Supplementary Material

Real-world impact of upfront cytoreductive nephrectomy in metastatic non-clear cell renal cell carcinoma treated with first-line immunotherapy combinations or tyrosine kinase inhibitors (a subanalysis from the ARON-1 retrospective study)

Ondřej Fiala^{1,2**}, Sebastiano Buti^{3,4*}, Aristotelis Bamias⁵, Francesco Massari^{6,7}, Renate Pichler⁸, Marco Maruzzo⁹, Enrique Grande¹⁰, Ugo De Giorgi¹¹, Javier Molina-Cerrillo¹², Emmanuel Seront¹³, Fabio Calabrò¹⁴, Zin W Myint¹⁵, Gaetano Facchini¹⁶, Ray Manneh Kopp¹⁷, Rossana Berardi¹⁸, Jakub Kucharz¹⁹, Maria Giuseppa Vitale²⁰, Alvaro Pinto²¹, Luigi Formisano²², Thomas Büttner²³, Carlo Messina²⁴, Fernando Sabino M. Monteiro²⁵, Nicola Battelli²⁶, Ravindran Kanesvaran²⁷, Tomáš Büchler²⁸, Jindřich Kopecký²⁹, Daniele Santini³⁰, Giulia Claire Giudice^{3,4}, Camillo Porta^{31§}, Matteo Santoni^{26§}

°co-first author; [§]co-senior authors

¹Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University, alej Svobody 80, Pilsen 304 60, Czech Republic; ²Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, Pilsen, Czech Czech Republic; ³Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126, Parma, Italy; ⁴ Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126, Parma, Italy; ⁵2nd Propaedeutic Department of Internal Medicine, School of Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece; ⁶Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; ⁷Department of Urology, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria; ⁹Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy; ¹⁰Department of Medical Oncology, MD Anderson Cancer Center Madrid, Universidad Francisco de Vitoria, Madrid, Spain; ¹¹Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy; ¹²Department of Medical Oncology, Hospital Ramón y Cajal, Madrid, Spain; ¹³Department of Medical Oncology, Centre Hospitalier de Jolimont, Haine Saint Paul, Belgium; ¹⁴Medical Oncology 1-IRCCS Regina Elena National Cancer Institute, Rome, Italy; ¹⁵Markey Cancer Center, University of Kentucky, Lexington, KY, 40536-0293, USA; ¹⁶Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, Pozzuoli, Napoli, ASL NA2 NORD 80078, Italy; ¹⁷Clinical Oncology, Sociedad de oncología y hematología del Cesar, Valledupar, Colombia; ¹⁸Department of Medical Oncology, Università Politecnica delle Marche, AOU delle Marche, Ancona, Italy; ¹⁹Department of Uro-oncology, Maria Sklodowska-Curie National Research Institute of Oncology Warsaw, Poland; ²⁰Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; ²¹Medical Oncology Department, La Paz University Hospital, Madrid, Spain; ²²Department of Medicine and Surgery, Federico II University, Naples, Italy; ²³Department of Urology, University Hospital Bonn (UKB), 53127 Bonn, Germany; ²⁴Oncology Unit, A.R.N.A.S. Civico, Palermo, Italy; ²⁵Latin American Cooperative Oncology Group – LACOG and Oncology and Hematology Department, Hospital Sirio-Libanês, SGAS 613 Lote 94, Brasília-DF, Brazil; ²⁶Oncology Unit, Macerata Hospital, Via Santa Lucia 2, Macerata, 62100, Italy; ²⁷National Cancer Centre Singapore, Singapore; ²⁸Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 150 06, Prague, Czech Republic; ²⁹Department of Clinical Oncology and Radiotherapy, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; ³⁰Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Policlinico Umberto1, Rome Italy; ³¹Interdisciplinary Department of Medicina, University of Bari "Aldo Moro" and Division of Medical Oncology, A.O.U. Consorziale Policlinico di Bari, Bari, Italy.

Overall and progression-free survival in specific groups

According to the IMDC risk, intermediate-risk patients showed longer OS compared to poor-risk patients (30.0 months, 95%CI 24.8–41.7 vs 13.3 months, 95%CI 9.2–23.9, p<0.001, **Figure S2**), while the difference in PFS was not significant (10.0 months, 95%CI 6.6–80.0 vs 6.5 months, 95%CI 4.8–10.1, p=0.217, **Figure S2**).

Stratified by the first-line therapy, the median OS was 26.9 months (95%Cl 22.1–36.8) *vs* 24.9 months (95%Cl 22.3–35.3) for patients receiving TKI monotherapy or IO combinations, respectively (p=0.579), with a 2y-OS rate of 55% for both subgroups. According to the IMDC risk, in the intermediate-risk patients the median OS was 28.8 months (95%Cl 22.3–35.3) for IO combinations *vs* 30.0 months (95%Cl 24.9–71.3) for TKI monotherapy (p=0.962) and in the poor-risk patients, the median OS was 12.7 months (95%Cl 7.0–15.4) for IO combinations *vs* 16.7 months (95%Cl 11.0–27.7) for those receiving TKI monotherapy (p=0.593). The median PFS was 13.0 months (95%Cl 8.3–16.9) for patients treated with IO combinations *vs* 6.5 months (95%Cl 5.3–80.0) for those receiving TKI monotherapy (p=0.002, **Figure S3**). In the intermediate-risk patients, the median PFS was 15.9 months (95%Cl 8.8–26.4) for IO combinations *vs* 6.5 months (95%Cl 5.3–80.0) for TKI monotherapy (p=0.003, **Figure S3**). In the intermediate-risk patients, the median PFS was 15.9 months (95%Cl 8.8–26.4) for IO combinations *vs* 6.5 months (95%Cl 5.3–80.0) for TKI monotherapy (p=0.003, **Figure S3**). In the poor-risk patients, the median PFS was 10.1 months (95%Cl 3.2–15.2) for IO combinations *vs* 6.0 months (95%Cl 3.9–7.4) for those receiving TKI monotherapy (p=0.264).

According to the IMDC risk groups, in the intermediate-risk and poor-risk patients, the median OS with IO+TKI was 31.1 months (95%CI 20.8–40.5) and 15.4 months (95%CI 7.0–15.4), while IO+IO combination showed median OS 28.8 months (95%CI 7.8–28.8, p=0.628) and 7.7 months (95%CI 2.6–11.9, p=0.100) in the two IMDC groups, respectively. In the intermediate-risk patients, the median PFS was 16.8 months (95%CI 12.8–18.6) for IO+TKI and 8.3 months (95%CI 4.1–47.6) for IO+IO (p=0.213). In the poor-risk patients, the median PFS was 12.7 months (95%CI 3.2–23.5) for IO+TKI vs 6.0 months (95%CI 2.0–15.0) for IO+IO (p=0.382).

Figure S1. Patients' selection process from the ARON-1 study.

RCC = renal cell carcinoma; IO = immuno-oncology; TKI = tyrosine kinase inhibitor

risk.

Figure S3. Kaplan-Meier estimates of progression-free survival according to the type of first-line therapy. Comparison between tyrosine kinase inhibitor (TKI) monotherapy and immuno-oncology (IO) combinations.

Figure S2. Kaplan-Meier estimates of progression-free survival and overall survival according to IMDC