log Uniform Distribution 1 × 10−5 to 1 × 10−2

RPN Loss Weight Uniform Distribution 0 to 1
ROI Heads Loss Weight Uniform Distribution 0 to 1

ROIs Per Image Categorical 32, 64, 128, 256, 512
Random Brightness * Uniform Distribution 0 to 1
Random Contrast * Uniform Distribution 0 to 1
Repeat Factor Th ** Uniform Distribution 0.1 to 1

* related to data augmentation. ** minority class repetition factor.

Table 2. Optimal Hyperparameters.

Hyperparameter Value

Learning Rate (lr) 0.0015884830145038431
ROIs Per Image 256

RPN Loss Weight 0.8635956597511065
ROI Heads Loss Weight 0.5995106068965408

Repeat Factor Th ** 0.45776224748623207
Random Contrast * 0.2

Random Brightness * 0.2
* related to data augmentation. ** minority class repetition factor.

Clinical factors were incorporated into the Region Proposal Network (RPN) and
Classification Head and were concatenated to features extracted from the ROI Pooler
(Figure 1).
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3. Results
3.1. Study Population and Dataset

During the study period, 703 patients underwent hysteroscopy in our center. Four
hundred and thirty-seven were excluded from analysis due to lack of imaging or histological
examination or both.

We reviewed a total of 1500 images from 266 patients (image-to-patient ratio = 5.6): 186
(69.92%) patients had benign focal lesions (image-to-patient ratio = 5.97), 25 (9.39%) benign
diffuse lesions (image-to-patient ratio = 5.6), and 55 (20.67%) preneoplastic/neoplastic
lesions (image-to-patient ratio = 4.55).

Out of benign focal lesions, 21 were myomas, and 165 were polyps; out of benign dif-
fuse lesions, 19 were polypoid endometrium, and 6 were endometrial hyperplasia without
atypia; out of preneoplastic and neoplastic lesions, 7 were atypical endometrial hyperplasia,
12 were endometrial intraepithelial neoplasia, and 36 were endometrial cancers.

Clinical data about the whole study population and by category of intracavitary
uterine lesions are summarized in Table 3. Patients were randomly included in the training
(n = 157), validation (n = 54), and testing (n = 55) cohorts (Table 4).

Table 3. Clinical data on the whole study population and category of intracavitary uterine lesions.

Patients
(n = 266)

Benign Focal Lesions
(n = 186)

Benign Diffuse Lesions
(n = 25)

Preneoplastic and
Neoplastic Lesions

(n = 55)

Age, mean (range) 53.5 (27–87) 52 (27–83) 45 (29–76) 62.2 (39–87)
Menopausal status, n (%) 132 (49.62) 83 (44.62) 5 (20) 44 (80)

Abnormal uterine bleeding, n (%) 118 (44.36) 69 (37.09) 7 (28) 42 (76.3)
Hormonal therapy, n(%) 24 (9.02) 13 (6.98) 0 (0) 11 (20)
Tamoxifen users, n (%) 6 (2.25) 5 (2.68) 1 (4) 0 (0)

Table 4. Characteristics of the dataset.

Patients
(n)

Images
(n)

Patients in
Training Set

(n)

Images in
Training Set

(n)

Patients in
Validation Set

(n)

Images in
Validation Set

(n)

Patients in
Testing Set

(n)

Images in
Testing Set

(n)

Benign focal lesion 186 1110 111 667 37 273 38 170
Benign diffuse lesion 25 140 14 82 7 38 7 20

Preneoplastic and neoplastic lesion 55 250 32 159 10 35 10 56
Total 266 1500 157 908 54 355 55 237

3.2. Model Performance

Overall, the accuracy of the model in classifying uterine intracavitary lesions with-
out the aid of specific clinical factors was 85.09 ± 1.18%. Specifically, such accuracy
was 79.55 ± 1.29% for benign focal lesions, 90.1 ± 0.91% for benign diffuse lesions, and
85.63 ± 1.16% for malignant lesions.

Tables 5 and 6 show the accuracy, precision, sensitivity, specificity, and F1 score of the
DL model in the classification of intracavitary uterine lesions, without and with the aid of
specific clinical factors, to DL model performance, respectively.

Table 5. Accuracy, precision, sensitivity, specificity, and F1 score of the DL model in the classification
of intracavitary uterine lesions without clinical data. Values are expressed as % (95% CI).

Precision Recall Specificity F1 Accuracy

Benign focal lesion 82.96 ± 0.54 92.64 ± 2.14 36.85 ± 7.18 87.29 ± 0.92 79.55 ± 1.29
Benign diffuse lesion 29.93 ± 8.58 21.17 ± 5.83 97.13 ± 1.45 28.27 ± 4.02 90.1 ± 0.91

Pre-neoplastic/neoplastic lesion 51.7 ± 6.64 35.16 ± 7.67 94.32 ± 1.81 42.19 ± 5.32 85.63 ± 1.16
Overall 63.03 ± 6.14 49.66 ± 5.5 76.1 ± 3.67 52.58 ± 3.43 85.09 ± 1.18
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Table 6. Accuracy, precision, sensitivity, specificity, and F1 score of the DL model in the classification
of intracavitary uterine lesions with clinical data. Values are expressed as % (95% CI).

Precision Recall Specificity F1 Accuracy

Benign focal lesion 84.25 ± 1.18 94.31 ± 2.24 39.59 ± 6.79 88.8 ± 0.97 81.97 ± 1.15
Benign diffuse lesion 48.78 ± 6.22 29.92 ± 5.99 96.2 ± 1.45 34.45 ± 4.65 90.61 ± 1.14

Pre-neoplastic/neoplastic lesion 67.97 ± 5.51 32.19 ± 7.06 96.52 ± 1.35 43.01 ± 5.43 87.07 ± 1
Overall 67 ± 4.4 52.14 ± 5.37 77.44 ± 3.37 55.42 ± 3.76 86.55 ± 1.15

Table 7 shows the precision, sensitivity, and F1 score of the DL model in the identifica-
tion of intracavitary uterine lesions, with and without the aid of specific clinical factors, to
DL model performance.

Table 7. Precision, sensitivity, and F1 score of the DL model in the identification of intracavitary
uterine lesions, with and without the aid of specific clinical factors, to DL model performance. Values
are expressed as % (95% CI).

Clinical Factors Detection Precision Recall F1

No 66.41 ± 3.39 88.27 ± 2.54 72.87 ± 3.5 79.43 ± 2.55
Yes 66.58 ± 4.64 86.82 ± 3.34 73.49 ± 4.56 79.18 ± 3.62

For the classification task, the best performance was achieved in all the categories with
the aid of clinical factors, as shown in Table 8.

Table 8. Best performance of the DL Model in the classification task. Values are expressed as %.

Lesion Precision Recall Specificity F1 Accuracy

Benign focal lesion 85.23 94.07 46.34 89.44 82.95
Benign diffuse lesion 37.5 50 93.9 42.86 90.91

Pre-neoplastic/neoplastic lesion 72.73 27.59 97.96 40 86.36
Overall 80.11 80.11 90.06 80.11 86.74

For the identification task, the best performance was achieved with the aid of clinical
factors with detection of 85.82%, precision of 93.12%, recall of 91.63%, and an F1 score
of 92.37%.

4. Discussion

This study showed that the DL model had low overall accuracy in the detection
and classification of uterine intracavitary diseases. The best performance of the DL
model was obtained with the aid of clinical factors for both tasks. However, such an
improvement was slight.

Although hysteroscopy with endometrial biopsy appears as the gold standard di-
agnostic tool for AUB and uterine intracavitary diseases [22], it is affected by operator
experience in detecting suspicious areas to be sampled and distinguishing between sev-
eral diseases. Moreover, hysteroscopic diagnosis of uterine intracavitary diseases can be
challenging even if it is performed by expert operators [23]. Hysteroscopy has shown a
low sensitivity especially for endometrial hyperplasia since such disease may not show
evident hysteroscopic signs, simulating a second-phase or dysfunctional endometrium, or
endometrial polyps [1–4,9,24].

Recently, some studies have attempted to build DL models to try to overcome these
limitations. Takahashi et al. have recently employed DL models on 177 patients with
AUB in order to increase the hysteroscopy accuracy in cancer diagnosis [17]. In detail,
the Takahashi DL model distinguished atypical endometrial hyperplasia and endometrial
cancer from polyps, fibroids, or normal endometrium with a 90% accuracy. However, this
study might be affected by several limitations: (i) it did not evaluate the ability of the DL
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model in detection of endometrial lesions; (ii) it did not assess the possible aid of clinical
factors on machine learning performance; (iii) it did not include cases with non-atypical
endometrial hyperplasia; (iv) it did not evaluate histology as a reference standard for all
cases; (v) it used a dataset with images from only one hysteroscopic system, limiting the
generalizability of the findings.

Yet, Zhang et al. have built a DL model on 454 patients with histologically confirmed
intracavitary lesions, showing an overall accuracy of up to 80.8% and 90% in correctly
classifying lesions as benign or premalignant/malignant, respectively. However, also this
study did not evaluate DL model accuracy in the detection of endometrial lesions and
possible improvement in accuracy with the aid of clinical factors [18].

Zhao et al. developed a DL model to automatically detect only endometrial polyps in
real-time hysteroscopic videos with an accuracy of up to 95%; unfortunately, they did not
perform any classification of the lesions [25].

None of these studies used a DL model to identify and classify intracavitary uterine
lesions at the same time. Therefore, we built a DL model for these purposes and evaluated
its diagnostic performance (identification and classification) on hysteroscopy images from
women performing the exam for AUB or sonographic suspect of an intrauterine lesion,
then confirmed at pathological examination [26]. To the best of our knowledge, our study
may be the first study with these aims and study population in the literature. Furthermore,
our DL model may be the first one to include the aid of clinical factors in the field.

As previously stated, in the present study, our DL model showed a low accuracy in
the detection and classification of intracavitary diseases. This observation may reflect the
heterogeneity of uterine intracavitary pathology, the small size, and the heterogeneity of the
dataset. Moreover, the lack of images of normal cavities and the small number of patients
led to a dataset imbalance problem.

Anyway, the best performance of our DL model is close to that of the above-mentioned
larger studies. Our DL model might be an updated starting point for future improved DL
models in the field.

In order to improve the diagnostic performance of the DL model in the detection
and classification of intrauterine lesions, future research should be focused on specific
training of the DL machine on the detection between normal and abnormal cavities and
recognition of each category with a larger and balanced dataset including high-definition
images and videos. After DL model building, the model should undergo external validation
and improvement, with the inclusion of further images and videos from other centers.
When a high DL model performance is obtained, the inclusion of cases with other rarer
intrauterine pathologies (e.g., Mullerian malformations, atypical polypoid adenomioma,
pecoma, sarcoma, trophoblastic disease, retained products of conception) [27–30] might
make the DL model testable in the clinical practice thorough comparison of diagnostic
performance by expert endoscopists.

5. Conclusions

In this study, our DL model achieved a low diagnostic performance in the detection and
classification of intracavitary uterine lesions from hysteroscopic images. Although the best
diagnostic performance was obtained with the aid of clinical data, such an improvement
was slight. However, our DL model might be an updated starting point for future improved
DL models in the field based on larger datasets.

Our study underscores the importance of continued research in refining DL models
for uterine lesion detection and classification. Future efforts should prioritize the expansion
of datasets with high-definition images, the inclusion of diverse uterine pathologies, and
external validation across multiple centers. Moreover, the addition of normal uterine cavity
images and rarer intrauterine lesions to the training set might allow to enhance the DL
model’s diagnostic accuracy.

In conclusion, while our DL model represents a promising step towards automated
uterine lesion diagnosis, further refinement and validation is needed before its integration
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into clinical practice. By addressing current limitations and leveraging advances in AI
technology, future DL models hold the potential to significantly improve the accuracy and
efficiency of uterine pathology diagnosis, ultimately benefiting patient care and outcomes.
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