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Single field models of inflation capable of producing primordial black holes usually require a significant
departure from the standard, perturbative slow-roll regime. In fact, in many of these scenarios, the size of
the slow-roll parameter jηj becomes larger than one during a short phase of inflationary evolution. In order
to develop an analytical control on these systems, we explore the limit of jηj large, and promote 1=jηj to a
small quantity to be used for perturbative expansions. Formulas simplify, and we obtain analytic
expressions for the two and three point functions of curvature fluctuations, which share some of the
features found in realistic inflationary models generating primordial black holes. We study one-loop
corrections in this framework: we discuss criteria for adsorbing ultraviolet divergences into the available
parameters, leaving log-enhanced infrared contributions of controllable size.
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I. INTRODUCTION AND CONCLUSIONS

Identifying the nature of dark matter is one of the most
challenging open problems in cosmology [1]. A fascinating
possibility is that dark matter is made of primordial black
holes (PBH) [2–5], forming from the collapse of high
density fluctuations produced during cosmic inflation: see
e.g. [6–12] for reviews. In order for producing PBH, the size
of the inflationary curvature fluctuation spectrum needs to
increase by around seven orders of magnitude, from large to
small scales. This condition is not possible to achievewithin
a controlled slow-roll expansion in single-field inflation
[13]: a departure from the standard slow-roll conditions is
needed. In several single-field realizations of PBH scenar-
ios, the size jηj of the second slow-roll parameter becomes
larger than one during a brief phase of nonslow-roll
evolution (from now on, NSR). Such brief NSR era should
last few e-folds ΔNNSR of expansion. Examples are ultra-
slow-roll models [14–16], where η ¼ −6, and constant roll
models [17–19], where jηj can be larger or smaller than 6,
depending on the properties of the inflationary potential. In
these cases, the evolution of fluctuations challenges ana-
lytical investigations, since the slow-roll expansion breaks
down.Wands duality [20] can be of help in the ultraslow-roll
case, but still care is needed in connecting slow-roll to NSR
eras. Oftentimes, a numerical analysis is needed.

In this work, we consider large values for the slow-roll
quantity jηj, and use the inverse 1=jηj as expansion para-
meter. A large value of jηj is not inconceivable to obtain at
the price of tunings, for example in constant roll systems.
Here we are not interested in model building, but in
investigating the consequences of a large jηj limit for the
dynamics of fluctuations. When working at leading order in
1=jηj formulas simplify, and we obtain analytic expressions
for the two and three point functions of curvature fluctua-
tions. These analytic results can be useful to get insights on
the properties of curvature fluctuations in PBH scenarios, as
well as understanding the physical consequences of a rapid
growth of the curvature spectrum from large to small scales.
This idealized, large-jηj limit has some intriguing anal-

ogy with the large-N limit of SUðNÞ QCD, a model
introduced by ’t Hooft [21] in a particle physics context.
N being the number of colors, the field-theory analysis can
be carried on using a perturbative 1=N expansion, and
simplifies in a large-N limit. Real world QCD has N ¼ 3
colors only, yet the results of an 1=N expansion catch
various important properties of standard QCD: we refer the
reader to chapter 8 of [22] for a pedagogical survey. Calling
g the QCD coupling constant, and N the number of colors,
’t Hooft finds convenient to take the simultaneous limits
g → 0, N → ∞, and gN2 fixed [21]. Analogously, in PBH
forming scenarios, it is convenient to consider the limit of
vanishing e-folds of NSR expansion, ΔNNSR → 0, and at
the same time taking jηj → ∞, keeping fixed the product
ðΔNNSRjηjÞ. As we will learn, this product is associated
with the growth of the spectrum from large to small scales.
Keeping ðΔNNSRjηjÞ fixed, and expanding in 1=jηj, the
formulas for the curvature fluctuation n-point functions
become easier to deal with.
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Having analytical control on a perturbative expansion in
1=jηj allows us to address the issue of loop corrections, a
topic that recently raised much attention after the important
papers [23,24] appeared. As pointed out in [23], the same
mechanisms that causes the curvature spectrum growth, as
needed for producing PBH, also amplify the effects of loop
corrections to the curvature power spectrum. Their size can
become so large to invalidate a perturbative loop expansion.
Many solutions and new perspectives have recently pointed
out [25–36]. In the framework of a large jηj expansion, we
show that loop corrections can be placed under control, at
least at the large scales that can affect CMB physics. We
regularize loop integrals bymeans of ultraviolet and infrared
cut-offs, and analytically compute the effects of loops in a
large jηj regime. The resulting ultraviolet divergences can be
adsorbed into physically measurable quantities correspond-
ing to the amplitude and the large-scale tilt of the spectrum.
We are left with log-enhanced infrared contributions, whose
size is small at large scales.
We hope that the tool of an 1=jηj expansion, although

idealized, can lead to analytical insights allowing to further
investigate properties of the dynamics of curvature fluctu-
ations in PBH scenarios. It will be interesting to further
apply this method to related topics, as the behavior of
higher order n-point functions, and their corresponding
loop corrections in a large jηj limit. Having analytic
expressions for the primordial correlators can also
be useful for investigating the actual process of PBH
formation in the postinflationary universe, as well as the
generation of second-order gravitational waves from
enhanced curvature spectra: see respectively e.g. [37,38]
for reviews. We leave these topics to future investigations.

II. SYSTEM UNDER CONSIDERATION

We consider single field models of inflation with
canonical kinetic terms. Around a conformally flat cosmo-
logical metric, ds2 ¼ a2ðτÞð−dτ2 þ dx⃗2Þ, the quadratic
action for the curvature perturbation in Fourier space reads
(we set the Planck mass to unity)

Squad ¼
1

2

Z
dτd3kz2ðτÞ½ζ02k ðτÞ þ k2ζ2kðτÞ�; ð2:1Þ

where the pump field zðτÞ is given by

zðτÞ ¼ aðτÞ
ffiffiffiffiffiffiffiffiffiffiffi
2ϵðτÞ

p
: ð2:2Þ

The definitions of Hubble and slow-roll parameters are

HðτÞ ¼ a0ðτÞ
a2ðτÞ ; ϵðτÞ ¼ −

H0ðτÞ
aðτÞH2ðτÞ ;

ηðτÞ ¼ ϵ0ðτÞ
aðτÞHðτÞϵðτÞ : ð2:3Þ

We assume that the first slow-roll parameter ϵðτÞ remains
small during the entire duration of inflation, which takes
place for negative conformal time τ ≤ τ0 ¼ 0. We also
assume that the second parameter ηðτÞ remains small for
negative values of τ, a part from a brief time interval τ1 ≤
τ ≤ τ2 during which η is negative and its size jηj becomes
larger than one. (See the brief discussion in Sec. I.) During
this short phase, which we call nonslow-roll (NSR) period,
we cannot make a perturbative slow-roll expansion in jηj:
other methods are needed to tackle the evolution of
fluctuations. In this work, we explore the possibility to
consider the inverse 1=jηj as a convenient expansion
parameter for pursuing analytical considerations. But
before discussing the role of the jηj parameter, we first
examine a quantity related with the duration of NSR phase.
We build a dimensionless positive parameter Δτ, as

Δτ ¼ −
τ2 − τ1
τ1

; ð2:4Þ

and we require that Δτ ≪ 1. This condition implies that the
duration of the NSR phase is short with respect to the
typical timescales one encounters in treating the system, as
e.g. jτ1j which controls the onset of the NSR phase. A short
duration of nonslow-roll phase is demanded by the require-
ment to avoid excessive stochastic effects [39–41]. Since
we assume that the slow-roll parameter ϵðτÞ remains always
small during inflation, we consider for simplicity the limit
of pure de Sitter expansion, with aðτÞ ¼ −1=ðH0τÞ and H0

constant during inflation. If the interval Δτ of Eq. (2.4) is
small, this parameter has a physical interpretation in terms
of a (small) number ΔNNSR of e-folds of NSR evolution:

ΔNNSR¼ ln

�
aðτ2Þ
aðτ1Þ

�
¼ ln

�
τ1
τ2

�
¼ ln

�
1

1−Δτ

�
≃Δτ; ð2:5Þ

where in the next-to-last equality we used the definition
(2.4), and in the last equality we expanded for small Δτ.
In the regime of Δτ ≪ 1 we can use the results of [42]

(reviewed in the technical Appendix A): we write the
solution for the mode function of the curvature perturbation
ζκðτÞ in Fourier space during different epochs in the
inflationary evolution. We define the pivot scale

k⋆ ¼ 1=jτ1j; ð2:6Þ

corresponding to modes leaving the horizon at the onset of
the NSR era. We express our formulas in terms of
dimensionless momentum scales, as follows:

κ ≡ −kτ1 ¼ k=k⋆: ð2:7Þ

Our expressions simplify with this notation, as we can
easily identify modes with κ ∼ 1 which cross the horizon at
epochs corresponding to the NSR phase. For this reason,
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we adopt from now on the dimensionless definition (2.7)
when treating momenta.
The mode function ζκðτÞ acquires its usual profile

matching the Bunch-Davies vacuum at short distances:

ζκðτÞ ¼ −i
H0ð−τ1Þ3=2ffiffiffiffiffiffiffi

4ϵ1
p

κ3=2

�
1 −

iτ
τ1

�
ei

κτ
τ1 ; τ ≤ τ1 ð2:8Þ

for conformal times τ ≤ τ1, since at early times the modes
do not yet experience the NSR evolution. In the previous
equation, H0 is the constant Hubble parameter during
inflation, and

ϵ1 ¼ ϵðτ1Þ ð2:9Þ

is the value of the first slow-roll parameter at τ ¼ τ1.
For later times τ2 ≤ τ ≤ τ0 during inflation, instead, the

profile of the mode function is modified by the effects of
the NSR era. See Appendix A, where we include the
behavior of the mode function in the interval τ1 ≤ τ ≤ τ2
that we do not need in the main text. (Sufficient to say that
the mode functions, with their first derivatives, are con-
tinuous at the transition between slow-roll and nonslow-roll
eras.) We find

ζkðτÞ ¼ −i
H0ð−τ1Þ3=2ffiffiffiffiffiffiffi

4ϵ1
p

κ3=2

�
C1ðκÞ

�
1 −

iτ
τ1

�
ei

κτ
τ1

þ C2ðκÞ
�
1þ iτ

τ1

�
e−i

κτ
τ1

�
; τ2 ≤ τ ≤ τ0 ð2:10Þ

with [recall the definition of Δτ in Eq. (2.4)]

C1ðκÞ ¼ 1 −
η

8ð1 − ΔτÞ2κ2
× ½1 − e2iκΔτ − 2κΔτði − 2κð1 − ΔτÞÞ�; ð2:11Þ

C2ðκÞ ¼
ηe2ið1−ΔτÞκ

8ð1 − ΔτÞ2κ2 ½1 − 2iκ − e2iκΔτð1 − 2iκð1 − ΔτÞÞ�;

ð2:12Þ

and

η ¼ lim
τ→τþ

1

ηðτÞ: ð2:13Þ

From now on, the quantity η refers to the definition (2.13),
i.e. the value of the time-dependent ηðτÞ evaluated at the
beginning of the NSR era. Notice that in the limit of
negligible η → 0, the two mode functions (2.8) and (2.10)
coincide. Instead, if jηj is large in size, the scale dependence
of the mode functions (2.8) and (2.10) differs considerably.
This leads to the opportunity of increasing the size of
the curvature spectrum at small scales, as required by

primordial black hole production. In what comes next, we
examine this possibility.

III. THE TWO-POINT FUNCTION OF
CURVATURE FLUCTUATIONS

In this section we show how a suitably defined large-jηj
limit allows us to analytically capture the scale dependence
of the spectrum of curvature fluctuations. Starting from the
mode functions obtained in the previous section, we
quantize the system starting from the quadratic action (2.1)
for curvature fluctuations. See e.g. [43] for a textbook
discussion. We can easily compute the two-point function
hζκðτ0Þζ�κðτ0Þi of curvature perturbations evaluated at
the end of inflation, τ ¼ τ0 ¼ 0, and the corresponding
power spectrum (recall our definition (2.7) of dimension-
less scale κ)

Pκ ≡ κ3

2π2ð−τ1Þ3
hζκðτ0Þζ�κðτ0Þi0; ð3:1Þ

where a prime indicates the two-point function omitting
the momentum-conserving delta functions. At very large
scales, κ → 0, one finds the usual expression

P0 ¼ lim
κ→0

Pκ ¼
H2

0

8π2ϵ1
; ð3:2Þ

with the scale of P0 of order 10−9 to match CMB
normalization. Since large scale modes leave the horizon
much earlier than the NSR era, they are unaffected by it.
It is convenient to compute the dimensionless ratio ΠðκÞ
(see [42]) between the power spectrum (3.1) evaluated at
scale κ, versus the large-scale spectrum P0 in Eq. (3.2).
We find

ΠðκÞ≡ Pκ

limκ→0Pκ
¼ jC1ðκÞ þ C2ðκÞj2; ð3:3Þ

with the scale-dependent C1;2ðκÞ given in Eqs. (2.11) and
(2.12). Such ratio can be considered as a dimensionless
power spectrum evaluated at the end of inflation, which
singles out the overall amplitude P0 at large scales, and
encapsulates the rich scale dependence of the spectrum
evolving from large to small scales. We plot ΠðκÞ in Fig. 1,
left panel, for a representative choice of parameters capable
to enhance the spectrum at small scales. Physically, the
scale dependence of the spectrum is due to the brief NSR
phase of inflationary evolution. The NSR era is able to
excite the would-be decaying mode at superhorizon scales,
which starts to actively participate to the dynamics of
curvature fluctuations. See e.g. [12] for a recent review.
Notice that the spectrum has a pronounced dip at inter-
mediate scales, due to a disruptive interference between the
growing and decaying modes of the curvature fluctuation at
super-horizon scales. The dip is followed by a steady

LARGE jηj APPROACH TO SINGLE FIELD INFLATION PHYS. REV. D 108, 043526 (2023)

043526-3



growth (with slope κ4 as first shown in [44]) until it reaches
a maximal amplitude. See also [45] for a detailed analysis
of the shape of the curvature power spectrum in PBH
forming scenarios. We point out that—while in this work
we evaluate all quantities at the end of inflation, when the
inflationary dynamics ceases to affect the evolution of
curvature fluctuations—the large jηj approach can be also
applied to compute correlators at any time during the
inflationary era.
It is particularly interesting to evaluate the value of ΠðκÞ

at very small scales, κ → ∞, which informs us on the total
amount of the growth of the spectrum. See Fig. 1, left panel.
Plugging into (3.3) the expressions for C1;2 of Eqs. (2.11)
and (2.12) and taking the small-scale limit, we find

lim
κ→∞

ΠðκÞ ¼
�
1þ ðjηj=2 − 1ÞΔτ

1 − Δτ

�
2

;

≡ ð1þ Π0Þ2; ð3:4Þ

where in the second line we introduce a constant parameter
Π0 controlling the enhancement of the spectrum from large
to small scales (Π0 ¼ 0means no enhancement). We would
like a large enhancement of the spectrum at small scales for
producing PBH. Since we are in a regime of small Δτ, as
discussed in Sec. II, we need to consider large values for the
parameter jηj during the NSR period (we make the
hypothesis that η is negative, hence the absolute value).
In fact, in the limit of jηj large and Δτ small, expression
(3.4) simplifies to

Π0 ≃
jηjΔτ
2

: ð3:5Þ

The combination (3.5), as well as the considerations above,
motivates us to take the simultaneous limits:

jηj ≫ 1; Δτ ≪ 1; keep Π0 fixed: ð3:6Þ

This is reminiscent of the ’t Hooft limit one encounters in
particle physics [21], as explained in Sec. I. In fact,
combining jηj and Δτ into the fixed quantity Π0 allows
us to consistently perform expansions in the small para-
meter 1=jηj, maintaining at the same time control on the
effects of the NSR through the quantity Π0. In most PBH
scenarios we aim to a total enhancement of the order
106–107 in Eq. (3.4). Then the quantity Π0 results by itself
large, of order 103–104.
Adopting the limits of Eq. (3.6), the expression for the

ratio (3.3) simplifies. We substitute Δτ ¼ 2Π0=jηj in
Eq. (3.3), and expand for large values of jηj keeping Π0

fixed. At leading order in this expansion, we obtain

Π̂ðκÞ ¼ 1 − 4κΠ0 cos κj1ðκÞ þ 4κ2Π2
0j

2
1ðκÞ; ð3:7Þ

where a hat indicates that we only include the leading order
in an expansion in 1=jηj, following the conditions of
Eq. (3.6). The spherical Bessel function j1ðκÞ is given by

j1ðκÞ¼
sinκ
κ2

−
cosκ
κ

; j1ðκ≪ 1Þ¼ κ

3
−
κ3

30
þOðκ5Þ: ð3:8Þ

We represent formula (3.7) in Fig. 1, right panel, in
comparison with the result obtained by the more accurate
formula (3.3). The latter, plotted in the left panel of the
figure, makes use of a small Δτ limit only, without
the further expansion in 1=jηj of Eq. (3.6). The resulting
profile of the spectrum is very similar in both cases, at least
in the regime κ ≤ 5, indicating that the limits of Eq. (3.6)
give trustable results for the spectrum at least at relatively
large scales. It is not difficult to use Eq. (3.7) to analytically
determine the position of the dip, finding agreement with
other works in the literature [42].
It is remarkable to obtain such a simple formula (3.7) for

the scale dependence of the curvature power spectrum,
whose momentum profile shares features with more real-
istic PBH models discussed in the literature. This formula

0.01 0.10 1 10

0.01

1

100

104

106

κ

Π
[κ
]

0.01 0.10 1 10

0.01

1

100

104

106

κ

Π
[κ
]

FIG. 1. Left panel: plot of the dimensionless power spectrum ΠðκÞ as defined in Eq. (3.3): we choose the values jηj ¼ 104 and
Δτ ¼ 0.2 for the free parameters. Right panel: the black line is the same as left panel. The dashed red line represents the spectrum Π̂ðκÞ
of Eq. (3.7), choosing the value Π0 ¼ 1250 for the single free parameter. See the discussion after Eq. (3.8). Notice that the maximal
values of the spectrum occur around the onset of nonslow-roll phase, for κ ∼Oð1Þ.
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depends on a single free parameter Π0. Besides para-
metrizing the total enhancement of the spectrum, this
quantity also governs the scale dependence of the spectrum
at large scales. Expanding (3.7) up to κ2:

Π̂ðκÞ ¼ 1 −
4Π0

3
κ2 þOðκ4Þ; ð3:9Þ

making manifest the role ofΠ0 in controlling the deviations
from a flat spectrum. (See also Starobinsky’s scenario [46]
for a specific model leading to an interesting analytical
formula for the curvature spectrum beyond slow-roll.) We
can be more precise and analytically compute the spectral
index associated with Eq. (3.7):

n̂sðκÞ − 1≡ d ln Π̂ðκÞ
d ln κ

; ð3:10Þ

¼ 2κΠ0½ð1 − 2κ2Þ sin ð2κÞ − 2κ cos ð2κÞ�
κ2 þ 4κΠ0 cos κðκ cos κ − sin κÞ þ 4Π2

0ðκ cos κ − sin κÞ2

−
Π2

0½4 − ð4 − 8κ2Þ cos ð2κÞ þ 4κðκ2 − 2Þ sin ð2κÞ�
κ2 þ 4κΠ0 cos κðκ cos κ − sin κÞ þ 4Π2

0ðκ cos κ − sin κÞ2 : ð3:11Þ

The rich dependence in momentum scale of the spectral
index in Eq. (3.11) reflects the scale dependence of the
spectrum in Fig. 1. We represent it in Fig. 2 for a range of
momenta going from the dip position to small scales.
Comparing Figs. 1 and 2, we notice that, after the dip
position, the maximal growth slope of the spectrum is
ns − 1 ≤ 4. This agrees with themore sophisticated analysis
]44 ] based on complete expressions for the curvature power

spectrum, outside the large jηj limit we consider here.

IV. THE THREE-POINT FUNCTION OF
CURVATURE FLUCTUATIONS

We now apply the previous setup to the study of three-
point function of curvature fluctuations, evaluated at the
end of inflation. This quantity controls the non-Gaussianity
of curvature fluctuations in PBH scenarios. We assume that
the slow-roll parameter ϵðτÞ remains always small, while
ηðτÞ experiences a sharp transition between the slow-roll

and non-slow-roll phases, at τ ¼ τ1 and τ ¼ τ2. The n-point
functions of ζ can be computed using the in-in formalism
[47–49]. Let OðτÞ the operator one wishes to determine
(for us, the three-point function hζκ1ðτ0Þζκ2ðτ0Þζκ3ðτ0Þi),
and Hint the interaction Hamiltonian. We map the time
evolution of the operator from the initial jini vacuum up to
the time the operator OðτÞ is evaluated, and then we
map back to the jini vacuum again. In formulas:

hinjT̄e−i
R

Hintðτ0Þdτ0OðτÞTei
R

Hintðτ0Þdτ0 jini. In our case, since
we focus on sudden transitions, there is a single dominant
contribution to the interaction Hamiltonian [23,24], which
can be extracted1 from the third-order action of perturba-
tions in single field inflation [47]:

Hint ¼ −
1

2

Z
d3xa2ðτÞϵðτÞη0ðτÞζ2ðτ; x⃗Þζ0ðτ; x⃗Þ: ð4:1Þ

We assume that jηj is negligible during slow-roll evolution
(τ < τ1 and τ2 < τ < τ0) while it is large during the
intermediate NSR phase, τ1 ≤ τ ≤ τ2. We adopt a sharp-
transition Ansatz [24] for the time-derivative of ηðτÞ

η0ðτÞ ¼ Δη½−δðτ − τ1Þ þ δðτ − τ2Þ�; ð4:2Þ

where the times τ1;2 correspond to the onset and end of the
NSR phase during inflation. Sudden transitions with

0.0 0.5 1.0 1.5 2.0 2.5

1

2

5

κ

n s
–1

FIG. 2. The spectral index as given in Eq. (3.11), choosing
Π0 ¼ 1250.

1The complete third-order Lagrangian density for scalar
fluctuations in single field inflation can be found in Eq. (3.9)
of the original work by Maldacena [47] (see also Eq. (35) of
[24]). All terms of the Lagrangian are slow-roll suppressed, but
there is a single contribution proportional to the time-derivative of
η: 1=2ϵη0ζ0ζ2. This single term can give a large effect in our
context with sudden transitions between slow-roll and non-slow-
roll eras. As done in [23,24], we then focus on this contribution to
the third order action, leading to the interaction Hamiltonian in
Eq. (4.1).
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jumps in the first derivatives of the inflation scalar
profile and the parameter η can be explicitly realized in
scenarios as the Starobinsky model [46], with a piecewise
linear potential characterized by abrupt changes in
its slope.

Soon we will discuss a criterium to select the constant
Δη. But first, we apply the aforementioned in-in approach
with the interaction Hamiltonian (4.1) and (4.2). The
curvature three-point function, evaluated at the end of
inflation τ0ð¼ 0Þ, results [24]

hζκ1ðτ0Þζκ2ðτ0Þζκ3ðτ0Þi0 ¼−2Δη
�
ϵðτ2Þa2ðτ2ÞIm

h�
ζκ1ðτ0Þζ�κ1ðτ2Þ

��
ζκ2ðτ0Þζ�κ2ðτ2Þ

��
ζκ3ðτ0Þ∂τ2ζ�κ3ðτ2Þ

�i
−ðτ2→ τ1Þ

�

þperms; ð4:3Þ

where recall that the prime means that we understand the momentum-conserving delta functions. In the squeezed limit,
Eq. (4.3) reduces to

lim
κ1→0;κ2≃κ3

hζκ1ðτ0Þζκ2ðτ0Þζκ3ðτ0Þi0 ¼ −4Δηϵðτ2Þa2ðτ2Þjζκ1ðτ0Þj2jζκ2ðτ0Þj2
	
Im

�
ζ2κ2ðτ0Þ
jζκ2ðτ0Þj2

ζ�κ2ðτ2Þðζ0κ2ðτ2ÞÞ�
�

−
ϵðτ1Þa2ðτ1Þ
ϵðτ2Þa2ðτ2Þ

Im

�
ζ2κ2ðτ0Þ
jζκ2ðτ0Þj2

ζ�κ2ðτ1Þðζ0κ2ðτ1ÞÞ�
�


: ð4:4Þ

The squeezed limit refers to modes with very small
momenta κ1 which leave the horizon much earlier than
the onset of the non-slow-roll (NSR) phase. When selecting
large-scale modes with κ2 small, also far from the NSR
epoch, we do expect that the standard Maldacena consis-
tency relation [47] holds. Namely

lim
κ1→0;κ2≃κ3

hζκ1ðτ0Þζκ2ðτ0Þζκ3ðτ0Þi0

¼ −ðnsðκ2Þ − 1Þjζκ1ðτ0Þj2jζκ2ðτ0Þj2: ð4:5Þ
We substitute our expressions for the mode functions in

Eq. (2.10), and take the small κ2 limit. Using the results of
Sec. III for computing the spectral index, the two expres-
sions (4.4) and (4.5) match once we select a certain value
for the parameter Δη which enters in the Ansatz (4.2).
Neglecting contributions that vanish in the large-jηj limit,
we find the requirement

Δη ¼ jηj
ð1þ Π0Þ

þ Π0ð12þ 34Π0 þ 25Π2
0Þ

2ð1þ Π0Þ2ð1þ 2Π0Þ
; ð4:6Þ

as well as the expected condition2

ϵðτ1Þa2ðτ1Þ
ϵðτ2Þa2ðτ2Þ

¼ 1þ 2Π0: ð4:7Þ

Interestingly, although the constant Δη has been fixed to
satisfy Maldacena condition in the small-κ2 limit, the
resulting expression (4.4) for the squeezed three-point
function that matches well with single-field Maldacena
consistency relation also for larger scales: see Fig. 3, left
panel, which is also in agreement with [50,51]. The
resulting squeezed non-Gaussianity is strongly scale-
dependent [52,53].
The squeezed limit of the three-point function, as in

Eq. (4.4), is not the only interesting configuration. From the
complete expression for the three-point function, Eq. (4.3),
we can also consider other shapes. For example, let us
consider the equilateral limit κi ¼ κ for i ¼ 1, 2, 3. In
Fig. 3, right panel, we represent the value for the three-point
function as a function of the dimensionless scale κ, divided
by the square of the large-scale power spectrum, Eq. (3.2)
(we further divide it by Π3

0). Namely,

feqðκÞ
Π3

0

≡ hζκðτ0Þζκðτ0Þζκðτ0Þi0
Π3

0P
2
0

: ð4:8Þ

This quantity aims to capture the scale-dependence of the
non-Gaussian equilateral limit [54], analogously to the
scale-dependent part of the power spectrum of Eq. (3.2).
Remarkably, the profile of the scale-dependence for the
equilateral shape (changing its overall sign) is similar to the
profile of the scale-dependent power spectrum: compare
Fig. 1 with Fig. 3, right panel. It would be interesting to find
a physical reason for this result.
The non-Gaussianity of curvature fluctuations in PBH

scenarios is an important observable with several

2In fact, we are working in a regime of large jηj and very small
Δτ, as dictated by relations (3.6). Hence, we obtain

ϵðτ1Þa2ðτ1Þ¼ ϵðτ2Þa2ðτ2Þ
�
1þτ1

ϵ0ðτ1Þ
ϵðτ1Þ

Δτ
��

1þ2τ1
a0ðτ1Þ
aðτ1Þ

Δτ
�
;

¼ ϵðτ2Þa2ðτ2Þð1þτ1aðτ1ÞHðτ1Þðηþ2ÞΔτÞ;
¼ ϵðτ2Þa2ðτ2Þð1− ðηþ2ÞΔτÞ;
¼ ϵðτ2Þa2ðτ2Þð1þ2Π0Þ;

in agreement with condition (4.7).
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phenomenological ramifications for PBH formation
[55–59]. We refer the reader to [60] for a recent compre-
hensive analysis, and further references therein.

V. LOOP CORRECTIONS

In this section we apply the previous tools to study loop
contributions to the inflationary power spectrum [61–65].
In developing our arguments, we closely follow the clear
technical discussion of [24], but we make use of our large
jηj expansion, and the corresponding solutions for the mode
functions discussed in Sec. II. We are especially interested
in examining the physical implications of large loop
corrections in our approach, and the role of the scale
dependence of the spectrum. Moreover, we discuss a
proposal to adsorb quadratic ultraviolet divergences into
the available bare parameters in a large jηj limit, at least at
large scales relevant for CMB physics. We are left with log-
enhanced, infrared effects whose size is small at large
scales. This is an important step in order to clarify

the relation between loops and physically measurable
quantities.
The interaction Hamiltonian that we consider is given in

Eq. (4.1); as in Sec. IV, we focus on a sharp transition
between slow-roll regimes and an intermediate nonslow-
roll regime for τ1 ≤ τ ≤ τ2. We consider for definiteness the
two-point function of curvature fluctuations in momentum
space, evaluated at the scale p [dimensionless in the sense
that the momentum is multiplied by −τ1, as in Eq. (2.7)].
The corresponding 1-loop contributions can be found
utilizing the in-in formalism. We follow [24]: loop correc-
tions are conveniently decomposed as

hζpðτ0Þζ�pðτ0Þiloop ¼ hζpðτ0Þζ�pðτ0Þið1;1Þ
þ 2Re

h
hζpðτ0Þζ�pðτ0Þið2;0Þ

i
; ð5:1Þ

where each term correspond to a different contribution in
the expansion of the two-point correlator in the in-in
formalism [24]. They read

hζpðτ0Þζ�pðτ0Þið1;1Þ ¼
1

4

Z
τ0

−∞
dτaa2ðτaÞϵðτaÞη0ðτaÞ

Z
τ0

−∞
dτba2ðτbÞϵðτbÞη0ðτbÞ

Z
Π6

i¼1

d3ki
ð2πÞ3 δ

3ðk⃗1 þ k⃗2 þ k⃗3Þδ3ðk⃗4 þ k⃗5 þ k⃗6Þ

× hζ0
k⃗1
ðτaÞζk⃗2ðτaÞζk⃗3ðτaÞζp⃗ðτ0Þζ−p⃗ðτ0Þζ0k⃗4ðτbÞζk⃗5ðτbÞζk⃗6ðτbÞi; ð5:2Þ

and

hζpðτ0Þζ�pðτ0Þið2;0Þ ¼−
1

4

Z
τ0

−∞
dτaa2ðτaÞϵðτaÞη0ðτaÞ

Z
τ0

−∞
dτba2ðτbÞϵðτbÞη0ðτbÞ

Z
Π6

i¼1

d3ki
ð2πÞ3 δ

3ðk⃗1þ k⃗2þ k⃗3Þδ3ðk⃗4þ k⃗5þ k⃗6Þ

× hζp⃗ðτ0Þζ−p⃗ðτ0Þζ0k⃗1ðτaÞζk⃗2ðτaÞζk⃗3ðτaÞζ
0
k⃗4
ðτbÞζk⃗5ðτbÞζk⃗6ðτbÞi: ð5:3Þ
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0
3

FIG. 3. Left panel: check of Maldacena consistency relation for the squeezed limit of the three point function. Black line: the quantity
1 − ns. Red dashed line: the squeezed limit of the three-point function of Eq. (4.4) (we omit the factors jζκ1ðτ0Þj2jζκ2ðτ0Þj2). We use the
mode functions in Eq. (2.10), and choose the values jηj ¼ 104.1, Δτ ¼ 0.002. Right panel: plot of the scale dependence of the equilateral
three-point function, the quantity −feq=Π3

0, as defined in the main text, Eq. (4.8). The profile is remarkably similar to the power spectrum
of Fig. 1.
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From now on, to simplify the calculations we focus on a
large-scale regime where the size of the external momen-
tum p is much smaller than the momenta ki over which we
integrate [23,24]. This allows to simplify formulas sub-
stituting k − p ≃ k, and permits us to obtain analytic
results. We will discuss in due course the limitations we

should impose on p for satisfying this condition, and their
physical implications.
Substituting our Ansatz (4.2) in the case a sharp

transition at the times τ1 and τ2 between slow-roll and
nonslow-roll phases, the result acquires the following
structure [24]

hζpðτ0Þζ�pðτ0Þiloop ¼ ð2ϵðτ2Þa2ðτ2ÞÞ2Δη2jζp⃗ðτ0Þj2
Z

d3k
ð2πÞ3

h
jζk⃗ðτ2Þj2Imðζpðτ2Þζ0�pðτ2ÞÞImðζkðτ2Þζ0�kðτ2ÞÞ

− 4
ϵðτ1Þa2ðτ1Þ
ϵðτ2Þa2ðτ2Þ

Imðζpðτ0Þζ�pðτ2ÞÞImðζ0kðτ2Þζkðτ2Þζ�kðτ1Þζ0�kðτ1ÞÞ

− 2
ϵðτ1Þa2ðτ1Þ
ϵðτ2Þa2ðτ2Þ

Imðζpðτ2Þζ0�pðτ2ÞÞImðζ2kðτ2Þζ�kðτ1Þζ0�k ðτ1ÞÞ

þ ϵ2ðτ1Þa4ðτ1Þ
ϵ2ðτ2Þa4ðτ2Þ

jζk⃗ðτ1Þj2Imðζpðτ1Þζ0�pðτ1ÞÞImðζkðτ1Þζ0�k ðτ1ÞÞ
i
: ð5:4Þ

Since the integrand functions are rotationally invariant, the
three-dimensional integrals over internal momenta can be
decomposed into integrals over the real line as

Z
d3k
ð2πÞ3 ð…Þ ¼

Z
μ=jηj1=2

ΛIR=jηj1=2
k2dk
2π2

ð…Þ þ
Z

ΛUV=jηj1=2

μ=jηj1=2
k2dk
2π2

ð…Þ

ð5:5Þ
with ΛIR and ΛUV corresponding to a very small infrared
(IR) and a very large ultraviolet (UV) cutoff.3 They are
dimensionless quantities, obtained multiplying physical
momentum scales with jτ1j, as in Eq. (2.7). For conven-
ience, as a technical device we rescale the extrema of
integration by 1=jηj1=2, to simplify our results in a large jηj
limit. The intermediate dimensionless scale μ is introduced
in order to physically separate the loop corrections in an IR
part [the first integral in Eq. (5.5)] and a UV part (the
second integral). We can think of μ ∼ 1 as a scale where
NSR effects take place. This separation will be essential for
our arguments.
We decompose the resulting power spectrum at the end

of inflation τ0 ¼ 0 as a tree level and a loop part

PtotðpÞ ¼
p3

2π2ð−τ1Þ3
hζpðτ0Þζ�pðτ0Þi

¼ P0Π̂ðpÞ
h
1þ LIR

loop þ LUV
loop

i
; ð5:6Þ

with P0 the amplitude of the large scale tree-level power
spectrum as in Eq. (3.2), and Π̂ðpÞ is the momentum-

dependent function of Eq. (3.7), controlling the scale-
dependent ratio between small-scale and large-scale spectra.
Equation (5.6) contains the quantity Lloop, the loop con-
tribution (5.4), with themomentum integrals decomposed as
in Eq. (5.5). We collect as an overall factor the momentum
dependent quantity P0Π̂ðpÞ.
We substitute in the general formulas (5.5) our mode

functions (2.10). We analytically perform both the IR and
the UV integrals, which are much simplified in the large jηj
regime of Eq. (3.6), which keeps Π0 fixed. At leading order
in 1=jηj, the dominant contribution to the IR piece of the
loop correction results

LIR
loop ¼ −p2

P0

3

Π4
0

ð1þ Π0Þ2ð1þ 2Π0Þ
ln

�
μ

ΛIR

�
; ð5:7Þ

where we include only the log-enhanced part. Notice that
the IR contribution is proportional to p2, hence it is
suppressed at large scales. As in the rest of the work,
the quantity p is the dimensionless momentum scale
obtained dividing the physical momentum by the pivot
scale k⋆ [see Eq. (2.7)]. We neglect power-law quadratic
pieces depending on the small quantity ΛIR, and on μ
which, being of order one, is suppressed with respect to the
logarithm in Eq. (5.7), in case of a large ratio μ=ΛIR. This
IR contribution can be interpreted as a secular effects
caused by modes crossing the horizon from the onset of
inflation until around the epoch of NSR, controlled
respectively by the scales ΛIR and μ. IR contributions
are typically characterized by large logarithms,
whose effects might contribute to observable quantities,
if inflation lasts long. In our case, we can estimate
ln ðμ=ΛIRÞ ∼ ln½aðτ1Þ=aðτstartÞ�). Hence, we can expect
the logarithm to be of order say 102. See e.g. the clear
discussion in [62].

3From now on, our approach is a different from [23], where
ΛIR;UV are scales of modes leaving the horizon at the start and end
of the NSR era. In our case, being the NSR epoch very short, we
do not make this identification.
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The dominant contribution to the UV integral is a
quadratic divergence in ΛUV. We write the result only
including the contribution quadratic in the UV cutoff

LUV
loop ¼ −

P0Π0Λ2
UV

ð1þ Π0Þ
�
5

6
þ 3j1ðpÞ − p

3p

�
; ð5:8Þ

and we neglect subleading contributions. As the IR con-
tribution, also the UV part depend quadratically on a scale,
this time the cut-off scale ΛUV. As explained after Eq. (5.5),
the cutoff scales are again dimensionless quantities,
obtained dividing physical cutoff scales by a pivot scale.
The spherical Bessel function j1ðpÞ defined in Eq. (3.8).
The UV part contains the effects of small-scale modes,
which remain in a thermal vacuum within a subhorizon
regime during the first phase of inflation, until the short
NSR phase occurs. These modes should not participate to
the dynamics of the NSR era during inflation, and the
associated UV divergences are expected to be adsorbed into
appropriate, physically measurable quantities (see e.g. [66]
for a detailed analysis within slow-roll models).
We adopt this viewpoint, and assume that the contribu-

tions of LUV
loop are adsorbed into the available parameters

by means of an appropriate renormalization procedure. We
discuss in Appendix B a way to do so. We are left with
the log-enhanced loop contributions of Eq. (5.7). All our
results are derived under the approximation stated after
Eq. (5.3): to analytically compute the integrals, we make
the hypothesis that the momentum p at which the two-point
function (5.6) is computed is well smaller than the
momentum scales over which integrate, i.e. the lower
extremum of the integral

p2 ≤
Λ2
IR

jηj : ð5:9Þ

Since we are working at leading order in a 1=jηj expansion,
the previous condition informs us that we should only focus
on the very first terms in a momentum expansion of our
formulas. Using the expression (3.7), we consider Eq. (5.6)
up to second order in an expansion in momentum p,
including the IR loop contributions:

PtotðpÞ ¼ P0 −
4P0Π0

3

�
1þ P0

4

Π3
0

ð1þ Π0Þ2ð1þ 2Π0Þ

× ln

�
μ

ΛIR

��
p2 þOðp4Þ: ð5:10Þ

Hence, the log-enhanced IR loop only gives a contribution
to the quadratic term in the expansion. Its size is small,
being suppressed by a factor P0 ≃ 10−9 with respect to the
tree level term, so even a large logarithm is unable to give
large effects. The coefficients depending on Π0 give order
one effects, in the limit of Π0 large.

We conclude this section with a comparison between our
results and some recent papers appeared in the literature on
this subject. The works [23,24] focus on the ultra-slow-roll
case jηj ¼ 6, assuming sudden transitions between slow-
roll and nonslow-roll epochs. In this specific case,
loop corrections give dangerously large contributions to
correlators evaluated at large, CMB scales. Recently, the
works [31,36] shown that for different values of jηj in the
nonslow-roll epoch loop corrections can be reduced, and do
not necessarily spoil CMB predictions. Our large jηj
approach lies on this category of scenarios: it explores
systems with jηj ≠ 6, confirming that regions in parameter
space with jηj ≫ 6 lead to loop corrections suppressed by
powers of momentum p [see Eq. (5.10)], negligible at
large scales. Another possibility to explore is relaxing the
assumption of sudden transition between slow-roll
and ultraslow-roll phases. This idea has been carried on
in [28,30,33], showing that loop effects can be considerably
reduced when adopting a smooth transition between differ-
ent epochs. The same remains true including higher order
effects associated with quartic interactions [30]. It would
be very interesting to further explore these topics in the
context of our large jηj approach, also studying the effects
of loops at large values of momenta (as done for example
in [36]), and carrying on a renormalization procedure using
for example the techniques pursued by [32] in a related
context. Moreover, it would be interesting to study higher
loops, and consequences of higher order interactions
making use of a large jηj expansion. We leave these
investigations for future works.
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APPENDIX A: CURVATURE PERTURBATIONS
AND THE NSR REGIME

In this technical appendix, we briefly review the results
developed in [42] to determine analytic solutions for
inflationary mode functions during nonslow-roll regimes,
referring the reader to [42] for more details. Starting from
the quadratic action (2.1) of curvature perturbations, it is
convenient to introduce a Mukhanov-Sasaki variable
vkðτÞ ¼ ζkðτÞ=zðτÞ, satisfying the equation

v00kðτÞ þ
�
k2 −

z00ðτÞ
zðτÞ

�
vkðτÞ ¼ 0; ðA1Þ

in momentum space. In our case, the inflationary evolution
for τ ≤ τ0 undergoes different phases. We have an initial
slow-roll phase for τ ≤ τ1, where both the slow-roll
parameters ϵðτÞ and ηðτÞ are very small. We can approxi-
mate this as pure de Sitter phase. Then, for τ1 ≤ τ ≤ τ2 we
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have nonslow-roll evolution where ϵðτÞ keeps small, while ηðτÞ is negative but potentially large in size. We denote with ϵ1
and η the values of the slow-roll parameters evaluated at τ → τþ1 . Finally, a slow-roll phase τ2 < τ ≤ τ0 where the slow-roll
parameters return to very small values. Again, we approximate this last phase to pure de Sitter. We assume that the pump
field zðτÞ is continuous at the transitions.
In the de Sitter limit, while z00ðτÞ=zðτÞ ¼ 2=τ2 for τ ≤ τ1 and τ2 < τ ≤ τ0, the time-profile for this quantity can be richer.

As in [42], we adopt an Ansatz

vkðτÞ ¼ −
iH0zðτÞe−ikτ
2

ffiffiffiffiffiffiffiffiffi
ϵ1k3

p C1ðkÞ½1þ ikτ þ ðikτ1Þ2Að2ÞðτÞ þ ðikτ1Þ3Að3ÞðτÞ�

−
iH0zðτÞeikτ
2

ffiffiffiffiffiffiffiffiffi
ϵ1k3

p C2ðkÞ½1 − ikτ þ ð−ikτ1Þ2Að2ÞðτÞ þ ð−ikτ1Þ3Að3ÞðτÞ� ðA2Þ

for the Mukhanov-Sasaki mode function.
For τ < τ1, the mode equation is the same as in a

standard slow-roll era: in order to match with the Bunch-
Davies vacuum, we select AðnÞ ¼ 0 for n ≥ 2, as well as
C2 ¼ 0 and C1 ¼ 1 in Eq. (A2). For τ1 ≤ τ ≤ τ2, we can use
the Ansatz (A2) in the evolution equation (A1), and solve
the equation order by order in powers of ðkτ1Þ: see [42]. At
each order n in ðkτ1Þn, the equation can be solved at leading
order in an expansion in the parameter Δτ of Eq. (2.4)
controlling the duration of the non-slow-roll era. For each
n, the result depends on powers of the quantity
d ln ½z2ðτÞ=a2ðτÞ�=d ln τ, evaluated at time τþ1 at the onset
of the NSR era. This quantity was dubbed α in [42]: in the
present instance, within single field inflation with canonical
kinetic terms and in a pure de Sitter limit, it corresponds to
the quantity −η [we use the definitions (2.3)]. After
computing each quantity AðnÞ, the resulting series in
Eq. (A2) can be resummed analytically in terms of
exponentials. The result of the resummation is [42]

vkðτÞ ¼ −
iH0zðτÞe−ikτ
2

ffiffiffiffiffiffiffiffiffi
ϵ1k3

p
�
1þ ikτ

þ η

4
ð1 − 2ikðτ − τ1Þ − e2ikðτ−τ1ÞÞ

�
; ðA3Þ

valid for τ1 ≤ τ ≤ τ2. This mode function continuously
connects, together with its first derivative, with the mode
function (and the Bunch-Davies vacuum) for τ ≤ τ1. We
can finally connect the result of Eq. (A3) with de Sitter
mode function at later times τ2 ≤ τ ≤ τ0, imposing con-
tinuity of the function and its first derivative at τ ¼ τ2. The
solution corresponds to Ansatz (A2) with AðnÞ ¼ 0, and the
scale-dependent functions C1 and C2 are collected in
Eqs. (2.11) and (2.12) of the main text.

APPENDIX B: RENORMALIZATION
OF UV DIVERGENCES

In this appendix we briefly discuss a method for
adsorbing the UV quadratically-divergent parts (5.8) of
the loop contributions into the available parameters of the

system, at least at large scales for p ≪ 1. The quantities
available for this procedure are the overall amplitude P0

defined in Eq. (3.2), and the factor Π0 controlling the scale-
dependence of the tree level spectrum (3.7). As stated in the
main text, we can trust our results only on a large-scale,
small-p regime. [See discussion around Eq. (5.9).]
Expanding the total power spectrum (5.6) up to quadratic
order in p, and including the UV one-loop contributions
given in Eq. (5.8), we obtain:

PtotðpÞ¼P0

�
1−

5Π0Λ2
UVP0

6ð1þΠ0Þ
�

−
4P0Π0

3

�
1−

103Λ2
UVP0

120ð1þΠ0Þ
�
p2þOðp4Þ: ðB1Þ

The parenthesis contain the UV-divergent loop contribu-
tions, suppressed by a factor P0 with respect to the tree-
level terms. Higher loop corrections give contributions to
Eq. (B1) with powers higher than two in P0. In the present
one-loop instance, we can trust our results only up to
quadratic contributions P2

0. We can then adsorb the UV-
divergent parts of Eq. (B1) into a redefinition of the bare
quantities P0 and Π0, which are mapped into measurable
quantities Pms and Πms at large scales:

P0 → Pms

�
1þ 5Λ2

UVΠms

6ð1þ ΠmsÞ
Pms

�
; ðB2Þ

Π0 → Πms

�
1þ Λ2

UVð103 − 100ΠmsÞ
120ð1þ ΠmsÞ

Pms

�
: ðB3Þ

By means of this definition, we express Eq. (B1) as

PtotðpÞ ¼ Pms −
4Pms

3
Πmsp2 þOðp4Þ þOðP2

msÞ: ðB4Þ

Hence quadratically divergent, one-loop effects get
adsorbed into bare quantities. The result is expressed in
terms of the measurable amplitude Pms of the spectrum,
and on the parameter Πms controlling its scale dependence
at very large scales [see the discussion around Eq. (3.9)].
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It is also interesting to provide a feeling on the size of the
quadratic loop corrections, by substituting representative
values of the measurable parameters in Eqs. (B2) and (B3).
At very large scales, we can fix the dimensionless power
spectrum Pms to the value Pms ≃ 10−9, so to match the
normalization of CMB spectrum. Moreover, if we wish to
get an enhancement at least of order 106 in the size of the
primordial spectrum from large toward small scales—in
order for producing primordial black holes—we select the
ratio Πms ¼ 103 [see Eq. (3.4)]. Equations (B2) and (B3)
become

P0 ≃ Pms

�
1þ 5 × 10−9

6
Λ2
UV

�
; ðB5Þ

Π0 ≃ Πms

�
1 −

5 × 10−9

6
Λ2
UV

�
: ðB6Þ

As explained in the main text—see comments after
Eq. (5.5)—the quantity ΛUV is dimensionless, being the
ratio of the cutoff scale versus the pivot scale k⋆ of Eq. (2.6)
characterizing the modes leaving the horizon during the
NSR era. Hence bare and measurable quantities are of
comparable size, unless the scale of the cutoff is very large
(by a factor at least of order 104–105) with respect to the
pivot scale.
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