
Vol.:(0123456789)

Biomechanics and Modeling in Mechanobiology (2024) 23:1077–1090 
https://doi.org/10.1007/s10237-024-01825-7

ORIGINAL PAPER

Muscle synergy‑informed neuromusculoskeletal modelling 
to estimate knee contact forces in children with cerebral palsy

Mohammad Fazle Rabbi1,2 · Giorgio Davico3,4 · David G. Lloyd1,2 · Christopher P. Carty1,2,5 · Laura E. Diamond1,2 · 
Claudio Pizzolato1,2

Received: 18 September 2023 / Accepted: 9 February 2024 / Published online: 9 March 2024 
© The Author(s) 2024

Abstract
Cerebral palsy (CP) includes a group of neurological conditions caused by damage to the developing brain, resulting in 
maladaptive alterations of muscle coordination and movement. Estimates of joint moments and contact forces during loco-
motion are important to establish the trajectory of disease progression and plan appropriate surgical interventions in children 
with CP. Joint moments and contact forces can be estimated using electromyogram (EMG)-informed neuromusculoskeletal 
models, but a reduced number of EMG sensors would facilitate translation of these computational methods to clinics. This 
study developed and evaluated a muscle synergy-informed neuromusculoskeletal modelling approach using EMG recordings 
from three to four muscles to estimate joint moments and knee contact forces of children with CP and typically developing 
(TD) children during walking. Using only three to four experimental EMG sensors attached to a single leg and leveraging an 
EMG database of walking data of TD children, the synergy-informed approach estimated total knee contact forces compa-
rable to those estimated by EMG-assisted approaches that used 13 EMG sensors (children with CP, n = 3, R2 = 0.95 ± 0.01, 
RMSE = 0.40 ± 0.14 BW; TD controls, n = 3, R2 = 0.93 ± 0.07, RMSE = 0.19 ± 0.05 BW). The proposed synergy-informed 
neuromusculoskeletal modelling approach could enable rapid evaluation of joint biomechanics in children with unimpaired 
and impaired motor control within a clinical environment.
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1 Introduction

Cerebral palsy (CP) is a lifelong neurological disorder 
caused by a brain injury that occurred during birth or in 
the neonatal period and is characterised by alterations of 
movement and postural control (Dodd et al. 2002). Aber-
rant muscle activity in individuals with CP is likely caused 
by abnormal motor control, a reduced number of motor 
units, and increased excitability of alpha and gamma motor 
neurons (Mockford and Caulton 2010; Bar-On et al. 2015). 
These neural and non-neural impairments manifest in altered 
gait biomechanics (Wren et al. 2005). To understand muscle 
contributions to impaired gait biomechanics, muscle activ-
ity profiles from a small number of lower limb muscles are 
commonly incorporated into clinical decision-making algo-
rithms (Miller et al. 1997). However, these data alone are 
not sufficient to understand the altered muscle forces and 
joint contact forces in children with CP (Steele et al. 2012; 
Davico 2019), which are a plausible cause of the maladap-
tive processes associated with bone deformations (Bosmans 
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et al. 2014; Carriero et al. 2014; Kainz et al. 2021). The 
ability to monitor these internal biomechanical factors may 
contribute to improved understanding of the progression 
of bone deformities observed in paediatric population with 
CP and help establishing appropriate surgical interventions 
(Modlesky and Zhang 2020). Nonetheless, measurement of 
muscle and joint contact forces are invasive and therefore 
not suitable in a clinical setting.

Computational neuromusculoskeletal (NMSK) modelling 
is a non-invasive approach to estimate joint contact forces. 
Within NMSK modelling, several methods currently exist 
to compute the activity of muscles during movement, which 
combined with appropriate musculoskeletal geometry and 
contact models, enable estimation of joint contact forces. 
For example, static optimisation estimates muscle activity 
by minimising a target cost function (e.g. sum of squared 
muscle activations) while satisfying the dynamics of motion 
(Anderson and Pandy 2001; Shuman et al. 2019b). In this 
approach, muscle excitations estimated by the model reflect 
neither physiological muscle activity (Veerkamp et al. 2019; 
Davico et al. 2020) nor muscle co-contractions (Lloyd and 
Besier 2003). In contrast, electromyogram (EMG)-driven 
methods require a set of experimental EMG recordings to 
estimate muscle forces and in turn predict plausible joint 
moments (Lloyd and Besier 2003). Most recent EMG-
assisted approaches combine experimental EMG data with 
static optimisation to synthetise unmeasured muscle excita-
tions and track external joint moments (Sartori et al. 2014; 
Pizzolato et al. 2015). While static optimisation requires no 
measured EMG data, the latter are necessary for any EMG-
informed method (e.g. EMG-assisted or EMG-driven), 
which have consistently demonstrated excellent ability to 
estimate measured joint contact forces (Gerus et al. 2013; 
Saxby et al. 2016; Hoang et al. 2018, 2019; Bennett et al. 
2022). However, the use of EMG-informed approaches in 
clinical settings has been limited by practical challenges in 
collecting EMG data from a sufficient number of muscles 
due to time constraints and difficulties in applying elec-
trodes, as well as encumbrance to gait, especially in smaller 
children. Hence, only four to five EMGs are commonly 
recorded from children with CP during a gait assessment 
while the rest of the muscles remain unmeasured (Steele 
et al. 2015). Given that EMG data from up to 16 muscles 
may be required to develop a comprehensive EMG-informed 
NMSK model (Sartori et al. 2013; Ao et al. 2020), new 
methods that employ only a few experimental EMG record-
ings to estimate joint moments and contact forces would 
facilitate significant advances in the clinical assessment of 
these cohorts.

Estimation of unmeasured muscle activity may be 
facilitated using muscle synergies, which refer to the 
coordinated activation of a group of muscles during any 
rhythmic task (e.g. walking) (Ferrante et al. 2016). Muscle 

synergies are mathematically extracted from processed 
EMG data (i.e. muscle excitations), which results in two 
matrices known as the (i) excitation primitives, and (ii) 
muscle synergy weights (Cheung et  al. 2005). Excita-
tion primitives represent the magnitude-timing profile 
of the synergy, while muscle synergy weights represent 
the magnitude of each muscle’s excitation projected onto 
each excitation primitive (Lambert-Shirzad and Van der 
Loos 2017). Linear combinations of excitation primitives 
and muscle synergy weights can be used to reconstruct 
the original muscle excitations with errors, depending on 
number of synergies extracted. For instance, for walking, 
three to five muscle synergies can account for at least 90% 
variance of the original muscle excitations in healthy chil-
dren (Rozumalski et al. 2017), while in children with CP, 
a smaller number of synergies can achieve the same level 
of variance (Steele et al. 2015). The evidence of simpli-
fied control strategies employed by individuals with CP 
led us to speculate that synergies from children with CP 
could be considered a subset of those used by typically 
developing (TD) children. This speculation was supported 
by the ability to reconstruct a full set of lower limb mus-
cle excitations for children with CP combining minimal 
experimental EMG data and an existing database of mus-
cle excitations from TD children (Rabbi et al. 2022).

Albeit muscle synergy extrapolation methods are just 
emerging and are not extensively validated, their integra-
tion with NMSK models could enable investigating inter-
nal biomechanics using minimal experimental EMG data. 
Earlier studies incorporated muscle synergy approaches 
into the development of NMSK models in healthy adults 
(Allen and Neptune 2012), stroke survivors (Allen et al. 
2013; Meyer et al. 2016), and children with CP (Shuman 
et al. 2019a, b) to estimate joint moments and unmeasured 
muscle excitations. Those methods focused on tracking 
synergy excitation primitives as part of the optimisation, 
resulting in similar EMG tracking performance compared 
to an EMG-driven approach (Allen and Neptune 2012; 
Sartori et al. 2012; Walter et al. 2014). A NMSK model 
of a healthy and a post-stroke participant were also devel-
oped, wherein a calibrated EMG-driven approach was used 
to estimate unmeasured muscle excitations and hip joint 
moments (Ao et al. 2020). Nevertheless, all these studies 
extracted muscle synergies using a full set of measured 
EMG data, which is not desirable in clinical settings.

This study aimed to develop a synergy–informed NMSK 
modelling workflow that combined synergy extrapolation 
(Rabbi et al. 2022) with EMG-informed modelling (Piz-
zolato et al. 2015). We explored whether this approach, 
when using a small number of experimental EMG record-
ings, could produce plausible estimates of lower limb joint 
moments and knee contact forces in a TD paediatric popu-
lation and in children with CP, during walking.



1079Muscle synergy‑informed neuromusculoskeletal modelling to estimate knee contact forces…

2  Methods

The next subsections of the methods provide a summary 
of the study participants characteristics (2.1 Participants), 
followed by a brief description of how experimental data 
were processed (2.2. Data processing). Processed data were 
used to scale the musculoskeletal model geometry to each 
individual, followed by initial tuning of musculotendon unit 
(MTU) parameters and calculation of MTU kinematics and 
joint moments (2.3. NMSK model scaling and parameter 
tuning). Musculoskeletal data were then combined with 
experimental muscle excitations and used to first calibrate 
all the model’s parameters and then estimate muscle forces 
and a complete set of muscle excitations via EMG-assisted 
and static optimisation approaches (2.4 NMSK model cali-
bration and execution). The complete set of muscle exci-
tations from TD children, generated via the EMG-assisted 
method, was used as database for the synergy extrapolation 
method. A full set of muscle excitations, extracted via syn-
ergy extrapolation and a low number of experimental muscle 
excitations from children with CP, were then used as input 
to the calibrated NMSK model to calculate muscle forces 
(2.5 Synergy-informed NMSK modelling). Muscle forces 
calculated with each of the modelling approaches were input 
to a contact model (2.6 Knee joint contact model) to cal-
culate knee contact forces. Contact forces calculated using 
the proposed synergy-informed workflow were compared to 
those calculated from EMG-assisted and static optimisation 
to assess performance (2.7 Comparing synergy-informed, 
EMG-informed, and static optimisation NMSK modelling 
predictions), with information criteria used to evaluate the 
complexity of the different modelling solutions (2.8 Infor-
mation criteria applied to NMSK modelling). Finally, per-
formed statistical analyses were described (2.9 Statistical 
analyses).

2.1  Participants

Clinical gait data from a previous study (Davico et al. 2022) 
were used for analysis. Data were collected on three children 
with CP and three age-matched TD children (Table 1). All 
children with CP were independent walkers, i.e. classified 
as I (n = 2) or II (n = 1) according to the gross motor func-
tion classification scale (GMFCS). Participants with CP 
were excluded if they had received musculoskeletal surgery 
(e.g. muscle lengthening or botulinum injection) in the six 
months prior to the testing. Thirteen wireless bipolar EMG 
sensors (Zerowire, Aurion, Milan, IT. 1000 Hz) were placed 
on selected muscles (Table 2) of the right (TD participants) 
or most affected lower limb (participants with CP) by an 
experienced physiotherapist. Trajectories of 51 markers were 
collected using a 10-camera motion capture system (Vicon 
Motion System, Oxford, UK; 100 Hz) while the subjects 
performed overground walking trials at preferred walking 
speed (i.e. 0.9 ± 0.1 m/s). Motion capture and EMG data 
were recorded for 14 gait cycles (i.e. between consecu-
tive heel-strike of the instrumented leg). The study was 
approved by the Children’s Health Queensland Hospital 
and Health Services Human Research Ethics Committee, 
and informed consent was provided by each participant’s 
parent or guardian.

Table 1  Participants’ demographics

CP–cerebral palsy; m–metre; kg–kilogram; TD–typically developing; 
GMFCS–gross motor function classification scale

Subject Age (years) Height (m) Mass (kg) CP Type GMFCS

CP01 6.50 1.13 18.00 Hemiplegic I
CP02 11.16 1.43 30.60 Diplegic II
CP03 7.39 1.19 21.30 Diplegic I
TD01 10.45 1.38 32.90 - -
TD02 6.55 1.17 21.30 - -
TD03 6.96 1.16 19.00 - -

Table 2  List of the muscle tendon units included in the neuromuscu-
loskeletal model

* indicates muscles for which experimental EMG data were available

Musculotendon units Musculotendon units

1 Adductor brevis 18 Psoas
2 Adductor longus 19 Peroneus longus*
3 Adductor magnus1 20 Peroneus brevis
4 Adductor magnus2 21 Peroneus tertius
5 Adductor magnus3 22 Lateral gastrocnemius*
6 Biceps femoris long* 23 Medial gastrocnemius*
7 Biceps femoris short 24 Soleus*
8 Gluteus maximus1 25 Tibialis anterior*
9 Gluteus maximus2 26 Semimembranosus*
10 Gluteus maximus3 27 Semitendinosus
11 Gluteus medius1 28 Sartorius*
12 Gluteus medius2 29 Vastus lateralis*
13 Gluteus medius3 30 Vastus medialis*
14 Gluteus minimus1 31 Vastus intermedius
15 Gluteus minimus2 32 Rectus femoris*
16 Gluteus minimus3 33 Tensor fasciae latae*
17 Iliacus 34 Gracilis*
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2.2  Data processing

Motion capture data were cleaned and labelled in Vicon 
Nexus 2.6, then processed in MATLAB using the MOtoNMS 
toolbox (Mantoan et al. 2015). For all gait cycles, henceforth 
referred to as trials, both marker trajectories and ground 
reaction force data were filtered using 4th order 6 Hz low-
pass Butterworth zero-lag filter. Bipolar recorded EMG sig-
nals, from 13 selected muscles (Table 2) of the lower limb, 
were band-pass filtered (zero-lag 4th order Butterworth, 
30–400 Hz), full-wave rectified, low-pass filtered (zero-lag 
4th order Butterworth, 6 Hz) and then normalised to each 
muscle’s maximal excitation identified across all walking 
trials (Devaprakash et al. 2016), which produced the muscle 
excitations. Finally, the electromechanical delay was set to 
50 ms (Savage et al. 2023).

2.3  NMSK model scaling and parameter tuning

Each participant’s model was based on the OpenSim 
gait2392 generic model (Delp et al. 1990). To match each 
participant’s size, the generic musculoskeletal model was 
linearly scaled using motion capture data (Kainz et al. 2017), 
where individual bone scaling factors were calculated by 
minimising the Euclidean distances between corresponding 
experimental and virtual markers. MTU pathways defined by 
muscle origin, insertion, and via points were also scaled with 
the attached bones. Joint angles, joint moments, and MTU 
kinematics were respectively calculated using the inverse 
kinematics, inverse dynamics, and muscle analysis tools in 
OpenSim (v 3.3) (Delp et al. 2007). MTU parameters were 
tuned by morphometric scaling, wherein optimal fibre length 
and tendon slack lengths were optimised to ensure muscle 
fibres operated in the same region of the force–length and 
force–velocity curves as what established in the unscaled 
generic model (Modenese et al. 2016). The generic maximal 
isometric force value of each MTU was scaled based on each 
participant’s mass (Krogt et al. 2016) as:

where ms is the mass of the participant, while mg and Fmax
iso

 
are the mass and maximal isometric force values from the 
unscaled template model.

MTU kinematics and inverse dynamics calculated from 
the complete OpenSim musculoskeletal model, as well as 
experimental muscle excitations, were used as input to 34 
MTU’s (Table 2) (Sartori et al. 2012) and to four degrees of 
freedom (i.e. hip flexion/extension and adduction/abduction, 
knee flexion/extension, and ankle plantar/dorsi-flexion) of 
the instrumented leg within the calibrated EMG-informed 

(1)Fmax
s

= Fmax
iso

(
ms

mg

)2∕3

NMSK modelling (CEINMS) toolbox (Pizzolato et  al. 
2015).

2.4  NMSK model calibration and execution

CEINMS was used in a two-step process: Calibration and 
execution of each person’s NMSK model. Muscle activations 
were determined from muscle excitations using a nonlinear 
second-order activation dynamic model (Lloyd and Besier 
2003). Muscle forces were then calculated from muscle activa-
tion and muscle–tendon kinematics using a modified Hill-type 
MTU model, which incorporated a muscle contractile element 
and a parallel elastic component in series with an elastic ten-
don (Hill 1938; Lloyd and Besier 2003; Pizzolato et al. 2015). 
In this study, independent of the approach evaluated (i.e. 
EMG-assisted, static optimisation or synergy-informed), all 
models and simulations had the same Hill-type MTU model, 
which included an elastic tendon and a passive parallel elastic 
component. For all evaluated approaches, the calibrated MTU 
parameters (see below) were used.

An established calibration process in CEINMS was used 
to adjust the parameters that govern the muscle activation and 
MTU dynamics to the individual (Sartori et al. 2012; Piz-
zolato et al. 2015; Bennett et al. 2022). The calibration was 
performed using four of 14 processed trials for each partici-
pant. The remaining ten trials were used to evaluate the perfor-
mance of the developed workflow. In the calibration, the MTU 
parameters were allowed to vary to minimise experimental 
joint moment tracking errors (Sartori et al. 2014; Pizzolato 
et al. 2015; Hoang et al. 2018). Specifically, the initial opti-
mal fibre lengths in children with CP were reduced by 0.7 to 
represent the effect of overstretched sarcomeres during mus-
cle contractions (Mathewson and Lieber 2015), and then were 
allowed to vary by ± 10% from their initial values while tendon 
slack lengths were allowed to increase 0 to 10% to account for 
individual differences in both CP and TD cohorts (Barber et al. 
2012). Strength factors were assigned to functional muscle 
groups to further tune the force producing capability of each 
muscle (Sartori et al. 2012) and allowed to vary between 0.5 
and 1.5. Finally, muscle activation dynamics parameters were 
calibrated globally as: Shape factor was bounded between −3 
and 0 and recursive coefficients between −1 and 0 (Pizzolato 
et al. 2015).

After calibration, the NMSK models were executed using 
two different approaches (in CEINMS) to estimate muscle 
forces and, subsequently joint moments: EMG-assisted and 
static optimisation methods. EMG-assisted modelling (Sartori 
et al. 2014; Pizzolato et al. 2015) uses optimisation methods to 
improve joint moments estimation by minimally adjusting the 
experimental (EMG-derived or mapped) muscle excitations 
and synthesising excitations of unmeasured muscles (Sartori 
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et al. 2014). In this optimisation, the following objective func-
tion ( fEMG−assisted ) is minimised:

where EsumExc are the sum squared excitations, Emoment the 
joint moments tracking error (between OpenSim’s inverse 
dynamics and CEINMS predicted joint moments), and EEMG 
the muscle excitations tracking error (between experimen-
tal and adjusted muscle excitations). � , � and � are positive 
weighting coefficients. In this study, � and � were set to 1, 
and � was optimised to balance between Emoment and EEMG 
(Sartori et al. 2014). For static optimisation, α and β were 
set to 1 and γ set to 0.

The EMG-assisted approach was used to create a set of 
lower limb muscle excitations for all 34 muscles for each 
TD participant (Fig. 1). Specifically, each excitation set was 
created by combining the 13 experimentally EMG-derived 
muscle excitations and 21 muscle excitations synthesised 
via the EMG-assisted approach. Each excitation set were 
then assembled into the complete TD excitations dataset, 
which was then used for the synergy-informed modelling 
to estimate unmeasured muscle excitations in both CP and 
TD cohorts.

(2)fEMG - assisted = �Emoment + �EsumExc + �EEMG

2.5  Synergy‑informed NMSK modelling

The proposed synergy-informed NMSK modelling work-
flow (Fig. 1) combined our synergy extrapolation method 
(Rabbi et al. 2022) with an EMG-driven NMSK model. The 
goals of the synergy-informed approach were (i) estimat-
ing muscle forces and joint contact forces from a small set 
of experimental muscle excitations, and (ii) ensuring that 
the extrapolated muscle excitations produced muscle forces 
that were consistent with the joint moments calculated from 
inverse dynamics.

The synergy extrapolation method must identify both 
(i) synergy excitation primitives, and (ii) synergy weights 
from a set of muscle excitations. A muscle synergy 
weight matrix for all muscles (will be termed as full syn-
ergy weight matrix) was required to estimate a full set of 
dynamically consistent synergy excitation primitives. To 
this end, a full set of dynamically consistent muscle excita-
tions, generated through the previously described EMG-
assisted method (Sect. 2.4 NMSK model calibration and 
execution), was used for the synergy analysis. The set con-
sisted of 34 muscle excitations for each individual in the 
TD cohort. For each participant and trial, a 34 × (14 × 100) 
[muscles × (trials × time frames)] concatenated trial data 
matrix was created, all trial data matrices from all TD 
participants were then concatenated to create the TD full 
muscle excitations data matrix from which muscle syner-
gies could be generated.

Fig. 1  Workflow of the synergy-informed neuromusculoskeletal 
modelling. Motion capture data were used to create the musculo-
skeletal and joint models of each participant. Inverse kinematics, 
inverse dynamics, and muscle analysis tools in OpenSim (Delp et al., 
2007) were used to calculate the joint kinetics and MTU kinematics 
in each participant. CEINMS (Pizzolato et al. 2015) was used to run 
two NMSK solutions: EMG-assisted and EMG-driven. First, EMG-
assisted approach with 13 experimental muscle excitations were 

used to generate full set of 34 muscle excitations for all the TD par-
ticipants. Then, using a small set of m experimental muscle excita-
tions from each individual participant (CP and TD), their remaining 
(34 − m) muscle excitations were estimated using synergy extrapola-
tion (Rabbi et  al. 2022). Finally, EMG-driven NMSK solution was 
used with full set of extrapolated muscle excitations to estimate joint 
moments and knee contact forces in the participant with CP
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For each individual (CP or TD) and trial, selected sub-
sets of experimental excitations from m muscles from all 
trials were used to create the individual’s data matrices 
( �Ind

m
 ). Then, non-negative matrix factorisation (Rabbi 

et al. 2020) was used to extract a set of individual muscle 
synergy weights ( WInd

sm
 ) and excitation primitives ( HInd

sm
 ) 

matrices for s synergies from m muscles from each XInd
m

 . 
The individual’s excitation primitives ( HInd

sm
 ) matrices were 

combined with TD full muscle excitations data matrix 
( XTD ) to estimate the individual’s full synergy weight 
matrix ( WInd

Fullsm
 ), for a full set of muscles, using least 

squares as:

where + represents Moore–Penrose pseudoinverse. The next 
step estimated each individual’s full set of 34 muscle excita-
tions ( M̃Ind

Fullsm
 ) by multiplying the full synergy weights matrix 

( WInd
Fullsm

 , for s synergies from m muscles) with the individ-
ual’s excitations primitives ( HInd

sm
 , for s synergies from m 

muscles), i.e.

In X̃Ind

Fullsm
 , the m estimated muscle excitations were 

replaced by original m measured excitations.
This realised m measured plus (34—m) estimated mus-

cle excitations for each person and trial that were then used 
as inputs to an EMG-driven NMSK model in CEINMS to 
estimate muscle forces and joint moments (hip flexion/
extension, hip adduction/abduction, knee flexion/exten-
sion, and ankle plantar/dorsi-flexion moments). The only 
difference between TD and CP groups was for each TD 
participant the TD full excitation data matrix included 
a complete set of 34 muscle excitations from the other 
two TD participants, estimated via the EMG-assisted 
approach, whereas the CP analyses used a TD data matrix 
constructed from the muscle excitations of all three TD 
participants.

2.6  Knee joint contact model

Muscle forces and joint moments calculated from each of 
the NMSK models were used to estimate the knee joint 
contact force. Medial ( MC ) and lateral ( LC ) knee contact 
forces ( KCF ) were calculated by solving the static equi-
librium problem (Winby et al. 2009) as:

(3)W
Ind
Fullsm

= H
Ind
sm

+
X
TD

=
[
H

Ind
sm

T
H

Ind
sm

]−1
H

Ind
sm
X
TD

(4)X̃
Ind

Fullsm
= W

Ind
Fullsm

H
Ind
sm

(5)KCFLC∕MC =
M

MC∕LC

MTU
−M

MC∕LC

ext

dIC

where MMC∕LC

MTU
 is the overall muscle moment acting on the 

medial/lateral knee compartment, MMC∕LC

ext
 is the external 

moment around the medial/lateral contact point calculated in 
OpenSim, and dIC is the intercondylar distance (i.e. distance 
between two contact points) measured in OpenSim. Muscle 
moments were calculated as:

where Fi
MTU

 is the force generated by the ith MTU, and ri
MTU

 
is the moment arm of ith MTU at the medial/lateral contact 
points.

2.7  Comparing synergy‑informed, EMG‑informed, 
and static optimisation NMSK modelling 
predictions

For all individuals (CP and TD), we examined various com-
binations of m recorded muscle excitations and s synergies 
to estimate other (34—m) muscle excitations by applying 
synergy-informed modelling. A range of different combi-
nations of m muscles and s synergies were piloted (Sup-
plementary Table T1) from which four final combinations 
(Table 3) were selected for full evaluation. In addition, a set 
of 13 measured muscle excitations with 6 synergies were 
evaluated as another synergy-informed NMSK method to 
estimate muscle excitations, joint moments, and knee con-
tact forces. These outputs were compared with correspond-
ing estimates from the EMG-assisted and static optimisation 
NMSK approaches.

For the models’ comparisons, the lower limb joint 
moments and knee contact forces were amplitude normalised 
to each participant’s body weight (BW). Root-mean-squared 
errors (RMSE) and coefficient of determination (R2) between 
models’ estimated joint moments and muscle excitations 
and the corresponding inverse dynamics joint moments 
from OpenSim and experimental muscle excitations were 
calculated to compare estimation performance of the EMG-
assisted, static optimisation, and synergy-informed NMSK 
methods (Table 4). Values were reported as mean ± standard 

(6)M
MC∕LC

MTU
=

n∑

i=0

Fi
MTU

ri
MTU

Table 3  Different combinations of m–muscles and s–synergies in the 
full evaluation of the synergy-informed NMSK modelling

SOL–soleus; SM–semimembranosus; TA–tibialis anterior; VL–vastus 
lateralis; VM–vastus medialis

Combination m Muscles s Synergies

1 13 muscles, i.e. all measured TD 
excitations

6

2 3 muscles (SOL, SM, VL) 3
3 4 muscles (SOL, SM, VM, VL) 3
4 4 muscles (SOL, TA, SM, VL) 4
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deviation across participant groups. Finally, the output of 
the EMG-assisted model, which used 13 measured muscle 
excitations as input, was used as reference to assess the abil-
ity of static optimisation and synergy-informed methods to 
estimate medial, lateral, and total knee contact forces.

The Kolmogorov–Smirnov (KS) test was also performed 
to gauge the information content preserved in the estimated 
muscle excitations in comparison with the measured muscle 
excitations (Rabbi et al. 2020). In this test, the probabil-
ity density function (PDF) was calculated and compared 
for both the measured and estimated muscle excitations to 
evaluate the information content estimated by the model. 
Furthermore, the information criteria retained by the three 
modelling approaches was assessed by applying the Akaike 
information criterion (AIC) and Bayesian information cri-
terion (BIC) (see next section) to different sets of estimated 
and measured muscle excitations to examine the better 
modelling approach when using the least number of EMG 
recordings (Table 4).

2.8  Information criteria applied to NMSK modelling

To determine the most appropriate modelling approach, we 
evaluated three models (i.e. EMG-assisted, static optimisa-
tion, and synergy-informed, Table 4) as a function of the 
trade-off between the number of model’s internal variables 
and the goodness-of-fit of the model’s outputs. Specifically, 
with a set of input observations (i.e. measured muscle excita-
tions, inverse kinematics, and inverse dynamics) each mod-
elling approach required to calculate different number of 
internal variables (e.g. unmeasured muscle excitations and 
four joint moments) with different accuracy. We assessed 
which modelling approach best estimated both muscle exci-
tations and joint moments while requiring the least amount 
of information.

To-this-end, the Akaike information criterion (AIC) 
and Bayesian information criterion (BIC) (Akaike 1974; 
Schwarz 1978) were used to determine which modelling 
approach worked best with the least amount of experimental 
EMG data. The AIC and BIC were calculated as:

where n is the number of input observations and k represents 
the number of internal variables within the model. 
L̂ = p

(
x|�̂;M

)
 is the probability of observing x given the 

best matched parameter, �̂  in a model, M . In other words, L̂ 
is the maximised value of the likelihood function being the 
measure of goodness-of-fit of the modelling method. Con-
sequently, the minimum AIC and BIC values would indicate 
the best performing model.

To determine the number of internal variables (k), we 
need to calculate the number of input observation (n) which 
is obtained from independent database of three TD children. 
For each participant with m experimental muscle excitations, 
n was calculated from the number of time points in joint 
angles (100 × 4), joint moments (100 × 4), MTU lengths 
(100 × 34), excitations of m measured muscles as, n = 100 
× 4 + 100 × 4 + 100 × 34 + 100 × m. Similarly for each par-
ticipant, k was calculated from the number of time points 
(i.e. 100), the number of estimated muscles (34 – m), esti-
mated joint moments (100 × 4), and/or number of synergy 
excitation primitives (s) and number of synergy weights (s) 
depending on the type of model:

(7)AIC = 2k − 2ln
(
L̂
)

(8)BIC = kln(n) − 2ln
(
L̂
)

Table 4  Performance metrics to 
compare EMG-assisted, static 
optimisation, and synergy-
informed modelling approaches 
in both CP and TD population

AIC–Akaike information criteria; BIC–Bayesian information criteria; KS–Kolmogorov–Smirnov test; 
PDF–probability density function; RMSE–root-mean-squared error; R2–coefficient of determination; CP–
cerebral palsy; TD–typically developing

Validation techniques Quantities Metrics

Estimation of experimental data i. Muscle excitations
ii. Joint moments
iii. Knee contact forces

R2, RMSE

PDF similarity to experimental data i. Muscle excitations KS test (occurrence of agree-
ment and maximum dis-
similarity)

Information criteria i. Goodness-of-fit
ii. Number of internal vari-

ables of NMSK model

AIC, BIC
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Note that, all three NMSK modelling approaches used the 
calibrated models while information criteria (i.e. AIC and 
BIC) were calculated in execution stage of the CEINMS 
workflow. This means inverse kinematics and MTU param-
eters remained the same for all three approaches during the 
estimation of unmeasured muscle excitations and joint 
moments, and thereby excluded from the AIC and BIC cal-
culations. Muscle excitations and joint moments tracking 
errors were assumed to be normally distributed with vari-
ance �2

l
 and �2

j
 , respectively. A MATLAB function aicbic() 

was used to calculate AIC and BIC for all three NMSK mod-
elling setups.

2.9  Statistical analyses

For all models and muscle combinations, the muscle excita-
tions and joint moments were compared based on RMSE and 
R2 between the experimental and estimated data. The KS 
test was performed to compare similarity of PDFs between 
experimental and estimated muscle excitations from all 
models using occurrence of agreement and maximum dis-
similarity. Further, knee contact forces (lateral, medial, 
and total) estimated by the static optimisation and synergy-
informed modelling were compared to those estimated by 
EMG-assisted modelling approach using RMSE and R2. 
The individual evaluation metrics for muscle excitations, 
joint moments, and knee contact forces were compared using 
repeated measures analysis of variance (ANOVA) with Bon-
ferroni correction.

3  Results

Compared to the EMG-assisted method, the synergy-
informed NMSK approach (Table  3) generated similar 
muscle excitations in terms of RMSE and R2 for both CP 
and TD groups, except for four muscles with four synergies 
(Fig. 2a, b). Importantly, the muscle excitations estimated by 
static optimisation were statistically different and the worst 
performer among evaluated models. Further, the KS test did 
not reveal any statistically significant difference of probabil-
ity density function between the experimentally collected 

kEMG - assisted = 100 × (34−m) + 100 × 4 for EMG
− assisted modelling,

kstatic_optimisation = 100 × 34 + 100 × 4 for static
optimisation modelling, and

ksynergy-informed = 100 × s + (34−m) × s

+ 100 × 4 for synergy
− informed modelling.

and reconstructed muscle excitations when either synergy-
informed or EMG-assisted approach was used (Fig. 2c, 
d). However, KS test results from static optimisation were 
significantly different, and poorer, than KS results from 
the EMG-assisted approach. The performance of experi-
mental muscle excitations’ tracking with synergy-informed 
approach using combinations of muscles different from what 
listed in Table 3 can be found in Supplementary Table T1. 
Joint angles calculated from inverse kinematics were also 
reported for qualitative assessment (Supplementary Fig-
ures S1 and S2).

Fig. 2  a RMSE and b R2 of the experimental muscle excitation track-
ing by EMG-assisted, static optimisation, and synergy-informed 
NMSK methods. Kolmogorov–Smirnov test results showing (c) 
occurrence of agreement and d maximum dissimilarity of probabil-
ity density functions between the experimental and estimated muscle 
excitations using different model and muscle combinations. Solid 
and shaded bars present CP and TD participants, respectively. Error 
bar represents standard deviation across participants. *represents 
significant differences (p < 0.05) from the results of EMG-assisted 
approach; CP–cerebral palsy; EA–EMG-assisted; RMSE–root-meant-
squared error; R2–coefficient of determination; SO–static optimisa-
tion; syn–synergies; TD–typically developing
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Inverse dynamic’s joint moments at ankle, knee, and hip 
were similarly tracked by the EMG-assisted and static opti-
misation methods. However, EMG-assisted demonstrated 

superior tracking compared to the four synergy-informed 
NMSK models (Fig. 3 and Supplementary Figure S3). For 
both CP and TD cohort, R2 values were generally larger 

Fig. 3  Tracking of inverse dynamics calculated joint moments using 
EMG-assisted, static optimisation, and synergy-informed NMSK 
methods in participants with CP and TD participants. Error bars 
represent standard deviation across participants. * indicates the sig-

nificant differences (p < 0.05) from the results of EMG-assisted 
approach. Add–adduction/abduction; CP–cerebral palsy; EA–EMG-
assisted; flex–flexion/extension; SO–static optimisation; TD–typically 
developing

Fig. 4  Comparison of knee contact force estimations using the 
static optimisation and four synergy-informed NMSK relative to the 
EMG-assisted models (RSME and R2). Error bars represent stand-
ard deviation across participants. *indicates the significant differ-

ences (p < 0.05) between static optimisation and synergy-informed 
approaches. CP–cerebral palsy; KCF–knee contact force; MC–medial 
contact; LC–lateral contact; SO–static optimisation; TD–typically 
developing; Total–total contact force
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Fig. 5  Lateral, medial, and total knee contact forces calculated with 
estimated joint moments using EMG-assisted (EA), and synergy-
informed NMS (SI-NMS) methods, and static optimisation (SO). 

Solid lines and shaded regions represent the mean and standard devi-
ation of the knee contact force across all trials
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(mean difference ± 95% confidence interval values across 
three joints were 0.30 ± 0.13 and 0.36 ± 0.18 Nm), while 
RMSE were lower (0.13 ± 0.02 and 0.12 ± 0.02) than the 
EMG-assisted approach when compared with the same met-
rics in synergy-informed models. The observed differences 
of estimates were statistically significant at the hip, but not 
at the ankle and knee (Fig. 3) when compared with EMG-
assisted approaches for both synergy-informed and static 
optimisation approaches. The performance of joint moment 
tracking using combinations of muscles different from what 
listed in Table 3 can be found in Supplementary Table T2.

The EMG-assisted knee contact forces (KCF) were com-
parable (i.e. no statistical significance) between TD and CP 
groups by synergy-informed and static optimisation NMSK 
methods (Figs. 4 and 5). However, for all participants the 
synergy-informed approach produced estimates of lateral 
KCF  (KCFLC) closer to those estimated using EMG-assisted 
models than those estimated using static optimisation 
(higher R2 and lower RMSE, p < 0.05), while no differences 
were detected with respect to the predicted medial com-
partment  (KCFMC) and total  (KCFtotal) loads. Considering 
the three or four experimental EMG recordings with three 
synergies, R2 (mean ± standard deviation) were 0.95 ± 0.01 
and 0.93 ± 0.07 across all KCFs for CP and TD groups, 
respectively. Additionally, R2 from each KCFs estimated 
by synergy-informed method were respectively 0.66 ± 0.28, 
0.96 ± 0.18, and 0.94 ± 0.11 for  KCFMC,  KCFLC, and  KCFtotal 
for the participants with CP. The performance of estimating 
EMG-assisted knee contact forces with synergy-informed 
NMSK approaches using all muscle combinations are avail-
able in Supplementary Table T3.

The information criteria analyses (Table 5) showed that 
both AIC and BIC calculated in synergy-informed NMSK, 
and static optimisation methods were significantly lower 
and higher (p < 0.05), respectively, than those calculated in 
EMG-assisted approach. Through maximisation of the log-
likelihood function with the lowest number of internal vari-
ables, synergy-informed NMSK with three muscles, the use 
of three synergies was able to produce lowest AIC and BIC 

among all other compared models including participants 
from both CP and TD groups.

4  Discussion

As it is impractical to acquire a large number of experimen-
tal EMG in paediatric cohorts, such as children with CP, we 
developed and evaluated a muscle synergy-informed NMSK 
modelling workflow that used a small number of experimen-
tal EMG recordings to estimate joint moments and knee con-
tact forces. We have demonstrated that as few as three EMG 
recordings from the soleus, semimembranosus, and vastus 
lateralis muscles can be used to estimate joint moments and 
knee contact forces in individuals with CP that are compa-
rable to the estimates achieved using 13 experimental EMG 
measurements. Upon further validation, our method could be 
readily translated into clinical services to inform treatment 
planning using sparse EMG data combined with standard 
gait analysis.

We showed that the large set of muscle excitations typi-
cally required to inform NMSK models of children with CP 
could be estimated from EMG recordings from only three 
(SOL, SM, VL) or four (SOL, SM, VM, VL or SOL, TA, 
SM, VL) muscles when employing a synergy-informed 
NMSK method. Further, synergy-informed NMSK model-
ling resulted in estimates of muscle excitations that were 
superior to what estimated by a static optimisation method, 
and with accuracy comparable to current best EMG-assisted 
approach (Fig. 2). The EMG channels used in input to our 
synergy-informed method (Table 3) were selected based on 
previous investigations (Rabbi et al. 2022), which identified 
similar group of muscles as the best candidates to obtain 
optimal reconstruction of extrapolated EMG data. A lim-
ited number of studies (Bianco et al. 2017) applied a mus-
cle synergy-based method to estimate unmeasured muscle 
excitations, but this is the first study to demonstrate that an 
existing database of EMG data could be combined with a 
synergy-based method to inform NMSK models.

Table 5  Mean ± standard 
deviation AIC and BIC values 
for different modelling setups 
for both CP and TD groups

* indicates significant differences (p < 0.05) with results from EMG-assisted approach. AIC–Akaike infor-
mation criteria; BIC–Bayesian information criteria; CP–cerebral palsy; TD–typically developing

Model, m experimental EMG recordings, s synergies # internal 
variables

AIC BIC

EMG-assisted, 13 EMG, 0 synergy 2500 4723.82 ± 176.30 21,255.08 ± 176.30
Static optimisation, 0 EMG, 0 synergy 3800 7384.22 ± 172.30* 31,487.02 ± 176.30*

synergy-informed NMSK, 13 EMG, 6 synergies 1364 2583.79 ± 40.99* 11,599.47 ± 38.09*

synergy-informed NMSK, 4 EMG, 4 synergies 920 1324.58 ± 130.17* 7338.55 ± 113.06*

synergy-informed NMSK, 4 EMG, 3 synergies 790 1064.52 ± 128.20* 6242.15 ± 112.33*

synergy-informed NMSK, 3 EMG, 3 synergies 793 811.73 ± 133.96* 5896.32 ± 135.97*
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Both combinations with three and four muscles examined 
in this study were able to estimate joint moments using syn-
ergy-informed NMSK method with accuracy comparable to 
EMG-assisted approaches in both CP and TD cohorts (Fig. 3 
and Supplementary Figure S3). However, the EMG-assisted 
approaches tracked experimental hip joint moments better 
(p < 0.05) than synergy-informed NMSK method in both 
groups, likely due to the lack of experimental EMG data 
from hip spanning muscles in our EMG database. Also, syn-
ergy-informed NMSK modelling relied on an EMG-driven 
approach that, unlike the employed EMG-assisted approach, 
did not require tracking of external joint moments. This find-
ing might suggest that, if appropriate EMG databases were 
available, it might be possible to remove the need to acquire 
ground reaction forces.

While static optimisation and synergy-informed meth-
ods predicted similar joint moments, the synergy-informed 
method produced estimates of lateral knee contact forces 
that were closer to the reference values (i.e. EMG-assisted 
approach). Results also indicated that the synergy-informed 
method estimated muscle excitation patterns that were more 
physiologically plausible that static optimisation (Fig. 2a, 
b) and consistent with joint dynamics. As such, if a dataset 
were to be created by routinely collecting EMG recordings 
from healthy population, our proposed synergy-informed 
method could be used to estimate lower limb external and 
internal biomechanics (e.g. joint moments and contact 
forces) in the healthy as well as in clinical populations by 
simply recording experimental EMG data from three mus-
cles (Figs. 4 and 5).

This study assessed three NMSK modelling approaches 
(i.e. EMG-assisted, static optimisation, and synergy-
informed) with respect to the information content of the 
input and estimated output data. Both EMG-assisted and 
synergy-informed NMSK modelling approaches were able 
to estimate muscle excitations with comparable probability 
density functions (Fig. 2c, d) suggesting equivalent neural 
information (Miller and Childers, 2012). Also, among three 
NMSK modelling approaches, the synergy-informed method 
was able to better estimate muscle excitations while also 
requiring a minimal number of internal variables (Table 5). 
Subsequently, synergy-informed method possessed compu-
tational simplicity and information content that was better 
than the other two modelling approaches, a result consist-
ent with a previous synergy-based NMSK modelling study 
(Bianco et al. 2017).

While the study presents promising outcomes, it is impor-
tant to acknowledge its limitations. Only data from six par-
ticipants were included, and data from the three TD par-
ticipants were used to establish the database for the synergy 
extrapolation method. Critically, the limited sample size may 
affect the generalisability of our results; future studies should 
consider extending our findings by using a larger database 

for synergy extrapolation and evaluating model predictions 
in a larger cohort of children with CP across GMFCS levels. 
Although knee and ankle joint moments were well estimated 
by the synergy-informed NMSK method, hip joint moment 
estimation performance was significantly lower compared 
to EMG-assisted approach. The main reason might be the 
lack of EMG recordings from hip muscles in the EMG data-
base which was used to reconstruct the unmeasured muscle 
excitations (Ao et al. 2020). Although we developed per-
sonalised NMSK model's some other modelling error may 
remain, possibly affecting estimates of muscle excitations, 
joint moments, and knee contact forces. However, these 
modelling errors and limitations would equally affect all 
the NMSK modelling approaches examined in this study, 
and thus should not affect our conclusions. Finally, direct 
measurement of knee contact forces was not available for 
this population; consequently, we selected an EMG-assisted 
method as benchmark for our analyses as it resulted superior 
to other methods in estimating in vivo measured joint con-
tact forces (Hoang et al. 2018, 2019; Bennett et al. 2022).

5  Conclusion

We developed a synergy-informed NMSK method to esti-
mate joint moments and knee contact forces in children with 
CP using EMG recordings from only three (SOL, SM, VL) 
or four (SOL, SM, VM, VL or SOL, TA, SM, VL) muscles. 
While our approach showed promise, further research with 
a larger cohort is needed for extensive validation. Future 
applications of our method in clinical gait laboratories may 
offers a practical alternative to extensive data collection, 
enabling rapid and individual-specific estimations of knee 
contact forces.
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