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A B S T R A C T   

The recent launch of Landsat-9 satellite enriches the opportunities to work with dense time series of multispectral 
medium-resolution images. The integration of Landsat-9 in a multi-constellation series with Landsat-8 and 
Sentinel-2 requires a harmonization of the surface reflectance values that can be obtained from the official Level- 
2 products. This paper proposes the coefficients of the optimal linear transformations for the European continent, 
which allow to integrate Landsat-9 with the similar operating missions. These coefficients are based on a 
regression over 30 independent random extractions of 240,000 samples from images of the same areas but ac
quired by different sensors within two days. The coefficients were validated on an independent dataset. 
Furthermore, the effects of the proposed harmonization were tested on four popular vegetation indices, by 
evaluating the distributions of the differences in values obtained from each sensor pair. Finally, a test on a local 
scale was carried out with a spectroradiometer survey on 16 locations to collect some reference spectra to be 
compared with the reflectance values provided by the images. The results demonstrate the interoperability of 
Landsat and Sentinel-2 missions, since reflectance differences are in most cases within the accuracy specifications 
of the sensors. However, some discrepancies are observed in the blue and SWIR bands, probably due to in
consistencies in the atmospheric correction processes.   

1. Introduction 

After its successful launch in September 2021 and a calibration 
period, Landsat-9 (L9) data were made available for download for the 
first time on February 15, 2022. This new dataset increases as never 
before the number of Landsat-like satellites in orbit, representing a great 
potential for data availability and suitability for several applications 
(Wulder et al., 2022). Indeed, as evidenced by the study of Li and Chen 
(2020), the combined use of L9 in a virtual constellation with Landsat-8 
(L8) still operating and the twin Sentinel-2 (S2) satellites allows to reach 
a 2.3 days revisit time. This achievement is vital for end-users requiring 
cloud-free data for monitoring purposes, providing more than three 
observations per week (Li & Roy, 2017; Wu et al., 2019) and reducing 
the data gaps and noise due to atmospheric effects, such as clouds and 
haze (Ghaderpour & Vujadinovic, 2020). 

This awareness led to the design of the Landsat and Sentinel-2 mis
sions with great sensors similarity, enabling interoperability. However, 
some elements, such as satellite orbits and acquisition geometry (illu
mination and view angles), may limit their consistency. This is the case, 

for example, of the orbit drift of Landsat-7 (L7) and Landsat-5, which 
introduced discrepancies in data coherence that had to be evaluated 
(Qiu et al., 2021; Zhang & Roy, 2016). 

Furthermore, both Sentinel and Landsat missions are committed to 
deliver different product levels for different users (Wu et al., 2019; 
Wulder et al., 2019). Beside the standard Level-1 products (Top-Of-At
mosphere, TOA), surface reflectance (Bottom-Of-Atmosphere, BOA) 
datasets are delivered as Level-2 images corrected for the atmospheric 
effects. In general, for monitoring or change detection studies, the use of 
BOA is required to avoid false change detections due to different at
mosphere conditions. However, the official reflectance products are 
obtained by Landsat and Sentinel-2 missions through different atmo
spheric correction algorithms, each of them laying on different auxiliary 
data for the estimation of atmosphere parameters, such as water vapour, 
pressure or aerosol optical thickness (Main-Knorn et al., 2017; Vermote 
et al., 2016). 

For these reasons, it is important to assess the consistency of the BOA 
datasets among these missions to ensure data continuity. Moreover, as 
recommended by Helder et al. (2018), cross-calibration comparisons 
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between Landsat and S2 should be promoted to improve data interop
erability and they should include BOA as well as TOA observations. The 
authors also suggest implementing these studies on a regular basis, 
which is even more crucial for calibration purposes of new satellites, like 
in the case of L9. 

In order to assess cross-sensor discrepancy and build a virtual 
constellation, some authors proposed transformations of reflectance 
values to account for spectral and angular residual differences. Recently, 
Gross et al. (2022) used the underfly event during the launch of the L9 to 
compare its observations to those acquired by L8 from almost the same 
point of view and provided the first calibration parameters for L9. 
Mandanici and Bitelli (2016) performed a limited image-to-image S2 
and L8 comparison between corresponding bands, while Roy et al. 
(2016) computed statistical coefficient to harmonize TOA and BOA of L7 
and L8 considering the entire United States. Chastain et al (2019) 
extended this approach in a cross-sensors comparison of S2 MultiSpec
tral Instrument (MSI), L8 Operational Land Imager (OLI), and L7 
Enhanced Thematic Mapper Plus (ETM + ) top of atmosphere spectral 
bands, giving the regression coefficients to build a multi-mission syn
thetic constellation. 

To mitigate the problems derived from different atmospheric 
correction algorithms and bidirectional reflectance distribution func
tions (BRDF) of the surfaces, NASA started distributing a collection of 
Harmonised Landsat Sentinel-2 (HLS) products in 2018, with the aim of 
creating a virtual constellation (Claverie et al., 2018). The collection is 
now at version 2 and provides MSI and OLI products resampled at 30 m 
in the spatial grid of S2 (U.S. Geological Survey, 2021). Quality control 
is still in progress, but the overall relative uncertainty in a single band 
reflectance (except blue one) is expected to be lower than 11 % (Claverie 
et al., 2018). A study on time series (TS) in Canada suggested a better 
performance of HLS data over non-vegetated areas, especially at higher 
latitudes (Wulder et al., 2021), possibly in relation to residual BRDF 
issues. 

Very few studies included comparisons with in-situ survey. Marujo 
et al. (2021) compared L8 and S2 observations with in situ measurements 
collected in Brazil in order to assess the impact of the two atmospheric 
correction algorithms. Instead, Teixeira Pinto et al. (2020) focused on 
the Landsat mission: they presented a radiometric performance evalu
ation of L7 and L8 products supported by surveys from eight test sites 
located in four different continents. At the time of the writing, the au
thors could not find any study including cross-sensors comparison of L8/ 
L9 with S2 observations at continental level, supported by in situ data. 

Therefore, the present study proposes a methodology to compile a 
robust collection of reflectance samples from imagery and estimate the 
coefficients of a linear transformation for the harmonization of the L8, 
L9 and S2 data. This linear transformation is expected to be valid all over 
the European continent and is designed to be applied on official level-2 
satellite products, in order to ease the implementation for end-users 
including non-experts. 

Furthermore, the effects of the proposed harmonization were tested 
computing four of the most popular vegetation indexes starting from the 
harmonized spectral bands of the considered sensors. 

Finally, a comparison between reflectance values extracted from 
images and contemporary spectral signatures measured on the ground 
by a spectroradiometer is performed on a local scale, to investigate 
discrepancies in reflectance values among the different multispectral 
sensors. 

All the experiments are based on the identification of dates when all 
the considered satellites (L8, L9 ad S2) capture an image of the same 
area in two days maximum. These concurrences are called here COEs 
(Contemporary Overpass Event). The following sections details the 
methodology adopted and the obtained results. 

2. Materials and methods 

2.1. Sensor characteristics 

For the present study, BOA and TOA products derived from Landsat- 
9, Landsat-8 and Sentinel-2 were compared. L8 and L9 orbit around the 
Earth at a nominal altitude of 705 km, crossing the equator on the 
descending node at 10:00 (±15 min) a.m. Mean Local Time (MLT), with 
a revisit cycle of 16 days each (8 days considering both platforms). The 
orbit of Sentinel-2 satellites is 786 km high and crosses the equator at 
10:30 (±15 min) a.m. Mean Local Solar Time at the descending node 
(ESA, 2015b). 

OLI and MSI, onboard L8 and S2 respectively, acquire images with a 
radiometric resolution of 12-bits, while L9 OLI-2 stores information 
using 14-bits. Finally, all the products are delivered as 16-bit digital 
images (ESA, 2015b; Gross et al., 2022; U.S. Geological Survey, 2022b). 
OLI and S2 have 11 and 13 bands, respectively; however, only the six 
bands which share comparable spectral characteristics were considered 
here. These are Blue, Green, Red, NIR, SWIR1 and SWIR2 bands 
(Table 1). Indeed, the percentages of overlap in per-band Spectral 
Response Functions (SRF) among the Sentinel-2 MSI and Landsat OLI 
were estimated as follows by Chastain et al. (2019): Blue 79.2 %, Green 
99.5 %, Red 78.1 %, NIR (Band-8a) 98.8 %, SWIR1 89.7 % and SWIR2 
92.2 %, and OLI-2 has been designed to be as similar as possible to OLI. 

A relevant difference between the missions is the different atmo
spheric correction algorithm adopted in the generation of Level-2 
products, i.e. the Land Surface Reflectance Code (LaSRC) algorithm 
(Vermote et al., 2016) for Landsat and the Sen2Cor processor (Main- 
Knorn et al., 2017) for S2. LaSRC estimates atmospheric constituents 
from ancillary data (climate information from MODIS, SRTM) and re
trieves the aerosol concentration from the blue band. Sen2Cor instead 
estimates the atmosphere aerosol parameters using the Dense Dark 
Vegetation algorithm (Kaufman & Sendra, 1988); while the water 
vapour retrieval is performed with the Atmospheric Pre-corrected Dif
ferential Absorption algorithm (Schläpfer et al., 1998). 

2.2. Computation of harmonization coefficients at continental level 

To collect the data required for the cross comparison, a dedicated 
workflow (Fig. 1) for image pre-processing and sample extraction was 
implemented in the Google Earth Engine (GEE) platform through the 
Javascript API (Gorelick et al., 2017). The considered image collections 
provided in the GEE data catalog are the L9 and L8 Collection-2 Tier-1 
TOA and BOA, and the Harmonized Sentinel-2 TOA and BOA datasets, 
which are already corrected for the shift in DN introduced with the 
processing baseline 04.00 (ESA, 2015a). 

Moreover, a land cover dataset was included in the analysis. In 
particular, GEE offers the Dynamic World Land Use Land Cover 
(DWLULC) (Brown et al., 2022), which provides a 10 m resolution map, 
obtained from the classification of every S2 image and associated to it. It 
is based on a deep-learning algorithm that discriminates the following 
classes: water, trees, grass, flooded vegetation, crops, shrub and scrub, 
built area, bare ground, snow and ice. This dataset was selected for its 

Table 1 
Comparison of the similar spectral bands of the MSI, OLI-2 and OLI instruments.  

Landsat-8/9 OLI/OLI-2 Sentinel-2 MSI 

Bands Wavelength (µm) Res. 
(m) 

Bands Wavelength (µm) Res. 
(m) 

B2 Blue 0.450–––0.510 30 B2 Blue 0.458–––0.523 10 
B3 Green 0.533–––0.590 30 B3 Green 0.543–––0.578 10 
B4 Red 0.636–––0.673 30 B4 Red 0.650–––0.680 10 
B5 NIR 0.851–––0.879 30 B8a NIR 0.855–––0.875 20 
B6 SWIR-1 1.566–––1.651 30 B11 SWIR-1 1.565–––1.655 20 
B7 SWIR-2 2.107–––2.294 30 B12 SWIR-2 2.100–––2.280 20  
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high spatial resolution and temporal coherence with every S2 image. 
The three sensors were compared in pairs, by randomly sampling the 

pixel values from triplets of overlapping images sensed with a maximum 
delay of one day from the L9 acquisition, as detailed in the following 
sections. The final statistical analysis on the sampled data was computed 
in Python environment. 

2.2.1. Study area 
The analysis was performed over the entire European continent. The 

total area was tiled into subregions in order to reduce as much as 
possible the computational burden. Since the reliability of the BOA 
products is ensured for a latitude lower than 65◦ (Campbell & Aarup, 
1989; U.S. Geological Survey, 2019), the analysis excluded regions at 
higher latitude (Fig. 2). 

2.2.2. Data gathering and preparation 
First of all, the archives of the three sensors were filtered separately 

based on metadata, which include time, space and cloud cover. For each 
collection, all the images acquired from 1 February 2022 until December 
2022, over Europe, with a cloud coverage lower than 15 % were 
selected. This threshold was set to gather a sufficient number of good 
quality images, but considering the very recent availability of L9. 
Overall, 3,826 L8, 3,765 L9 and 48,664 S2 images satisfied these filters. 
Moreover, every S2 image was joined with the associated land use land 
cover provided by the DWLULC dataset. At this point, the images 
remaining after the previous filtering were pixel-wise masked using the 
pixel quality assessment (QA) bitmask band and Scene Classification 
map (SCL) quality assessment band for Landsat and S2 respectively 
(Foga et al., 2017; Louis et al., 2010). These products, which are auto
matically generated by level-2 algorithms and delivered in the final 
products as additional bands, were used to remove high and medium 

Fig. 1. Workflow of the harmonization coefficients computation.  

Fig. 2. Area covered by the cross-sensors comparison and distribution of random sampling. Basemap: Sentinel-2 cloudless - https://s2maps.eu by EOX IT Ser
vices GmbH. 
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confidence clouds, dilated clouds, cloud shadows, high confidence 
cirrus, snow/ice and water pixels. In addition, saturated and out-of- 
range pixels were masked out. 

2.2.3. Image pairing, co-registration and reprojection 
The filtered images of two different sensors (L8 with L9 and S2 with 

L9), which are spatially overlapping and acquired within 24 h, were 
paired, finely co-registered and resampled at the L9 grid. S2 was 
aggregated at 30 m by computing the mean values of the original 10 or 
20 m pixels; while the DWLULC map was subsampled using the mode 
statistics. 

At this point, an additional mask was calculated to exclude possible 
residual changes in land cover that might be occurred between the two 
acquisitions of the paired images. The mask was calculated on the pixel- 
wise difference in the blue band values, following the methodology 
proposed by Roy et al. (2016). Pixels with a difference in the blue greater 
than the 50 % of their mean were discarded. It was assumed that such a 
change in the blue can be caused by surface changes or by the presence 
of undetected clouds and therefore masked out from the analysis. 

Finally, the two paired collections were merged together through an 
inner join operation, selecting those L8/L9 and S2/L9 pairs sharing the 
same Landsat-9 image. The resulting collection is made of 22,256 trip
lets of images acquired in the same area by L8, S2 and L9, where L8 and 
S2 were acquired at a maximum distance of 1 day from the L9. Also the 
masks were merged, to keep only the pixels with valid values in all the 
images. 

2.2.4. Data sampling 
From the obtained image triplets, a large number of pixels were 

randomly extracted to perform the cross-sensor comparisons. A strati
fied sampling approach was applied based on the land cover classes, in 
order to extract a representative sample from each class. Different 
sample sizes were tested and it was observed that significant and stable 
results can be obtained with a size greater than 240,000 observations. 
Therefore, 30 independent extractions of about 240,000 sample pixels 
were performed. The size of each single extraction might slightly differ 
because a post-extraction check and duplicates removal were conducted. 

For every pixel, both TOA and BOA values were extracted for the six 
common bands. Then, the differences in reflectance between almost 
synchronous L8 and L9 observation and between S2 and L9 were 
computed and statistically analysed. 

Finally, a further independent extraction was performed to build a 
validation dataset to test the coefficients of the cross sensor analysis. In 
this case, the selected sample size is more than double the single 
extraction and about 10 % of the entire training dataset. 

2.2.5. Cross-sensors analysis 
A linear model was estimated to harmonize atmospherically cor

rected BOA values from different sensors. For each couple (S2/L9 and 
L8/L9) two Ordinary Least Square (OLS) regressions and a Reduced 
Major Axis (RMA) regression were computed (Harper, 2016). 

In the classic OLS approach, the slope and intercept values change 
depending on which variable (i.e., which sensor) is defined as depen
dent; thus, OLS was performed twice by switching the variables (Roy 
et al., 2016). Conversely, the RMA regression considers both the 
dependent and independent variables as affected by errors, which is 
more realistic in this context because all the sensors can be affected by 
calibration errors (Chastain et al., 2019; Roy et al., 2016). The obtained 
relationship, in this case, can be inverted with a simple algebraic 
operation (Harper, 2016). 

The goodness of the fit was evaluated with the coefficient of deter
mination (r2), while the regressions significance was defined by the 
overall F-statistic p-value (Roy et al., 2016). The similarity of the 
sampled pair values was quantified using the Mean Difference (MD) and 
the Root Mean Square Deviation (RMSD), as defined in Chastain et al. 
(2019): 

MD =
∑n

i

vA
i − vB

i

n
(1)  

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i
(vA

i − vB
i )

2

n

√
√
√
√
√

(2) 

Where νi is the i-th pairwise pixel observation by generic sensor A or 
B, and n is the total amount of sampled pixels. 

2.2.6. Vegetation indices 
To test the obtained harmonization coefficients, some vegetation 

indices (VIs) were computed, since they are able to synthetize bio
physical characteristics of vegetation. In particular, four of the most 
popular vegetation indices derived from the combination of Blue, Red, 
NIR and SWIR bands were considered: the Normalized Difference 
Vegetation Index (NDVI) (equation (3)), Soil Adjusted Vegetation Index 
(SAVI) (equation (4)), the Enhanced Vegetation Index (EVI) (equation 
(5)), and the Normalized Difference Moisture Index (NDMI) (equation 
(6)) (Trevisiol et al., 2024; Chaves et al., 2020). 

NDVI =
NIR − Red
NIR + Red

(3)  

EVI = 2.5 •
NIR − Red

NIR + 6 • Red − 7.5 • Blue + 1
(4)  

SAVI = 1.5 •

(
NIR − Red

NIR + Red + 0.5

)

(5)  

NDMI =
NIR − SWIR
NIR + SWIR

(6) 

Firstly, the L9, S2 and L8 VIs were computed according to equations 
(3)–(6) for all the paired sampled BOA pixels. Secondly, the harmonized 
VIs were recomputed using the harmonized bands obtained through the 
application of the computed coefficients. In the following, the harmo
nized bands, sensors or vegetation indices are indicated with a small “h” 
before the name (e.g. hNDVI). Finally, for each cross-sensor comparison, 
the differences between NDVI, EVI, SAVI and NDMI values before and 
after harmonization were statistically analysed and compared. For 
example, the histogram of the differences in NDVI values derived from 
the original OLI-2 bands and the original MSI bands was compared with 
the histogram of the differences between the NDVI values computed 
from the original OLI-2 bands and the hNDVI values computed from the 
harmonised MSI bands. In this case, the harmonization is applied to MSI 
bands to improve their compatibility with the corresponding OLI-2 
bands. 

2.3. Local comparison with in-field survey 

2.3.1. Survey design and study area 
Among all the available image triplets, few were selected for a local 

analysis based on contemporary measurement of ground spectral sig
natures with a spectroradiometer. For practical and logistic reasons, two 
areas of interest (AOIs) were selected (Fig. 3). These areas are located in 
Italy, in the Emilia-Romagna region, one near Reggio-Emilia and the 
other near Ravenna. The two AOIs lie in the Po River valley, which is 
mainly characterised by intense agricultural activities. 

Inside the selected AOIs, homogeneous surfaces of at least 120x120 
m were identified as possible survey locations. Homogeneous, in this 
context, means a uniform type of land cover or material over the entire 
area, so that within it the spatial variability of the spectral signature is 
minimal. This characteristic, which was verified during field in
spections, makes it easier to compare spot measurements on the ground 
and values extracted from image pixels (with a resolution of 10 or 30 m). 
The minimum extent comes from the need to address the effect of cubic 
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Fig. 3. Sentinel-2, Landsat-8/9 overlapping footprint in the Emilia-Romagna region in Italy: where surveys were conducted near Reggio Emilia (A) and Ravenna (B) 
cities. Basemap: Sentinel-2 cloudless - https://s2maps.eu by EOX IT Services GmbH. 

Fig. 4. Location of surveys and their land cover.  
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convolution (CC) applied during the orthorectification processing in the 
production of the official Level-1 data. Indeed, CC introduces some 
smoothing in the image, by averaging the spectra of nearby pixels 
covering heterogeneous surfaces. By isolating minimum 120x120 m2 

surfaces, which corresponds to a 4x4 Landsat pixels, the pixels in the 
middle should be less affected by this numeric effect. The selected extent 
is a trade-off between the need of wide homogeneous surfaces and the 
extremely patchy land cover of the Po valley. Moreover, the surveys aim 
to collect the spectral signatures of different types of surface, both an
thropic and natural. 

The time window to perform the ground measurements was limited 
to one hour before and one hour after the satellite image acquisitions. 
This choice is also a trade-off between the contrasting needs of limiting 
the variations of illumination conditions and of measuring as many 
spectra as possible. Therefore, the selected locations had to be spatially 
clustered. A further strong constraint is that it is only possible to operate 
in almost ideal weather conditions, i.e. clear skies, because the presence 
of scattered clouds or haze causes rapid fluctuations in irradiance. 
Finally, these locations needed to be open and accessible to public. 
Based on all these requirements, the sixteen points finally selected are 
shown in Fig. 4. 

Table 2 provides a summary of the “Contemporary Overpass Events” 
(COE) that occurred in the selected AOIs, i.e. when S2, L8 and L9 
captured the same site within 48 h one to the others and when, thanks to 
cloud-free weather conditions, the spectroradiometer surveys in the 
field were performed. For the selection of the dates also L8 was 
considered, but in the present study only the comparison between S2 
and L9 was performed, because it is expected to be the most informative. 
Actually, further surveys were performed on 13 and 21 March 2022, but 
they could not be used due to an outage of the L9 thermal sensors and 
consequent unavailability of Level-2 products (U.S. Geological Survey, 
2022a). 

More details about the surveyed locations (coordinates and dates) 
can be found in the supplementary materials (SM7). 

2.3.2. Spectroradiometer surveys 
The spectroradiometer used in the survey is the SVC HR-768i by 

Spectra Vista Corporation. The instrument records spectra in the range 
350 – 2500 nm with a high spectral resolution (768 channels). Details 
about the instrument characteristics can be found in Fig. 5a (Spectra 
Vista Corporation - SVC, 2019). 

At every location, a set of measurements was performed. The in
strument was mounted on a monopod equipped with a ball head with a 
protractor. The measurements were taken at a height of about 1.5 m 
above the ground; therefore, the ground sampling distance is about 9 cm 
with the 4◦ optics and 30 cm with the 14◦ optics. At the beginning and at 
the end of a set, a calibrated Spectralon® panel was measured. Each set 
includes four readings with different inclinations in the nadir and two in 
the azimuth direction, for a qualitative evaluation of possible BRDF ef
fects (Roitberg et al., 2022). Fig. 6 represents the adopted scheme for the 
set of measurements. At each site the set of measures was repeated in 
two distinct points (a compromise between the need to perform several 
measurements and the very limited time available). 

2.3.3. Spectral signature processing 
The collected spectral signatures underwent some pre-processing. 

The reflectance was corrected for the Spectralon® panel calibration 
curve and adjusted for little illumination variations during the execution 
of the set of readings. For each site, in the case of homogeneous material, 
the spectral signatures collected in the two points were simply averaged. 
In the case of ploughed fields where plants had sprouted, a linear mix 
was calculated between the soil and vegetation signatures (Fig. 7), with 
weights based on the percentage of vegetation cover. This percentage 
was roughly estimated from photographs taken in the field. Then, the 
signatures were resampled to the OLI-2 and MSI bands, using the rela
tive SRFs of the sensors. 

This procedure, implemented in ENVI-IDL environment, allows to 
compare these in situ measurements with satellite observations. Among 
the six spectra collected at every location, the two with the most similar 
elevation angle to the satellite acquisitions were averaged (see the 
skyplot in Fig. 6a). To do this, the acquisition angles of the satellites 
were extracted in every pixel from the metadata. While for Landsat-9 
this information is already provided as an additional 30 m band, the 
Sentinel-2 angles were retrieved using the code provided by Pahlevan 
et al. (2017), modified to account for the new format of the quality 
masks introduced in baseline 4.00 processing (ESA, 2022a). 

A comparison between the field spectra and the image spectra was 
performed for all the surveyed locations, considering here L9 and S2 
only. The following indicators, widely adopted in the literature, were 
used to quantify the similarity between corresponding spectra:  

• Spectral Angle Mapper (SAM): it calculates the angle between the 
positional vectors of two spectra in the feature space. The smaller 
this angle, the more similar the two compared spectra are (Kruse 
et al., 1993).  

• Euclidean Distance (ED): it is the distance between two spectra in the 
feature space and it summarizes the reflectance difference in all the 
bands. The smaller the distance, the more similar the spectra.  

• Spectral Correlation Angle (SCA): it is based on the conversion of the 
Pearson’s correlation coefficient into an angle; the SCA ranges from 
0 (full positive correlation) to 1.57 (full negative correlation) radians 
(Naresh Kumar et al., 2011; Robila & Gershman, 2005).  

• Spectral information divergence (SID): it is a stochastic indicator that 
uses the probabilistic discrepancy of two spectra to quantify their 
similarity (Chang, 2000). The smaller the divergence, the more 
similar the spectra. 

3. Results and discussion 

3.1. European cross-sensors comparison 

The results of the comparison between L9 and L8 and L9 and S2 are 
reported here. As described in Section 2.2, the statistics presented are 
obtained through 30 independent extractions for a total amount of more 
than 7 million of observations. For each band, the differences in 
reflectance between sensors and the mean linear regression coefficients 
are computed. 

Table 2 
Contemporary Overpass Events (COEs) details: date, platform and time of 
overpass over the same area.  

COE AOI Date Sensor Orbit id Path/ 
Row 

Time 
(UTC) 

A Reggio 
Emilia 

4/03/ 
2022 

L9  193/29 10:04 
S2 22- 

T32TPQ  
10:10 

5/03/ 
2022 

L8  192/29 09:58 

B Reggio 
Emilia 

28/04/ 
2022 

S2 22- 
T32TPQ  

10:06 

29/04/ 
2022 

L8  193/29 10:04 

30/04/ 
2022 

L9  192/29 09:58 

C Ravenna 21/03/ 
2022 

L8  192/29 09:58 
S2 122- 

T32TQQ  
10:00 

22/03/ 
2022 

L9  191/29 09:52 

D Ravenna 15/05/ 
2022 

S2 122- 
T32TQQ  

10:00 

16/05/ 
2022 

L9  192/29 09:58 

17/05/ 
2022 

L8  191/29 09:52  
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Analysing the differences in reflectance, it appears that the histo
grams of TOA and BOA differences are quite overlapping when consid
ering L8 and L9, while they show differences when comparing L9 with 
S2 (Fig. 8 and supplementary materials SM1 and SM2). In this case, 
considering one extraction of the samples, the average difference in the 
TOA ranges between − 0.0037 in the Blue and − 0.0001 in the SWIR1 
band; on the other hand, same values for BOA ranges from 0.0030 in the 
NIR to 0.0147 in the SWIR2. 

This effect is likely to be related to the different atmospheric 
correction algorithms adopted by the two missions to produce the offi
cial Level-2 products. Moreover, some bands are more affected than 

others, such as the Blue, SWIR1 and SWIR2 bands. These bands, indeed, 
are those more affected by atmosphere elements such as water vapour 
and aerosol. However, it is important to remark that the analysis was 
performed with almost synchronous acquisitions and for this reason the 
TOA observations are so similar. This is not the case of TS analysis, 
which covers large time spans, and does require the use of BOA data. 

Mean differences and root mean square deviations for BOA reflec
tance, for all the 30 independent extractions and for all the bands, are 
reported in Table 3. They confirm a great similarity between all the 
Level-2 products, with slightly more pronounced discrepancies between 
S2 and L9. In general, the dispersion of the differences in reflectance 

Fig. 5. A) spectroradiometer SVC HR-768i specifications; b) spectral signature as recorded by the spectroradiometer and displayed in the associated device; c) in situ 
measurement over a ploughed field. 

Fig. 6. The survey during COE D in C8 (sandy beach): (a) Skyplot of the designed acquisition geometry for the spectroradiometers measurements; (b) measured 
spectra; (c) a moment of the survey. 
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comes from several factors: beyond the residual differences in sensor 
design, the main aspect may be the geometry of acquisition, the bi- 
directional reflectance functions of the surfaces, and the atmospheric 
correction for the Level-2 generation. The different orbits and sensing 
times of the Landsat and Sentinel satellites may result in measurements 
from distinct viewpoints and varying solar illumination conditions, even 
though the latter ones are minimal during COEs. 

The next paragraphs present the regression analyses between L8 and 
L9 and L9 and S2 Level-2 products. 

3.1.1. Landsat-8 OLI and Landsat-9 OLI-2 
In Table 4 the results of the linear regression models are summarized. 

For every band the RMA and the two OLS transformation functions are 
reported, with the associated r2 value. In general, the selected regression 
models well describe the dataset: r2 > 0.9 and p-values < 0.0001 for all 
the bands. It seems that the best fitting is achieved from the cross-sensor 
analysis of the red bands, while the worst (r2 equal to 0.9202) is in the 
blue linear regression. Likely, the blue wavelengths are highly affected 
by water vapour introducing noise in the sampled paired observations. 
This effect can be also seen in the scatterplots of Fig. 9 and supple
mentary material SM3. Indeed, in the scatterplot of the blue band 
(SM3a) the paired observations are concentrated around the identity 
axis just for a very short range of low values. After this low threshold, the 
paired data points begin to disperse for higher values, drawing a fan 
shape in the plot. 

The independent validation dataset was used to assess the quality of 
the proposed solution. The differences between the paired observations 
before and after the application of the linear transformation were 
compared. In general, the difference between L8 and L9 is very low, and, 
as highlighted in Table 3, the similarity is higher in some bands. This can 
be seen in the histograms in Fig. 9 (and SM4), where the difference 
between original OLI and OLI-2 paired data are plotted together with the 
difference between the hOLI and OLI-2. hOLI is the OLI original obser
vation harmonized to the OLI-2 by means of the computed trans
formation coefficients (Table 4). Overall, from the cross-sensors analysis 

Fig. 7. Example of spectral signature mixing for the P4 site (COE B), where some plants had sprouted: (a) the original and mixed spectral signatures; (b) a field 
picture of the site. 

Fig. 8. Histograms of the differences in TOA and BOA reflectance values for the blue band between L8 and L9 (left) and L9 and S2 (right). Statistics for all the bands 
are given in the supplementary materials (SM1 and SM2) and refers to one extraction of 240,000 samples. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 3 
Statistics on the differences in BOA reflectance for all the 30 extractions of the 
samples.   

Landsat-8 – Landsat-9 Sentinel-2 – Landsat-9 

Band Mean 
Difference 

Root Mean 
Square 
Deviation 

Mean 
Difference 

Root Mean 
Square 
Deviation 

Blue  − 0.0005  0.0089  0.0093  0.0170 
Green  − 0.0014  0.0107  0.0038  0.0137 
Red  − 0.0009  0.0120  0.0055  0.0165 
NIR  − 0.0013  0.0233  0.0049  0.0276 
SWIR1  − 0.0021  0.0226  0.0139  0.0302 
SWIR2  − 0.0018  0.0179  0.0178  0.0288  
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performed between the Landsat satellites, it is clear that the two datasets 
differ just for a very little amount that is corrected by means of the 
transformation coefficient (see the two almost overlapping histograms 
for every band in SM4). 

3.1.2. Sentinel-2 MSI and Landsat-9 OLI-2 
All the results of the linear regressions are reported in Table 5, 

providing the transformation functions needed to harmonize the com
mon spectral bands of L9 and S2 Level-2 products for a combined use. All 

Table 4 
Bands sensor transformation functions for Level-2 products (OLI to OLI-2 and 
OLI-2 to OLI): slope and intercept with their standard deviations in brackets, r2 

coefficient.  

Landsat-8 OLI – Landsat-9 OLI-2 linear regressions (lat < 65◦) 

Band Reg. 
type 

Linear transformation function r2 (OLS) 

Blue RMA OLI-2 = 1.0078(±0.0015) OLI + 0.0001 
(±0.0001) 

0.9202 

OLS OLI = 0.9518(±0.0015) OLI-2 + 0.0021 
(±0.0001) 

OLS OLI-2 = 0.9668(±0.0015) OLI + 0.0023 
(±0.0001) 

Green RMA OLI-2 = 1.0107(±0.0013) OLI + 0.0005 
(±0.0001) 

0.9352 

OLS OLI = 0.9568(±0.0013) OLI-2 + 0.0024 
(±0.0001) 

OLS OLI-2 = 0.9774(±0.0013) OLI + 0.0033 
(±0.0001) 

Red RMA OLI-2 = 1.0103(±0.0010) OLI − 0.0001 
(±0.0001) 

0.9583 

OLS OLI = 0.9690(±0.0011) OLI-2 + 0.0021 
(±0.0001) 

OLS OLI-2 = 0.9890(±0.0010) OLI + 0.0020 
(±0.0001) 

NIR RMA OLI-2 = 1.0072(±0.0007) OLI − 0.0007 
(±0.0002) 

0.9243 

OLS OLI = 0.9545(±0.0007) OLI-2 + 0.0112 
(±0.0002) 

OLS OLI-2 = 0.9684(±0.0007) OLI + 0.0099 
(±0.0002) 

SWIR1 RMA OLI-2 = 1.0082(±0.0009) OLI + 0.0001 
(±0.0002) 

0.9289 

OLS OLI = 0.9560(±0.0009) OLI-2 + 0.0086 
(±0.0002) 

OLS OLI-2 = 0.9717(±0.0009) OLI + 0.0089 
(±0.0002) 

SWIR2 RMA OLI-2 = 1.0145(±0.0012) OLI − 0.0006 
(±0.0002) 

0.9478 

OLS OLI = 0.9596(±0.0015) OLI-2 + 0.0048 
(±0.0002) 

OLS OLI-2 = 0.9877(±0.0010) OLI + 0.0038 
(±0.0002)  

Fig. 9. On the left, the scatterplot of the reflectance values for L9 OLI-2 (vertical axis) against L8 OLI (horizontal axis) in the SWIR1 band (the plot colours illustrate 
the point density with logarithmic scale; the solid lines show the three regression fits); on the right, the residuals distribution of OLI-2 and OLI applying the RMA 
coefficients (OLI-2 independent variable) on validation dataset for SWIR1 band, compared with the original paired observation differences (dashed lines represent 
the mean values). The plots for all the other bands are given in the supplementary materials (SM3 and SM4). 

Table 5 
Bands sensor transformation functions for Level-2 product (MSI to OLI-2 and 
OLI-2 to MSI): slope and intercept with their standard deviations in brackets, r2 

coefficient.  

Sentinel-2 MSI and Landsat-9 (lat < 65◦) 

Band Reg. 
type 

Linear transformation function r2 

Blue RMA OLI-2 = 0.7819(±0.0022) MSI + 0.0044 
(±0.0001) 

0.9015 

OLS MSI = 1.2143(±0.0036) OLI-2––0.0022 
(±0.0002) 

OLS OLI-2 = 0.7424(±0.0021) MSI + 0.0069 
(±0.0001) 

Green RMA OLI-2 = 0.8658(±0.0017) MSI + 0.0083 
(±0.0001) 

0. 9349 

OLS MSI = 1.1168(±0.0025) OLI-2––0.0063 
(±0.0002) 

OLS OLI-2 = 0.8371(±0.0016) MSI + 0.0109 
(±0.0001) 

Red RMA OLI-2 = 0.8746(±0.0012) MSI + 0.0074 
(±0.0001) 

0. 9565 

OLS MSI = 1.1182(±0.0017) OLI-2––0.0060 
(±0.0001) 

OLS OLI-2 = 0.8554(±0.0011) MSI + 0.0093 
(±0.0001) 

NIR RMA OLI-2 = 0.9597(±0.0008) MSI + 0.0063 
(±0.0002) 

0. 9040 

OLS MSI = 0.9907(±0.0012) OLI-2 + 0.0075 
(±0.0003) 

OLS OLI-2 = 0.9125(±0.0009) MSI + 0.0195 
(±0.0002) 

SWIR1 RMA OLI-2 = 0.9600(±0.0012) MSI − 0.0037 
(±0.0003) 

0. 9069 

OLS MSI = 0.9920(±0.0017) OLI-2 + 0.0159 
(±0.0004) 

OLS OLI-2 = 0.9143(±0.0010) MSI + 0.0081 
(±0.0002) 

SWIR2 RMA OLI-2 = 0.9122(±0.0014) MSI − 0.0019 
(±0.0002) 

0. 9323 

OLS MSI = 1.0586(±0.0022) OLI-2 + 0.0082 
(±0.0004) 

OLS OLI-2 = 0.8808(±0.0012) MSI + 0.0038 
(±0.0002)  
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the regression models well explained the variation of reflectance of the 
dataset, all showing r2 values higher than 0.90 (p-values < 0.0001). In 
this case, the r2 values are lower than those obtained for the L8/L9 cross- 
sensor analysis, however the red band linear regression is the one with 
the highest significance also in the S2/L9 fitting. On the other hand, as 
for the L8/L9 analysis, the lowest r2 value is registered by the blue band 
and the same peculiar dispersion in the scatterplot can be seen in 
Fig. 10a. 

As expected, the computed coefficients of the regression are quite 
stable in the 30 independent sample extractions, as can be observed by 
looking at the standard deviations reported in Table 5. The highest 
standard deviation on the slope coefficient is registered in the OLS 
regression of the blue band having OLI-2 as independent variable. 

For validation purpose, the RMA coefficients were applied to all the 
MSI pixels of the independent validation dataset, in order to compute 
the hMSI (reflectance values harmonized to the OLI-2). The differences 
between the transformed reflectance (hMSI) and the original OLI-2 
values from the paired observations are computed for every band. 
Their histogram is shown in Fig. 10 (and SM6), together with the his
togram of untransformed differences (MSI-OLI). This time, the beneficial 
effect of the harmonisation is more evident, and the use of the trans
formation coefficients allows to translate the curve and concentrate its 
values on the null mean axis. The bands which benefit more of this 
harmonization are the blue and the two SWIR bands. 

3.1.3. Vegetation indices 
As a further assessment of the possible impact of harmonization 

coefficients computed for single bands, residuals on the four harmonized 
vegetation indices are presented for both Landsat-8/9 and Sentinel-2/ 
Landsat-9 cross sensor comparisons. Four different VIs were consid
ered in order to compare different combinations of the considered 
bands, in particular Red, NIR, Blue and SWIR. 

The harmonization for the OLI-2/OLI VIs comparison does not 
modify residuals distribution (Fig. 11), as expected since Landsat-9 was 
designed as a continuity mission of Landsat-8 (Masek et al., 2020). 
Conversely, the OLI-2/MSI difference of VIs after the harmonization 
presented in Fig. 12 shows significant improvements and reduction in 
the residuals. Moreover, the combination of different bands in the 
computation of the four indices results in different impacts on the dis
tributions. In general, the computation of VIs with previously harmo
nized OLI-2 bands significantly reduces sensors differences: mean 
difference value drops with harmonization from 0.0100 to 0.0008 for 
NDVI, from 0.0072 to 0.00060 for EVI, from 0.0033 to 0.0001 for SAVI 
and from 0.0199 to 0.0005 for NDMI. So, as can be seen in Fig. 12, re
siduals distribution of harmonized VIs is more centred with a mean 

value equal to zero (red dashed line). The shift in the mean is more 
evident for NDMI and this is explained by SWIR been the band with 
highest differences in reflectance value as shown in SM6. For the NDVI, 
SAVI and EVI indices the distribution of the harmonized difference be
tween sensors is much more symmetric than the original one. In 
particular, the EVI original difference distribution is the most asym
metric, probably due to the contribution of the blue band. 

The presented results highlight the benefits of using the proposed 
harmonization coefficients, especially when combining different bands 
into indices. 

3.2. Local analyses 

3.2.1. In situ surveys 
The spectral signatures collected with the spectroradiometer during 

the field campaigns described in Section 2.3.2 were compared with the 
L9 and S2 Level-2 products acquired at the same time. The Fig. 13 shows 
the results of the SAM computed between spectroradiometer survey and 
image acquisitions, whilst the complete set of similarity indicators is 
reported in the supplementary materials (SM8). 

In general, a good agreement between satellite observations and in 
situ measurements was observed for both S2 and L9 missions, at least in 
the range of the declared accuracy for Level-2 products (ESA, 2022c). In 
the majority of the cases, S2 spectra resulted in a better similarity, 
probably thanks to the finer spatial resolution which reduces the prob
lem of mixed pixels. The single locations perform differently according 
to different indicators, confirming the importance of considering 
different metrics. Referring to the results presented in Fig. 13, the mean 
value of the SAM is 0.07 for the L9 and 0.04 for the S2. Similarly, the 
SCA mean is 0.06 for L9 and 0.03 for S2 and SID is 0.011 for L9 and 
0.003 for S2. Instead, the ED is the only one that shows a mean value 
very close for both the missions, approximately 0.05 (SM8). These ED 
values agree with the findings of Pancorbo et al. (2021) who observed a 
difference in BOA between S2 and field data lower than 4 % in the 
visible bands, but that analysis was based only on two vegetation covers 
in a large circular pivot. 

Some discrepancies between the observations of the two sensors are 
probably caused by different atmospheric correction algorithms, esti
mating atmosphere parameters from different ancillary datasets (Doxani 
et al., 2018; Marujo et al., 2021). However these differences can be 
considered low, and are in the majority of cases lower than the declared 
accuracy, which is ± 5 % for Sentinel Level-2 products (ESA, 2022b). 
For Landsat Level-2 products, a design accuracy is not stated, but the 
target accuracy for TOA is ± 3 % (Masek et al., 2020). 

Among the 16 surveyed points, only few ones exhibit an anomalous 

Fig. 10. On the left, the scatterplot of the reflectance values for OLI-2 (vertical axis) against MSI (horizontal axis) in the SWIR1 band (the plot colours illustrate the 
point density with logarithmic scale; the solid lines show the three regression fits); on the right, the residuals distribution of OLI-2 and MSI applying the RMA 
coefficients (OLI-2 independent variable) on the validation dataset for SWIR1 band, compared with the original paired observation differences (dashed lines 
represent the mean values). The plots for all the other bands are given in the supplementary materials (SM5 and SM6). 
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Fig. 11. Distributions of residuals between OLI-2 and OLI derived VIs, applying the RMA coefficients (OLI-2 independent variable), compared with the original VIs 
differences: NDVI (a), EVI (b), SAVI (c) and NDMI (d). 

Fig. 12. Distributions of residuals between OLI-2 and MSI derived VIs applying the RMA coefficients (OLI-2 independent variable), compared with the original VIs 
differences: NDVI (a), EVI (b), SAVI (c) and NDMI (d). 
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behaviour in more than one indicator and thus they were further 
investigated. In only three points L9 performs significantly better than 
S2: C3, C12 and M2. A possible explanation of this fact can be given by 
different atmospheric correction. Indeed, looking at the SCL band of the 
corresponding S2 image, C3 and C12 pixels are classified as cirrus; the 
level-2 generation algorithm may in fact over- or under-correct the 
reflectance values. An example of cirrus misclassification is given in 
Fig. 14. 

It has been already noted in the literature that there are meaningful 
differences in the cloud detection algorithms used by the two missions 
(Foga et al., 2017; Louis et al., 2010). Moreover, some authors noted that 
Sen2cor is less accurate in the detection of clouds (Baetens et al., 2019; 
Louis et al., 2019). 

The problem related to cirrus detection is confirmed by the repetition 
of the survey in C3 and C10, where only the second date was affected by 

the cirrus detection resulting in lower performance in all the indicators. 
The only other point surveyed twice is P4, which shows a different 
performance of Landsat in the two dates; in this case cloud detection 
does not seem involved. 

4. Conclusion 

The cross-comparison between the operating multispectral satellite 
missions confirmed a very high similarity between Landsat-9 and 
Landsat-8 and their good interoperability with Sentinel-2 over Europe. 
In this last case, the harmonization based on a linear transformation 
proved to be effective in mitigating some discrepancies in the reflectance 
values of corresponding bands, especially in blue and SWIR bands and 
even more in derived vegetation indices. These are more pronounced in 
the Level-2 surface reflectance products, probably due to the different 

Fig. 13. SAM between the spectra measured on the ground and those extracted by image pixels for all the surveyed locations. The complete set of indicators is 
reported in supplementary materials (SM8). 

Fig. 14. S2 image of the COE C at C12 sample (salt marshes): (a) true color composite, (b) SCL classification delivered with the Level-2 product. It can be observed 
that the cirrus class follows the borders of the salt marsh and it is likely misclassified. 
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atmospheric correction algorithms adopted by the two missions. 
Although some authors offer products reprocessed with a common at
mospheric correction algorithm, at the time of the writing they are not 
available on the mainstream cloud-based geoprocessing platforms. 
Therefore, the proposed model offers a solution which is easy to 
implement on official datasets for end-users, also outside the remote 
sensing experts community. 

Local comparisons with in situ measurements confirms that in most of 
the cases the reflectance values derived from the images are within the 
target accuracy, but some outliers may be caused by inexact detection of 
cirrus in the generation of Level-2 products or by bi-directional reflec
tance effects of the surfaces. Also the application of the cubic convolu
tion as a resampling algorithm in the image orthorectification process 
can cause discrepancies when applied to images with different spatial 
resolution. 

For these reasons, calibration and validation studies are needed, as 
well as transformation coefficients to harmonize these datasets. In this 
way, it is possible to perform improved time series analysis of remote 
sensed data with increased frequency benefitting by these virtual 
constellation of Landsat/Sentinel data availability, and possibly 
reducing errors of anomaly detection algorithms. However, this now- 
verified condition of interoperability is to be monitored throughout 
the lifetime of the two satellites, as Landsat-8, which is in its 10th year of 
operation, might be affected in the next years by possible orbital drifts as 
it happened to its predecessors. 
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