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Abstract In this work, we investigate the BRST quantiza-
tion of the massive N = 4 supersymmetric spinning parti-
cle, with a twofold purpose: exploring different approaches
to give mass to spinning particle models and formulating a
first-quantized theory for massive gravity on both flat and
curved spacetime. The main contribution of this study is the
development of a worldline formulation of the linear theory
of massive gravity, namely of the Fierz–Pauli theory, on a
curved spacetime; such a theory describes the propagation of
massive spin 2 particle on a non-flat background. Our results
suggest that achieving the nilpotency of the BRST charge
requires an Einstein spacetime with vanishing cosmologi-
cal constant as the only viable consistent background. In the
course of the analysis, we take the N = 2 supersymmetric
worldline as an exemplificative model, correctly producing
the Proca theory on curved spacetime. Our analysis shows
that the associated BRST system uniquely selects the mini-
mal coupling to the background curvature.
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1 Introduction

The theory of General Relativity (GR) has been the sub-
ject of modification attempts since the early years following
Einstein’s formulation. Despite the considerable success of
GR in the description of fundamental aspects of our real-
ity, several phenomena persist unexplained, prompting the
study of new physics. An intriguing modification of grav-
itational theories suggests that gravity is propagated by a
massive spin 2 particle: a massive graviton. The question
of whether the graviton possesses mass remains an unre-
solved inquiry to date. From an experimental point of view,
insights into the graviton mass can be gleaned from different
observations, such as the propagation of gravitational waves
and solar system measurements [1]. Similarly, purely theo-
retical investigations can also contribute to gaining deeper
insights. Within the framework of low-energy effective field
theories (EFT), the parameter space of massive gravity theo-
ries can be significantly constrained. Indeed, the underlying
theory in the UV must respect fundamental properties such
as unitarity, causality, and locality, leading to the so-called
“positivity bounds” [2]. These bounds have important impli-
cations for the graviton mass scale, which can be studied
after the formulation of a non-linear massive gravity theory,
as we will elaborate on later. The upshot of the discussion
is that the prospect of a massive graviton is far from being
dismissible and would entail profound consequences. This
may be the reason for the enduring history of theoretical
explorations dedicated to this possibility. The first theory of
massive gravity dates back to 1939 when Fierz and Pauli pro-
posed a relativistic action for a massive spin 2 particle on flat
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spacetime which is now known as Fierz–Pauli (FP) theory
[3,4]. While appearing deceptively simple in its formulation,
the theory already reveals the roots of several issues that have
consistently plagued every effort to improve massive gravity
beyond the linear level. Specifically, two primary obstacles
arise: the vDVZ discontinuity [5,6], namely the different pre-
dictions between linear GR and the FP theory in the massless
limit, and the presence of a Boulware–Deser (BD) ghost, an
extra degree of freedom which inevitably appears at the non-
linear level [7]. To this date, only a promising non-linear
theory of massive gravity free from the DB ghost instability
has been formulated, which is known as dRGT theory [8–10].
Within this new framework, several studies have explored the
implications of positivity bounds for the graviton mass, see
e.g. [11–13], establishing lower bounds on the spin 2 mass.
When combined with the aforementioned observational con-
straints, these findings seemingly rule out the dRGT theory.
Subsequent research has provided refinements and clarifica-
tions regarding this matter, constraining the parameter space
of dRGT massive gravity to a small island [14–17]. Recent
arguments1 suggest that the validity of this EFT is further
constrained to an even smaller region [18,19]. The reader
interested in massive gravity theories may refer to excellent
reviews for a comprehensive exploration of these subjects
[20–22].
This paper represents the first attempt to contribute to the
ongoing investigation from an alternative perspective by
employing a worldline approach [23]. The primary goal is
to achieve a first-quantized description of massive gravity.
To this end, we exploit the first-quantized models known
as O(N ) spinning particles. These are mechanical models
with N local supersymmetry on the worldline that have been
shown to describe, on Minkowski, a spin s = N

2 particle in
first quantization and constitute an alternative to conventional
second-quantized field theories in the study of quantum field
theory (QFT) [24–33]. In recent years, considerable effort
has been invested in exploring the consistent coupling of the
spinning particles to more general backgrounds beyond flat
spacetime. It was shown in [27] that for N > 2, world-
line supersymmetry transformation rules leave the spinning
particle action invariant only if the target spacetime is flat.
Subsequent progress was made in [34] and in [30], where it
was established how to couple the spinning particle to (A)dS
spaces and arbitrary conformally flat spaces respectively. A
significant advance has been recently achieved realizing that
the technique of BRST quantization – originally developed
in the context of the path integral quantization of Lagrangian
gauge theories [35] – provides a way to investigate different
backgrounds rather efficiently. An appealing aspect of BRST
quantization relies on the automatic generation of the com-

1 We thank the referee for bringing these recent developments to our
attention.

plete spectrum of spacetime fields essential for the Batalin–
Vilkovisky (BV) quantization of the corresponding space-
time quantum field theory [36,37]. The BRST quantization of
the spinning particle models led to a first-quantized descrip-
tion of Yang–Mills theory from the N = 2 spinning particle
[38] and Einstein gravity from the N = 4 spinning parti-
cle [39]. The latter analysis showed quantum consistency in
coupling the model to a more general set of backgrounds,
namely to Einstein spaces. Furthermore, this formalism has
been extended to include the NS-sector of supergravity in
[40].
In this work, we intend to apply this procedure to reproduce
linearized massive gravity (LMG) on both flat and curved
spacetime. As a warm-up, we address the case of the mas-
sive N = 2 spinning particle and its connection to the Proca
theory. This preliminary investigation serves a dual purpose:
introducing the relevant methodologies and exploring the
potential impact of the mass as an obstruction to the BRST
algebra. One viable approach to incorporate a mass term is
the Scherk–Schwarz mechanism [41], which entails a dimen-
sional reduction of the massless model. Recently, another
method has been developed consisting of the introduction of
auxiliary oscillators describing the internal degrees of free-
dom of the spinning particle [42]. In this work, both methods
are employed to confer mass to the graviton on a flat back-
ground, allowing for an in-depth exploration of the main
features of the massive N = 4 supersymmetric worldline
theory. Notably, these two approaches appear to yield dif-
ferent outcomes, with the first method providing the correct
BV spectrum and field equations of linearized massive grav-
ity. Conversely, the second approach encounters difficulties
already at the initial stage. Subsequently, we attempt to cou-
ple the model to a generic curved background, and our find-
ings suggest that the nilpotency of the BRST charge requires
the background to be Einstein with cosmological constant set
to zero.

The paper is organized as follows. In Sect. 2 we outline the
main features of the O(N ) massless spinning particle mod-
els, providing the basis for the upcoming analysis. Section 3
provides an overview of the BRST quantization procedure,
with emphasis on the first-quantized massless graviton both
on flat and curved spacetime. In Sect. 4 we discuss how to
confer a mass to a spinning particle model. We begin by tak-
ing the N = 2 spinning particle as an illustrative example to
elucidate the role of the mass in the BRST algebra, showing
that the model correctly reproduces the Proca theory on a
general background. We then proceed to give a mass to the
graviton and check whether the theory correctly reproduces
that of Fierz–Pauli. Finally, in Sect. 5 we attempt to couple
the model to a generic curved background, establishing the
consistency of the BRST quantization exclusively on a sub-
set of viable spacetimes. Conclusions and possible outlooks
are presented in Sect. 6.
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2 O(N ) massless spinning particles

The so-called O(N ) spinning particles represent prominent
examples where gauge symmetries allow for a manifestly
Lorentz covariant formulation. This, in turn, gives rise to a
constrained Hamiltonian system with first-class constraints
[43]. These kinds of constraints, denoted as Cα (with α span-
ning the number of constraints), satisfy upon quantization a
graded algebra of the form2

[Cα,Cβ} = fαβ
γCγ (2.1)

with some structure functions fαβγ . The phase space action
of such models depends on the particle spacetime coordi-
nates xμ together with N real fermionic superpartners �μI
introduced to describe the spin degrees of freedom. In the
case of a flat d-dimensional target spacetime, the action is
given by3

S =
∫

dτ

[
pμ ẋμ + i

2
�μ · �̇μ − e H − iχ I qI − aI J JI J

]
,

(2.2)

where a dot indicates a contraction of the internal indices.
The theory described by (2.2) should be regarded as a one-
dimensional field theory living on the worldline, which pro-
vides a first-quantized description of relativistic particles of
spin s.A few remarks regarding its field content are in order.

The canonical coordinates (xμ, pμ,�
μ
I ) upon quanti-

zation are subject to the canonical commutation relations
(CCR)

[xμ, pν] = i δμν , {�μI , �νJ } = δI J η
μν. (2.3)

The worldline supergravity multiplet in one dimension
(e, χ I , aI J ) contains the einbein e which gauges worldline
translations, the N gravitinos χ which gauge the worldline
supersymmetry, and the gauge field a for the symmetry which
rotates by a phase the worldline fermions and gravitinos, the
R-symmetry. In (2.2) they act as Lagrange multipliers for the
suitable first-class constraints, which are the Hamiltonian H,
the supercharges qI , and the R-symmetry algebra generators
JI J , choosing a specific order for the latter to avoid ambigu-
ities

H := 1

2
pμ pμ, qI := �μI pμ, JI J := i �μ[I �J ]μ.

(2.4)

2 With the following notation for the graded commutator:

[·, ·} =
{

{·, ·} anticommutator if both variables are fermionic,

[·, ·] commutator otherwise.

3 The Minkowski metric ημν ∼ (−,+, . . . ,+) is used to raise and
lower spacetime indices. Indices named μ, ν, . . . refer to spacetime
indices (μ, ν = 0, 1, . . . , d − 1), while those named I, J, . . . stand for
internal SO(N ) indices (I, J = 1, . . . ,N ).

Hamiltonian and supercharges together form the following
one-dimensional algebra:

{qI , qJ } = 2 δI J H, [qI , H ] = 0. (2.5)

These constraints have to be introduced to ensure the mass-
shell condition and to eliminate negative norm states, ensur-
ing the consistency of the model with unitarity at the quantum
level [33]. On the other hand, regarding the aforementioned
R-symmetry algebra one finds:

[JI J , qK ] = i (δJ K qI − δI K qJ ) ,

[JI J , JK L ] = i (δJ K JI L − δI K JJ L − δJ L JI K + δI L JJ K ) .

(2.6)

The gauging of the R-symmetry group is optional and can
be used to constrain the model to deliver pure spin s states
and have the minimal amount of degrees of freedom: to
count them, one can construct the path integral on the one-
dimensional torus of the free spinning particles, which has
been achieved for allN in [44]. Equations (2.5) together with
(2.6) form the so-called O(N )-extended worldline super-
symmetry algebra: it displaysN supercharges qI which close
on the Hamiltonian H and which transform in the vector rep-
resentation of SO(N ),whose Lie algebra is described by the
second line of (2.6). In the following, we will refer only to
(2.5) as “N SUSY algebra”, since it will be appropriate to
distinguish the two algebras in light of the future BSRT pro-
cedure. It is rather convenient to work with a complex redef-
inition of the original fermionic variables �I → (ξi , ξ̄

i ),

namely

ξ
μ
i := 1√

2
(�
μ
i + i �μi+2), ξ̄μi := 1√

2
(�
μ
i − i �μi+2),

with i = 1, . . . , N2 (2.7)

for the case of even N , i.e. for particles with integer spin.
The respective CCR (2.3) become

{ξ̄ i
μ, ξ

ν
j } = δi

j δ
ν
μ, {ξ̄ i

μ, ξ̄
j
ν } = 0 = {ξμi , ξνj }. (2.8)

Accordingly, both the supercharges and the R-symmetry
generators split under the complex redefinition: we report
the explicit expressions for the particle models of interest,
namely the spin one and the spin two. By choosing a specific
Fock vacuum, an arbitrary state |�〉 in the Hilbert space is
isomorphic to the wavefunction �(x, ξ), on which the con-
jugated momenta act as derivatives

pμ = −i∂μ, ξ̄μ = ∂

∂ξμ
. (2.9)

Thus, for the case N = 2, the spin one model, one has the
splitting qI → (q, q̄) and JI J → J as follows

q := −i ξμ∂μ
q̄ := −i ∂μ ∂

∂ξμ
, J := ξμ ∂

∂ξμ
− d

2
, (2.10)
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where the shift − d
2 in the definition of the R-symmetry

generator is a quantum effect stemming from an antisym-
metric ordering for the Grassmann variables [45]. For the
N = 4 case, the spin two, one has qI → (qi , q̄i ) and
the SO(4)-symmetry generators are realized maintaining
manifest covariance only under a u(2)-subalgebra JI J →
(Ji

j ,Tri j ,Gi j ), explicitly realized as4

qi := −i ξμi ∂μ

q̄i := −i ∂μ ∂

∂ξ
μ
i

,

Ji
j := ξi · ∂

∂ξ j
− d

2 δ
j
i

Tri j := ∂2

∂ξi ·∂ξ j

Gi j := ξi · ξ j

. (2.11)

Note that the only surviving components of the Tr and G
operators are those with i �= j.

3 BRST quantization

There are at least two methods for dealing with first-class
constraints and constructing canonical quantization of gauge
systems: the Dirac method and the BRST quantization. In the
former approach, the procedure entails turning the constraints
into operators Ĉα and imposing that an element |�〉 of the
Hilbert space is physical if it gets annihilated by the constraint
operators, i.e.

Ĉα |�〉 = 0. (3.1)

This procedure has been extensively employed in [30,32] to
quantize both massless and massive spinning particle mod-
els. It is a relatively straightforward and powerful method,
however, its application fails when the constraints algebra
ceases to be first-class. These considerations eventually led
to the BRST analysis of [38–40], which is reviewed in the
following to delineate the main steps of the quantization pro-
cedure, with the intention of applying them to the massive
case.

Take theN = 4 spinning particle with a four-dimensional
target space as an instructive example. The internal indices
take values i = 1, 2 and the N = 4 worldline SUSY algebra
is explicitly realized as

{qi , q̄
j } = 2 δ j

i H,

[qi , H ] = [q̄i , H ] = {qi , q j } = {q̄i , q̄ j } = 0. (3.2)

The initial step of the BRST procedure entails an enlarge-
ment of the Hilbert space to realize ghost–antighost pairs of
operators (gα, Pα) associated with each constraint Cα, with
opposite Grassmann parity of the latter – that is, anticommut-
ing ghosts for bosonic constraints and commuting ghosts for

4 In the following, whether a dot · indicates contractions on internal or
spacetime indices should be clear within the context.

fermionic constraints – and canonical graded commutation
relation

[Pα, gβ} = δβα . (3.3)

Hence, we assign the fermionic pair (c, b) to the Hamiltonian,
and the bosonic superghost pairs (γ̄ i , βi ) and (γi , β̄

i ) to the
supercharges qi and q̄i respectively, obeying

{b, c} = 1, [βi , γ̄
j ] = δ j

i , [β̄ j , γi ] = δ j
i , (3.4)

with ghost number assignments

gh(c, γi , γ̄
i ) = +1, (3.5)

gh(b, βi , β̄
i ) = −1. (3.6)

The second step consists of constructing the BRST operator
Q. It is realized as follows

Q := gαCα − 1

2
(−1)ε(gβ)gβgα fαβ

γ Pγ , (3.7)

where ε(gβ) is the Grassmann parity5 of the ghost gβ. Equa-
tion (3.7) is exact if the structure functions fαβγ are constant,
and can be derived by demanding the following properties
for the BRST operator:

• It has to be anticommuting and of ghost number +1.
• It has to act on the operators, corresponding to the orig-

inal phase space variables prior to quantization, as the
gauge transformations with the ghost variables replac-
ing the gauge parameters. This, together with the latter
requirement, is enough to constraint the structure to be
Q = gαCα + · · ·

• Finally, the BRST charge has to be nilpotent. This deter-
mines the second structure of (3.7) as can be checked by
direct computation of {Q,Q}.

Note that the BRST charge is nilpotent by construction as
long as the associated algebra is first-class. In more general
cases, higher-order terms may appear and need to be deter-
mined by the nilpotency condition. Given its significance for
future discussions, we shall show it for the case of theN = 4
spinning particle. The BRST operator associated with the
first-class algebra (3.2) is

Q = c H + γi q̄ i + γ̄ i qi − 2γ̄ iγi b. (3.8)

To verify its nilpotency, it is first convenient to define ∇ :=
γ · q̄ + γ̄ · q, such that for any operator of the form (3.8) one
always finds the following potential obstruction-terms to its
nilpotency

Q2 = −2 γ̄ · γ H + ∇2 − 2c����[H,∇], (3.9)

5 We employ the following convention: the parity of gα is 0 if gα is
Grassmann even and 1 if gα is Grassmann odd.
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which are vanishing in the present case since

∇2 = γi γ̄
j {q̄i , q j } �⇒ −2 γ̄ · γ H + ∇2 = 0. (3.10)

Notice the critical role played by the presence of the first-
class algebra (3.2) in both the cancellation of (3.9) and of
(3.10). The same does not hold anymore in more general
cases. In the next section, we will illustrate how to address
this issue.

The careful reader might wonder about the absence of a set
of ghosts associated with the so(4) constraints. The key idea
of the BRST procedure, as first developed in [38] providing
a first-quantized description of the gluon, is to treat the R-
symmetry constraints and the SUSY ones on different foot-
ings. The formers are imposed as constraints on the BRST
Hilbert space, thus defining precisely the general dependence
of the “string field” � on the spacetime fields content.6 It is
within this restricted Hilbert space that the cohomology of
the BRST charge has to be studied. The procedure remains
consistent as long as the R-symmetry constraints (2.11) com-
mute with the BRST charge: in order to achieve that, it is
necessary to extend (J,Tr,G)→ (J , Tr ,G) as follows

Ji
j := ξi · ξ̄ j + γi β̄

j − γ̄ jβi − 2 δ j
i ,

Tr i j := ξ̄ i · ξ̄ j + γ̄ i β̄ j − γ̄ j β̄ i ,

Gi j := ξi · ξ j + γiβ j − γ jβi . (3.11)

The relevant so(4) generators to be imposed as constraints on
the BRST Hilbert space are the two number operators Ji :=
Ji

i (i not summed), namely the diagonal entries of Ji
j , the

Young antisymmetrizer Y := J 2
1 , and finally the trace Tr ,

which implement the maximal reduction of the model. We
collectively denote these constraints as Tα := (J ,Y, Tr).
The BRST system is defined as follows

Q� = 0, δ� = Q�,

Tα � = 0, Tα � = 0, (3.12)

and its consistency is ensured by [Q, Tα] = 0. This is indeed
equivalent to saying that we are studying the cohomology of
Q on the restricted Hilbert space of fixed R-charge defined by
Hred := ker Tα. The system above will serve as the starting
point for BRST quantization in both the massless and massive
cases.

3.1 Massless graviton on a flat spacetime

The ghost vacuum |0〉 is chosen such that it is annihilated by
(b, γ̄ i , β̄ i ) as in [39], so that a general state |�〉 in the BRST

6 Regarding terminology, we deliberately confuse “string field” and
“BRST wavefunction” since � plays the same role in the worldline
theory as it would in string field theory: its expansion as a linear com-
bination of first-quantized states display coefficients which correspond
to ordinary particle fields [46,47].

extended Hilbert space is isomorphic to the wavefunction
�(x, ξ | c, γ, β), on which the antighosts act as derivatives,
i.e.

b = ∂

∂c
, γ̄ i = − ∂

∂βi
, β̄ i = ∂

∂γi
. (3.13)

In the following, we collectively denote the ghost oscilla-
tors as g := (c, γ, β). The BRST operator, making explicit
the d’Alembertian � = ημν∂μ∂ν while adjusting the coeffi-
cients, acts as

Q = c � + γi q̄
i − qi

∂

∂βi
− γi

∂2

∂βi∂c
, (3.14)

while, regarding the so(4) generators

Ji = Nξi + Nγi + Nβi − 1,

Y = ξ1 · ∂
∂ξ2

+ γ1
∂

∂γ2
+ β1

∂

∂β2
,

Tr = ∂2

∂ξ1 · ∂ξ2 + ∂2

∂γ1∂β2
− ∂2

∂γ2∂β1
, (3.15)

where we have explicitly expressed the number operators,
counting the number of oscillators with a fixed flavor index,
and where we solved ambiguities in the definition of Ji by
choosing a symmetric ordering for the ghosts.

It is useful for future reference to highlight the intermedi-
ate steps of the calculation. The first condition imposed by
� ∈ Hred, namely Ji |�〉 = 0, significantly reduces the
components of �(x, ξ | g) to

�(x, ξ | g) = aμν ξ
μ
1 ξ
ν
2 + bμ ξ

μ
1 γ2 + Cμ ξ

μ
1 β2 + dμ γ1ξ

μ
2

+ e γ1β2 + fμ β1ξ
μ
2

+ g β1γ2 + k γ1γ2 + l β1β2

+ a∗
μν ξ

μ
1 ξ
ν
2 c + b∗

μ ξ
μ
1 γ2c + C∗

μ ξ
μ
1 β2c

+ d∗
μ γ1ξ

μ
2 c + e∗ γ1β2c + f ∗

μ β1ξ
μ
2 c

+ g∗ β1γ2c + k∗ γ1γ2c + l∗ β1β2c. (3.16)

The latter expression is essentially a Taylor expansion in
powers of c taking the form � = χ + χ∗c, where both
terms χ and χ∗ of the wavefunction contain oscillators and
spacetime-dependent field components. Requiring the entire
wavefunction to have fixed Grassmann parity and fixed ghost
number forces the field components in χ∗ to have opposite
parities and ghost numbers decreased by one compared to
those in χ. It is important to note that we are not yet in
the position to correctly identify (anti)fields: we first need
to reduce � to include only the BV spectrum of the theory.
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Table 1 List of fields in the physical sector of the massless N = 4
model with the corresponding ghost number and Grassmann parity

BV role Field Grassmann parity Ghost number

Massless graviton hμν 0 0

Trace h 0 0

Auxiliary vector vμ 0 0

Diffeomorphism ghost ζμ 1 1

Imposing the two remaining conditions we obtain

bμ = −dμ, Cμ = − fμ,

e = −g, k = 0, l = 0,

b∗
μ = −d∗

μ, C∗
μ = − f ∗

μ,

e∗ = −g∗, k∗ = 0, l∗ = 0, (3.17)

together with aμν = aνμ using Y |�〉 = 0, while from
Tr |�〉 = 0 we get

e = 1
2 aμμ, e∗ = 1

2 a∗μ
μ . (3.18)

Now we can indeed interpret� as a spacetime BV string field,
that contains the whole minimal BV spectrum of pure gravity
along with auxiliary fields: we assign Grassmann parity and
ghost number to the component fields such that the entire
wavefunction� has total even parity and ghost number zero.
It becomes explicit with the following identifications for the
fields

aμν −→ hμν aμμ −→ hμμ =: h C∗
μ −→ vμ Cμ −→ ζμ,

(3.19)

and for the corresponding antifields

a∗
μν −→ h∗

μν bμ −→ v∗
μ b∗

μ −→ ζ ∗
μ. (3.20)

Grassmann parities and ghost numbers can be read from
Table 1. The most general state in Hred is then

�(x, ξ | g) = hμν(x) ξ
μ
1 ξ
ν
2 + 1

2 h(x) (γ1β2 − γ2β1)

− i
2 vμ(x) (ξ

μ
1 β2 − ξμ2 β1)c

− i
2 ζμ(x) (ξ

μ
1 β2 − ξμ2 β1)

+ h∗
μν(x) ξ

μ
1 ξ
ν
2 c + 1

2 h∗(x) (γ1β2 − γ2β1)c

− i
2 v

∗
μ(x) (ξ

μ
1 γ2 − ξμ2 γ1)

− i
2 ζ

∗
μ(x) (ξ

μ
1 γ2 − ξμ2 γ1)c. (3.21)

It contains the graviton hμν and its trace h, an auxiliary vec-
tor field vμ, and the diffeomorphism ghost ζμ, while the
remaining components are the corresponding antifields.

The final step involves evaluating the field equations of
the theory, to verify that the model correctly reproduces a

first-quantized representation of linearized gravity. This can
be accomplished through the BRST closure equation

Q�(x, ξ | g) = 0 (3.22)

at ghost number zero, which produces the massless free spin
two field equation

�hμν − 2 ∂(μ∂ · hν) + ∂μ∂νh = 0, (3.23)

and

�h − ∂μ∂νhμν = 0, (3.24)

which implies a vanishing linearized Ricci scalar. To con-
clude this section, one is left to verify the accurate reproduc-
tion of the gauge symmetry: this is achieved from the ghost
number zero part of

δ� = Q�, (3.25)

where� ∈ ker Tα contains the gauge parameters of the asso-
ciated symmetry while having the same functional form as
�, with overall odd parity and ghost number −1, i.e.

� = iεμ(x) (ξ
μ
1 β2 − ξμ2 β1)+ · · · , (3.26)

where the gauge parameter εμ has even parity and ghost num-
ber zero. As expected, the result is

δhμν = 2∂(μεν). (3.27)

For future reference, the closure equation at ghost number
one is reported below:

� ζμ = 0 ∂μζμ = 0 ∂(μ ζν) = 0. (3.28)

Equations (3.28) represent a set of equations of motion for
the diffeomorphism ghost ζμ(x).

3.2 Massless graviton on a curved background

The consistent coupling of the spinning particles to more
general backgrounds beyond flat spacetime is a rather deli-
cate matter [48]. In previous works, a quantization à la Dirac
has been extensively employed. However, when the SUSY
algebra fails to be first-class this method loses its validity,
potentially leading to the misleading conclusion that quanti-
zation is not feasible in more general cases. This limitation
was evident in the case of the N = 4 spinning particle, for
which only certain restricted backgrounds were found to be
viable until it was realized that the technique of BRST quan-
tization offers a way to explore more general backgrounds,
as recently discussed in [49,50]. In this section, we review
the exploration of such possibility.

The coupling of the massless N = 4 spinning particle to
a curved background with metric gμν(x) is realized by the
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covariantization of the derivatives, i.e.

∇̂μ := ∂μ + ωμ ab ξ
a · ξ̄b,

with [∇̂μ, ∇̂ν] = Rμνλσ ξ
λ · ξ̄ σ , (3.29)

where fermions carry flat Lorentz indices so that ξμi :=
eμa (x) ξa

i , introducing a background vielbein ea
μ(x) and the

torsion-free spin connection ωμ ab. The covariant derivative
operator ∇̂μ reproduces the effect of the usual covariant (par-
tial) derivative ∇μ (∂μ) on the tensorial (scalar) components
contained in the wavefunction (3.21), e.g.

∇̂μ�(x, ξ | g) = ∇μhαβ(x) ξ
α
1 ξ
β
2

+ 1
2∂μh(x) (γ1β2 − γ2β1)+ · · · . (3.30)

The presence of a general background manifests itself as
deformations of the original BRST system: indeed the super-
charges become

�i := −i ξa
i eμa ∇̂μ, �̄i := −i ξ̄ i a eμa ∇̂μ. (3.31)

The main consequence is that the SUSY algebra does not
close anymore:7

{�i ,� j } = −ξμi ξνj Rμν , {�̄i
, �̄ j } = −ξ̄ μ i ξ̄ ν j Rμν ,

{�i , �̄ j } = −δ j
i ∇2 − ξμi ξ̄ ν j Rμν,

[∇2,�i ] = i ξμi
(
2 Rμν ∇̂ν − ∇λRλμ − Rμν∇̂ν

)
,

[∇2, �̄i ] = i ξ̄ μ i (2 Rμν ∇̂ν − ∇λRλμ − Rμν∇̂ν
)
, (3.32)

where the Laplacian is defined as

∇2 := gμν∇̂μ∇̂ν − gμν �λμν ∇̂λ. (3.33)

The BRST operator needs to be deformed as well, requiring
the construction of an ansatz due to the fact that the associated
algebra is no longer first-class. The general approach involves
considering the same general form (3.8), but with the inclu-
sion of more general terms accounting for the obstruction
to the first-class character of the associated algebra, namely
the curvature in the present case. Therefore, possible non-
minimal couplings to the curvature, collectively denoted as
�, must be incorporated inside the Hamiltonian. These cou-
plings may act as obstructions to the nilpotency of the BRST
operator, and the BRST analysis aims to determine which of
these terms persist to ensure a nilpotent Q. Avoiding higher
powers of ghost momenta and assuming that derivatives are
deformed only through minimal coupling, the ansatz for the
BRST charge is

Q = cD + ∇ + γ̄ · γ b, (3.34)

7 As to not further burden the notation we denote Rμν := Rμνλσ ξλ · ξ̄ σ
and R := Rμνλσ ξμ · ξ̄ ν ξλ · ξ̄ σ .

where D is the deformed Hamiltonian in its operatorial form

D := ∇2 + �, with � := Rμνλσ ξ
μ · ξ̄ ν ξλ · ξ̄ σ + κR,

(3.35)

with κ a coefficient to be determined, and the ∇ operator has
been conveniently redefined as

∇ := −i Sμ∇̂μ, with Sμ := γ̄ · ξμ + γ · ξ̄ μ. (3.36)

Note that only the so(4) constraints Tα (3.15) remain
unchanged, therefore the wavefunction �(x, ξ | g) is still
expressed as in (3.21).

The BRST analysis starts with the general expression for
Q2, namely the extension of its flat spacetime counterpart
(3.9) with adjusted coefficients:

Q2 = ∇2 + γ̄ · γ D + c [D,∇] , (3.37)

which remains valid regardless of the specific spinning par-
ticle model coupled to a general curved background. In gen-
eral, (3.37) includes two independent obstructions, which in
this case are given by

∇2 + γ̄ · γ D = − 1
2 SμSν Rμν + γ̄ · γ �, (3.38)

[D,∇] = −i Sμ∇λRλμ + i Sμ∇μR + κ[ R,∇].
(3.39)

Recall that the BRST cohomology is defined on the reduced
Hilbert space Hred, that is, one needs to evaluate the obstruc-
tions on ker Tα. Therefore, for the sake of the cohomology,
it suffices to ensure nilpotency of the BRST charge when
acting on the physical sector of the theory:

Q2 kerTα= 0 i.e. Q2�(x, ξ | g) = 0. (3.40)

The effect is for instance that any contribution with at least
three barred oscillators is set to zero. Equations (3.38)–(3.39)
get then reduced to

∇2 + γ̄ · γ D kerTα= − γ̄ · γ (
2 Rμν ξ

μ · ξ̄ ν − κ R
)
, (3.41)

[D,∇] ker Tα= −i Sμ∇λRλμ + i
(
2∇λRλμγ · ξ̄ μ

− Sμ∇μRνλξ
ν · ξ̄ λ) + iκ Sμ∇μR.

(3.42)

The conclusion is that the nilpotency of the BRST charge,
in the massless case, is achieved only on Einstein manifolds,
i.e.

Q2�(x, ξ | g) = 0 ⇐⇒ Rμν = λ gμν, (3.43)

upon setting κ = 1
2 . Let us clarify this crucial point for the

upcoming discussion: while the obstruction given in (3.42)
vanishes by itself on Einstein spaces, the one in (3.41) is zero
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only when acting on the physical sector:

Q2�(x, ξ | g) � −2λ γ̄ · γ (
ξμ · ξ̄μ − 1

)
�(x, ξ | g) = 0.

(3.44)

The closure equation evaluated using the deformed BRST
charge yields the correct field equations for a massless8 gravi-
ton on Einstein spaces, namely

∇2hμν − 2∇(μ∇ · hν) + ∇μ∇νh + 2Rμανβhαβ = 0,
(3.45)

together with

(∇2 + λ)h − ∇μ∇νhμν = 0. (3.46)

The correct gauge symmetry δhμν = 2∇(μεν) is obtained as
well.

4 Giving mass to the graviton

In this section, we present two methods to confer a mass to a
spinning particle model. The first one, the Scherk–Schwarz
mechanism, is analogous to the Kaluza–Klein compactifica-
tion. In the second method, the auxiliary oscillators approach,
the model is treated as a truncation of the RNS open super-
string [52]. We employ both methods to give mass to the
graviton on a flat background and subsequently discuss the
results. However, before delving into the graviton case, we
begin by examining the N = 2 scenario, in order to intro-
duce the techniques and investigate the role of the mass as a
potential obstruction to nilpotency of the BRST charge.

4.1 N = 2 massive spinning particle and the Proca theory

The massless N = 2 spinning particle has been thoroughly
examined in previous works, leading to a first-quantized
description of massless antisymmetric tensor fields of arbi-
trary rank [24–28]. It has been shown how to provide a first-
quantized description of the photon both on a flat and on
a curved spacetime [45,50]. Additionally, the coupling to a
non-abelian background has been explored, reproducing the
non-linear Yang–Mills equations [38] upon BRST quantiza-
tion.

The massive scenario has undergone investigation as well:
the procedure à la Kaluza–Klein has been implemented in
[25,53] where it has been shown how to embed the model in
an arbitrary curved spacetime background. This has allowed

8 It is a rather fascinating topic the concept of mass on a general space-
time, which is not well defined. In particular, one should be careful
to call a particle massless: see [51] for a discussion on the connection
between gauge invariance, masslessness, and null cone propagation.

for the utilization of this model in the context of worldline
quantum field theory formalism, particularly in modeling
classical scatterings of compact objects in general relativ-
ity (see [54,55] and related literature). More recently, the
coupling to both an abelian and a non-abelian vector back-
ground field has been investigated in [42], where the authors
first introduced the auxiliary oscillators approach.

4.1.1 Mass improvement on flat spacetime

The main features of the N = 2 model can be immediately
derived from Sect. 2 by setting I = 1, 2.For a comprehensive
analysis of the action, the first-class algebra, and the canon-
ical quantization, we direct the reader to [53]. In this work,
we will provide a concise overview of the essential elements
of the BRST quantization of the massive case on flat and,
most notably, on curved background as a toy model for the
subsequent analysis, which is not covered in the literature
mentioned above.

The procedure consists of starting with the massless the-
ory formulated in one dimension higher, and subsequently
reducing the dimensionality of the target space through the
introduction of suitable constraints [32]. We consider the
model to live in a flat spacetime of the form Md × S1 of
D = d+1 dimensions with coordinates and worldline super-
partners given by

x M = (xμ, x D), ξM = (ψμ, θ), ξ̄M = (ψ̄μ, θ̄), (4.1)

with the index splitting M = (μ, D). The idea is to gauge
the compact direction x D, corresponding to S1, by imposing
the first-class constraint

pD − m = 0. (4.2)

This results in the phase space action (2.2) having a leftover
term ∼ ẋ D, which can be regarded as a total derivative and
thus dropped. The CCR (2.3) are realized explicitly as

[xμ, pν] = i δμν , {ψ̄μ, ψν} = ημν, {θ̄ , θ} = 1, (4.3)

with the other (anti)commutators being zero. The N = 2
SUSY constraints get modified by the presence of the mass,
taking the form

H = 1

2

(
pμ pμ + m2

)
, q = pμψ

μ + mθ,

q̄ = pμψ̄
μ + mθ̄ , (4.4)

while the R-symmetry generator (2.10) becomes

J = ψμψ̄μ + θ θ̄ − d + 1

2
. (4.5)
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Together they still satisfy the same N = 2 supersymmetry
algebra despite the mass improvement

{q, q̄} = 2H, [q, H ] = [q̄, H ] = {q, q} = {q̄, q̄} = 0,
(4.6)

which successfully remains first-class. Note the key role
played by the surviving fermionic coordinates coming from
the extra dimension θ := ξ D and θ̄ := ξ̄ D,which are respon-
sible for the introduction of the mass term into the theory.
Indeed, in the limit where (θ, θ̄ ) → 0 the massless theory
must be recovered as a consistency check.
At this point, the BRST quantization on a four-dimensional
flat spacetime proceeds smoothly, just as described for the
N = 4 case. Upon enlarging the Hilbert space to realize
the set of ghost operators (c, γ̄ , γ ) with relative momenta
(b, β, β̄) as in (3.4), the BRST charge is constructed as usual

Q = c H + γ q̄ + γ̄ q − 2γ̄ γ b, (4.7)

and the so(2) constraint has to be extended to include ghost
contributions as follows

J := ψμψ̄μ + θ θ̄ + γ β̄ − γ̄ β − 3
2 , (4.8)

with the usual prescription employed to resolve ambigui-
ties. Nilpotency of Q is still guaranteed, despite the mass
improvement, since the associated algebra is first-class

Q2 = 0, (4.9)

and the BRST system is consistent since [Q,J ] = 0. The
physical sector is defined as the eigenspace of J with a fixed
R-charge − 1

2 ,
9 i.e. physical states are eigenstates J |�〉 =

− 1
2 |�〉 and are isomorphic to wavefunctions

�(x, ψ, θ | g) = Aμ(x)ψ
μ − iϕ(x)θ + φ(x)βc +�(x)β

+ A∗
μ(x)ψ

μc − iϕ∗(x)θc + φ∗(x)γ
+�∗(x)γ c. (4.10)

Requiring � to be Grassmann-odd and have ghost number
zero, it can be interpreted as a spacetime BV string field
displaying the complete minimal BV spectrum of the Proca
theory along with an auxiliary field. The Grassmann parities
and ghost numbers of the components can be found in Table 2.
In contrast to the massless case, the physical fields include
not only the massive spin one Aμ but also the Stückelberg
scalar ϕ. The inclusion of the Stückelberg scalar becomes
necessary to restore the U (1) gauge symmetry [56], which
is broken due to the introduction of the mass. Notably, the

9 This condition is equivalent to demanding that � ∈ kerJ̃ , with J̃
being the shifted SO(2) constraint J̃ = J + 1

2 . The procedure remains
consistent as long as [Q, J̃ ] = 0.Eventually, the shift can be interpreted
as the introduction of a Chern-Simons term selecting the desired degrees
of freedom, as in [53].

Table 2 List of fields in the physical sector of the massive N = 2
model with the corresponding ghost number and Grassmann parity

BV role Field Grassmann parity Ghost number

Massive spin one Aμ 0 0

Stückelberg scalar ϕ 0 0

Auxiliary scalar φ 0 0

Scalar ghost � 1 1

spectrum also includes the associated scalar ghost � in the
spectrum.

The field equations, upon solving for the auxiliary field,
are

(
� − m2

)
Aμ − ∂μ∂ · A − m∂μϕ = 0, (4.11)

�ϕ + m∂μAμ = 0, (4.12)

which are indeed the Proca field equations with the scalar
ϕ(x) playing the role of Stückelberg field, while the gauge
symmetry, from δ� = Q� with

� = i�(x)β + · · · , (4.13)

is

δAμ = ∂μ�, δϕ = −m�, (4.14)

where �(x) is a local gauge parameter, of even parity and
with ghost number zero. The same conclusions hold when
employing the auxiliary oscillators approach, although it is
not explicitly shown here. The subsequent analysis will elab-
orate on the limitations of this approach in the context of the
graviton case.

4.1.2 Mass obstruction on curved spacetime

We are finally in the position to investigate whether the pres-
ence of the mass plays a role when a curved background
is considered, generalizing the massless BRST analysis of
[50]. The coupling of the massive N = 2 spinning particle
to gravity is realized by the covariantization of the reduced
model just discussed, with the mass already present in the
theory. The supercharges are then deformed as follows

� := −i ψa eμa ∇̂μ + mθ, �̄ := −i ψ̄a eμa ∇̂μ + mθ̄ .

(4.15)

Unlike the situation with the N = 4 spinning particle (3.32),
the N = 2 algebra (4.6) remains first-class regardless of
a particular background, upon a suitable redefinition of the
Hamiltonian

D := ∇2 − m2 + R. (4.16)
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Indeed, the SUSY algebra takes the form

{�, �̄} = −D, {�,�} = {�̄, �̄} = 0,

[�,D] = [�̄,D] = 0, (4.17)

where the vanishing of the top-right commutators is guar-
anteed by the cyclic identity for the Riemann tensor. The
corresponding BRST operator is defined as usual Q =
cD + ∇ + γ̄ γ b, with potential obstructions incorporated
into the definition of ∇ with respect to the massless case:

∇ := −i Sμ∇̂μ + mρ, ρ := γ̄ θ + γ θ̄ . (4.18)

The existence of an associated first-class algebra (4.17)
ensures the nilpotency of the BRST operator without any
further conditions on the background metric,10 which is
expected from QFT considerations. While this has been
already established for the massless case, the same holds
even in the massive one, as the mass does not affect the alge-
bra, as we now shall work out explicitly. Starting from the
general expression

Q2 = ∇2 + γ̄ γ D + c [D,∇] , (4.19)

one finds the following independent obstructions

∇2 + γ̄ γ D = −1

2
SμSνRμν +���

γ̄ γ m2 + γ̄ γ
(
���−m2 + R

)
,

(4.20)

[D,∇] = −i Sμ∇λRλμ + i Sμ∇μR. (4.21)

In the present case, evaluating the BRST cohomology on the
reduced Hilbert space, ker J̃ , has the effect of setting to zero
any obstruction of the form OAB Z̄ A Z̄ B with OAB arbitrary
operators since an arbitrary state in the physical sector has
the form

ϒA(x) Z A +�B(x) Z B c for Z A = (ψμ, θ, γ, β). (4.22)

This is enough to conclude that indeed

Q2 ker J̃= 0 (4.23)

without further conditions on the background; in other words,
the massive N = 2 spinning particle can be coupled to off-
shell gravity. Remarkably, the mass plays no role in the BRST
algebra, as it is trivially canceled in (4.20) and commutes with
any operator inside (4.21) being constant. It is worth noting
that introducing a term proportional to the Ricci curvature
inside the Hamiltonian (4.16) D → D + κR, would force κ
to be zero (either that or a vanishing Ricci scalar R = 0). This

10 Actually, the only requirement is that of a torsionless connection, i.e.
Tμνρ := �μ[νρ] = 0.

is dictated by the BRST algebra (4.20)–(4.21), as any term
of that form is incompatible with the closure of the N =
2 SUSY algebra (4.6). Interestingly, the N = 2 spinning
particle appears to select only the minimal coupling to the
background, as we shall check from the equations of motion.
From the closure equation Q� = 0, one finds

(∇2 − m2)Aμ − Rμν Aν + ∇μφ = 0, (4.24)

(∇2 − m2)ϕ − imφ = 0, (4.25)

φ + imϕ − i∇μAμ = 0, (4.26)

which, upon eliminating the auxiliary field, yield

(∇2 − m2)Aμ − ∇μ∇ν Aν + Rμν Aν − m∇μϕ = 0, (4.27)

∇2ϕ + m∇μAμ = 0. (4.28)

Equations (4.27)–(4.28) represent the field equations of the
Proca theory on a general curved spacetime in its Stückel-
berg formulation. In particular, the N = 2 spinning parti-
cle provides a first-quantized version of the minimal exten-
sion for a theory of a free massive vector field in curved
spacetime, without the inclusion of possible non-minimal
couplings to the background in the corresponding spacetime
quantum field theory [57,58]. Their absence is attributed to
the reasons previously discussed. As a final note, the gauge
symmetry, using (4.13), reads

δAμ = ∇μ�, δϕ = −m�. (4.29)

4.2 N = 4 massive spinning particle and linearized
massive gravity

In the remainder of this section, the methods previously dis-
cussed are exploited to give a mass to the graviton, consid-
ering a flat target spacetime for the time being.

4.2.1 Dimensional reduction approach

The first method proceeds along the lines of what has been
shown for the N = 2 case, namely through the reduction
of the higher-dimensional massless model. The fermionic
coordinates carry a flavor index

ξM
i = (ψμi , θi ), ξ̄Mi = (ψ̄μi , θ̄ i ), (4.30)

with CCR

{ψ̄μi , ψνj } = δi
j η
μν, {θ̄ i , θ j } = δi

j . (4.31)
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The same applies to the SUSY constraints (2.4)

H = 1

2

(
pμ pμ + m2

)
, qi = p · ψi + mθi ,

q̄i = p · ψ̄ i + mθ̄ i , (4.32)

that satisfy the same first-class algebra

{qi , q̄
j } = 2δ j

i H,

[qi , H ] = [q̄i , H ] = {qi , q j } = {q̄i , q̄ j } = 0 (4.33)

despite the mass improvement. Regarding the so(4) symme-
try constraints, Eq. (2.11) become

Ji
j = ψi · ∂

∂ψ j
+ θi ∂

∂θ j
− d + 1

2
δ

j
i ,

Tri j = ∂2

∂ψi · ∂ψ j
+ ∂2

∂θi ∂θ j
,

Gi j = ψi · ψ j + θi θ j . (4.34)

At this point, the BRST quantization proceeds as outlined
in Sect. 3, with the BRST system defined by (3.12). The
BRST operator (3.14) takes the usual form when acting on
wavefunctions �(x, ψ, θ | g)

Q = c (� − m2)+ γi q̄ i − qi
∂

∂βi
− γi

∂2

∂βi∂c
(4.35)

and is still nilpotent, for the same reasons outlined in the
previous section. The relevant so(4) generators (3.15) to be
imposed on the extended BRST Hilbert space are extended to
commute with Q, including the extra fermionic oscillators

Ji = Nψi + Nθi + Nγi + Nβi − d − 1

2
,

Y = ψ1 · ∂

∂ψ2
+ θ1

∂

∂θ2
+ γ1

∂

∂γ2
+ β1

∂

∂β2
,

Tr = ∂2

∂ψ1 · ∂ψ2
+ ∂2

∂θ1 ∂θ2
+ ∂2

∂γ1∂β2
− ∂2

∂γ2∂β1
. (4.36)

The physical subspace has a fixed U (1)× U (1) charge cor-
responding to 3−d

2 . Let us comment on the fact that only in
three spacetime dimensions the wavefunction � ∈ ker Ji ,

which becomes relevant when dealing with the construction
of the worldline path integral.11 In four spacetime dimen-
sions, physical states are charged − 1

2 , and we shall consider

the shifted operator J̃ = J + 1
2 for the sake of notational

simplicity. To emphasize the impact of the introduction of
a mass term, we follow the same steps as in the massless
case to impose the condition � ∈ Hred, with the reduced

11 This analysis has been conducted in order to correctly calculate the
one-loop divergencies of the effective action of linearized massive grav-
ity and will be published in a separate paper [59].

Hilbert space defined as the kernel of J̃i and Y, Tr (4.36),
still collectively denoted as Tα. From J̃i |�〉 = 0 descends
the general form of the wavefunction

�(x, ψ, θ | g) = �|m=0

+ n θ1γ2 + p θ1β2 + q γ1θ2 + r β1θ2

+ sμ θ1ψ
μ
2 + tμ ψ

μ
1 θ2 + u θ1θ2

+ n∗ θ1γ2c + p∗ θ1β2c + q∗ γ1θ2c

+ r∗ β1θ2c + s∗
μ θ1ψ

μ
2 c

+ t∗μ ψ
μ
1 θ2c + u∗ θ1θ2c, (4.37)

where in the first line �|m=0 denotes the massless wavefunc-
tion (3.16). The condition Y |�〉 = 0 produces, in addition
to the “massless” contribution (3.17),

n = −q, p = −r, sμ = tμ,

n∗ = −q∗, p∗ = −r∗, s∗
μ = t∗μ, (4.38)

while the remaining Tr |�〉 = 0 produces

e = 1
2 aμμ + 1

2 u, e∗ = 1
2 a∗μ
μ + 1

2 u∗. (4.39)

It is now possible to identify the BV spectrum of the theory,
which becomes evident after renaming the field components
as in (3.19) along with

sμ −→ Aμ u −→ ϕ p −→ φ p∗ −→ � (4.40)

and, for the corresponding antifields,

s∗
μ −→ A∗

μ u∗ −→ ϕ∗ n −→ φ∗ n∗ −→ �∗. (4.41)

Requiring � to be Grassmann-even and have ghost number
zero the field content gets assigned with the corresponding
Grassmann parities and ghost numbers as reported in Table 3.
The most general string field � in ker Tα reads

�(x, ψ, θ | g) = hμν(x) ψ
μ
1 ψ

ν
2 + 1

2 h(x) (γ1β2 − γ2β1)

− i
2 vμ(x) (ψ

μ
1 β2 − ψμ2 β1)c

− i
2 ζμ(x) (ψ

μ
1 β2 − ψμ2 β1)

− i Aμ(x) (θ1ψ
μ
2 + ψμ1 θ2)− ϕ(x)(2θ1θ2

+ γ1β2 − γ2β1)+ φ(x) (θ1β2 − θ2β1)c

+�(x) (θ1β2 − θ2β1), (4.42)

where, for the sake of simplicity, the antifields content is left
implicit.

A few comments are in order. Firstly, it can be verified that
the first two lines of (4.42) correspond to the field content in
the massless case (3.21). This is expected since, as previously
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Table 3 List of fields in the physical sector of the massive N = 4
model with the corresponding ghost number and Grassmann parity in
the dimensional reduction approach

BV role Field Grassmann parity Ghost number

Massless graviton hμν 0 0

Trace h 0 0

Auxiliary vector vμ 0 0

Diffeomorphism ghost ζμ 1 1

Stückelberg vector Aμ 0 0

Stückelberg scalar ϕ 0 0

Auxiliary scalar φ 0 0

Scalar ghost � 1 1

suggested,

�
(θ,θ̄)→0−−−−−→ �|m=0 (4.43)

up to an obvious redefinition of the scalar field ϕ(x) which
can be absorbed into the trace h(x). Taking into account also
the other two lines, it is clear that� contains the whole min-
imal BV spectrum of LMG, with the inclusion, with respect
to the massless spectrum, of the two Stückelberg fields Aμ
and ϕ, a scalar ghost field � and an auxiliary scalar field φ
[60].

At this point, we proceed to analyze the field equations,
which are derived from the closure equation at ghost number
zero using the BRST operator (4.35). The result is

(
� − m2

)
hμν − ∂(μvν) = 0, (4.44a)(

� − m2
)

h − 2
(
� − m2

)
ϕ − ∂ · v + 2mφ = 0,

(4.44b)(
� − m2

)
Aμ + ∂μφ + m

2 vμ = 0, (4.44c)(
� − m2

)
ϕ − mφ = 0, (4.44d)

vμ − 2∂ · hμ + ∂μh − 2m Aμ − 2∂μϕ = 0, (4.44e)

∂ · A + mϕ + 1
2 mh + φ = 0. (4.44f)

It is possible to solve (4.44e) and (4.44f) for the auxiliary
fields vμ and φ respectively, leading to the following equa-
tions

(
� − m2

)
hμν − 2∂(μ∂ · hν) + ∂μ∂νh

= 2m∂(μAν) + 2∂μ∂νϕ, (4.45a)(
� − m2

)
h − ∂μ∂νhμν = 2m∂ · A + 2�ϕ, (4.45b)

�Aμ − ∂μ∂ · A = m
(
∂μh − ∂ · hμ

)
, (4.45c)

�ϕ + m2

2 h + m∂ · A = 0, (4.45d)

which can be further simplified combining (4.45b) and
(4.45d) to reach the following set of equations

(
� − m2

)
hμν − 2∂(μ∂ · hν) + ∂μ∂νh

= 2m∂(μAν) + 2∂μ∂νϕ, (4.46)

�Aμ − ∂μ∂ · A = m
(
∂μh − ∂ · hμ

)
, (4.47)

�h − ∂μ∂νhμν = 0. (4.48)

Equations (4.46)–(4.48) correspond to the field equations
of linearized massive gravity in the Stückelberg formalism,
where, as anticipated,ϕ(x) is the Stückelberg field and Aμ(x)
is its vector counterpart.

A few comments are in order.

• Setting both Stückelberg fields to zero, which in litera-
ture is known as the unitary or physical gauge, equations
(4.45) can be reduced to the Fierz–Pauli system

(
� − m2

)
hμν = 0,

∂νhμν = 0,

h = 0, (4.49)

i.e. the field equations for the theory of a massive spin
two field in which the mass term explicitly breaks the
gauge invariance.

• At first sight, the massless m → 0 limit is rather peculiar.
Instead of resulting in the free and massless spin two field
equations (3.23), it produces the following outcome

�hμν − 2∂(μ∂ · hν) + ∂μ∂νh = 2∂μ∂νϕ, (4.50)

�Aμ − ∂μ∂ · A = 0, (4.51)

�ϕ = 0. (4.52)

Equation (4.51) represents the field equation for a free-
propagating vector field Aμ(x), describing a spin one
massless particle that becomes decoupled in this limit.
On the other hand, (4.52) describes the propagation of a
massless scalar field ϕ(x),which, surprisingly enough, is
still coupled to the wanna-be free massless graviton field
hμν(x) in (4.50). This hints at the vDVZ discontinuity, a
peculiarity associated with the Fierz–Pauli formulation of
massive gravity. Notably, there exist other LMG formula-
tions in which this discontinuity is absent, as discussed in
[61–63] and related literature. The origin of the disconti-
nuity is traced back to the fact that the massless limit of a
Fierz–Pauli graviton is not a massless graviton, but rather
a massless graviton plus a coupled scalar.12 Remarkably,

12 The resolution lies in the so-called Vainshtein mechanism: in a nut-
shell, general relativity can be recovered around massive bodies by
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our model captures this characteristic feature of massive
gravity.

Let us finalize the analysis by investigating the gauge sym-
metries of the theory.

Any theory of massive gravity – particularly the Fierz–
Pauli theory – is not gauge invariant due to the presence
of the mass term, unless redundant degrees of freedom are
introduced, as is the case for the Stückelberg trick. To explore
this fact from a first-quantized perspective, it is sufficient to
consider the closure equation at ghost number one: while in
the massless case, the result is a set of dynamical equations
for the diffeomorphism ghost (3.28), in the massive scenario
things become more intricate due to the presence of another
ghost field�(x). The outcome manifests the following addi-
tional equations:

m ζμ = i∂μ�, m� = 0. (4.53)

This indicates that both the scalar and the diffeomorphism
ghosts are set to zero, which accounts for the breaking of
the gauge invariance due to the presence of a mass term. To
display said symmetries, one has to compute the ghost num-
ber zero component of δ� = Q�, where � is the massive
extensions of (3.26), namely

� = iεμ(x) (ψ
μ
1 β2 − ψμ2 β1)

+�(x) (θ1β2 − θ2β1)+ · · · , (4.54)

where ε(x) and�(x) are the two gauge parameters associated
with the two gauge symmetries. The outcome is

δhμν = 2∂(μεν) δAμ = −m εμ, (4.55)

δAμ = ∂μ� δϕ = −m�, (4.56)

as expected from the Stückelberg formulation. Therefore, the
massive N = 4 spinning particle produces a gauge invariant
formulation of LMG.

4.2.2 Auxiliary oscillators approach

The main idea of the auxiliary oscillators approach consists of
enlarging the BRST algebra with additional variables, whose
physical interpretation can be seen as to describe the internal
degrees of freedom of theN = 4 spinning particle. Thus, the
first step involves an extension of the phase space by introduc-
ing two canonically conjugated complex bosonic variables,
denoted as (αa, ᾱa), with commutation relation

[ᾱa, α
b] = δb

a . (4.57)

hiding extra degrees of freedom by strong kinetic self-coupling so that
they almost do not propagate. We refer to the review [64] for further
details.

Note that the index a may run over an arbitrary set, including
a single value. To preserve the N = 4 worldline supersym-
metry, the introduction of four complex fermionic variables
(ηa

i , η̄
i
a) is necessary. They represent the superpartners of the

α’s, with anticommutator

{η̄i
a, η

b
j } = δi

jδ
b
a . (4.58)

The next step involves finding a way to deform the SUSY con-
straints while ensuring the closure of the algebra. A straight-
forward attempt would be to extend the N = 2 constraints
of [42], resulting in

H = 1
2

(
p2 + m2 αa ᾱa + m2 ηa · η̄a

)
,

qi = p · ψi + m ηa
i ᾱa,

q̄i = p · ψ̄ i + m η̄i
aα

a . (4.59)

However, this leads to
{
qi , q̄ j

} �= 2δ j
i H, specifically

{
qi , q̄

j
}

= δ j
i p2 + m2

(
ηa

i η̄
j
a + δ j

i αa ᾱ
a
)

(4.60)

and there is not an obvious redefinition of the Hamiltonian
that allows for a closure. Consequently, the resulting algebra
is not first-class, and potential issues are anticipated in the
quantization process. Indeed, the associated BRST charge
Q = c H + γ · q̄ + γ̄ · q − 2γ̄ · γ b fails to be nilpotent:

Q2 = m2 (
γ̄ · ηaγ · η̄a − γ · γ̄ ηa · η̄a

) �= 0. (4.61)

The auxiliary oscillators approach may be a viable option,
although it is necessary to follow the principles outlined in
Sect. 3.2. One should engineer a deformation of the BRST
algebra that leads to preventing the obstruction given by
(4.61), e.g. through a suitable redefinition of the Hamilto-
nian and of the so(4) constraints. Further work is needed to
explore this avenue, but such investigations are beyond the
scope of the current discussion, as a promising method for
dealing with a massive graviton is already at hand.

5 Massive graviton on curved spacetimes

In this section, the investigation of a first-quantized massive
graviton on a curved spacetime is carried out. Previous works
have addressed the challenge of coupling massive higher spin
fields – which, in the present formalism means for N > 2
– but the analysis failed in going beyond (A)dS spaces [32].
The goal of the present work is to overcome said result with
the N = 4 spinning particle. Let us rephrase the objective
more clearly: the aim is to provide a worldline formulation
of the linear theory of massive gravity, namely of the Fierz–
Pauli theory, on a curved spacetime; such a theory describes
the propagation of massive spin 2 particle on a non-flat back-
ground.
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The coupling to a generic curved background is achieved
through the covariantization of the reduced model previously
discussed, which results only in a mild modification of the
massless model of Sect. 3.2. The supercharges are deformed
as

�i := −i ψa
i eμa ∇̂μ + mθi , �̄i := −i ψ̄ i a eμa ∇̂μ + mθ̄ i ,

(5.1)

and together with the Laplacian ∇2 form the same obstructed
algebra (3.32), with the sole modification arising from the
following anticommutator

{�i , �̄ j } = −δ j
i

(
∇2 − m2

)
− ψμi ψ̄ν j Rμν. (5.2)

The deformed BRST charge displays still the general form
Q = cD + ∇ + γ̄ · γ b, where now

D := ∇2 − m2 + �, with

� := Rμνλσ ψ
μ · ψ̄ν ψλ · ψ̄σ + 1

2 R, (5.3)

∇ := −i Sμ∇̂μ + mρ,

with ρ := γ̄ · θ + γ · θ̄ . (5.4)

The model is considered on Einstein spaces: indeed, it is
expected for the massive theory to reproduce the correct
results in the m → 0 limit – similarly to the flat spacetime
scenario – and the massless BRST charge is nilpotent only
when Rμν = 1

4 gμνR. It is not possible to obtain a weaker
condition for the background in the massive case. Moreover,
from a QFT perspective, it is known that an Einstein space is
the only space on which a free (massive) graviton can consis-
tently propagate [65–68]. Hence, it is natural to implement
this condition right at the beginning of the analysis.

The so(4) constraintsTα are given in (4.36), thus the wave-
function � can be read from (4.42). This section aims to
investigate if and how the presence of the mass affects the
nilpotency of the BRST operator. In contrast to the case of
the massive spin one particle on a general background, where
nilpotency was not a concern even in the massless case, the
situation is different here. The massless N = 4 spinning
particle already selects only a specific subset of available
backgrounds. The starting point remains

Q2 = ∇2 + γ̄ · γ D + c [D,∇] , (5.5)

and thus, it is necessary to address the independent obstruc-
tions

∇2 + γ̄ · γ D = − 1
2 SμSν Rμν

+ m2
(
����������
γ · θ̄ γ · θ̄ + γ̄ · θ γ̄ · θ

)
+ γ̄ · γ �,

(5.6)

[D,∇] = −i Sμ∇λRλμ + i Sμ∇μR + κ[ R,∇]. (5.7)

Just as in the case of the Proca theory, it is evident that the
mass does not enter into the BRST algebra. Specifically, note
that the term in (5.6) is canceled both from a symmetry-based
argument and by the fact that it annihilates any states � in
the physical sector, thereby being set to zero. Additionally,
no mass term survives inside the commutator in (5.7). Conse-
quently, the mass does not explicitly obstruct the nilpotency.
The expressions remain the same as in the massless case:
once evaluated on the reduced Hilbert space Hred, taking
Einstein manifold simplifications into account, they read

∇2 + γ̄ · γ D kerTα= −1

2
γ̄ · γ (

ψμ · ψ̄μ − 1
)

R, (5.8)

[D,∇]
ker Tα= 0. (5.9)

The leftover operator (5.8) is vanishing when acting on the
massless physical wavefunction Q2 �|m=0 = 0. However,
this is not the case for the massive graviton, as the wavefunc-
tion has changed. When acting on the physical sector, the
outcome is

Q2�(x, ψ, θ | g) = − 1
2 φ (θ1γ2 − θ2γ1) cR

− 1
2 �(θ1γ2 − θ2γ1) R �= 0. (5.10)

Let us highlight that attempts to implement possible cou-
plings involving traces of the Riemann tensor and the newly
introduced fermionic variables inside the Hamiltonian (5.3),
such as

 R = c1 R θ · θ̄ + c2 R θ · θ̄ θ · θ̄
+c3 Rμν ψ

μ · ψ̄νθ · θ̄ , (5.11)

do not solve the issue. Although an appropriate tuning of the
coefficients – in particular one finds c1 + c2 = −2 – poten-
tially addresses the first obstruction (5.8), these terms would
disrupt the second one (5.9), compelling c1 = c2 = c3 = 0.
This explains why those terms have been omitted right from
the beginning: as already discussed in [39], one cannot have
fermions inside  R. The only possibility to achieve nilpo-
tency of the BRST operator is to consider Ricci-flat back-
grounds, i.e.

Rμν(x) = 0, (5.12)

which immediately addresses the remaining obstruction
(5.8), yielding a nilpotent BRST charge. This outcome
resembles the scenario encountered in string theory, where
consistency of the string propagation, worldsheet conformal
invariance, implies Ricci flatness to leading order [69]. Such
an unfortunate result amounts to the difficulties that arise
when trying to give a mass to a graviton and trying to gener-
alize it to a curved spacetime. As discussed in the introduc-
tion, several obstacles have been encountered on the quantum
field theory side, with a promising solution emerging only in
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recent years. It is plausible that a similar intricate path has
to be navigated even within the worldline formalism. The
present work may then serve as an initial step in the direction
of future developments: in fact, having explicitly developed
the BRST algebra in the massive case (5.6)–(5.7), it might be
possible with a deeper investigation to find a suitable defor-
mation of the BRST charge that makes it nilpotent even in the
presence of a non-zero cosmological constant. It is reason-
able to assume that such a modification should involve the
new fermionic coordinates (θ, θ̄ ), however, a more elaborate
ansatz than that suggested in (5.11) needs to be formulated,
which is left for future research.

In conclusion, the field equations for a massive graviton on
an Einstein background with zero cosmological constant are
evaluated using the deformed BRST operator incorporating
the appropriate curvature terms. Upon eliminating auxiliary
fields, the resulting equations of motion are

(
∇2 − m2

)
hμν − 2∇(μ∇ · hν) + ∇μ∇νh + 2Rμανβhαβ

= 2m∇(μAν) + 2∇μ∇νϕ, (5.13a)(
∇2 − m2

)
h − ∇μ∇νhμν = 2m∇ · A + 2∇2ϕ, (5.13b)

∇2 Aμ − ∇μ∇ · A = m(∇μh − ∇ · hμ), (5.13c)

∇2ϕ + m2

2 h + m∇ · A = 0, (5.13d)

which can be simplified as

(
∇2 − m2

)
hμν − 2∇(μ∇ · hν) + ∇μ∇νh + 2Rμανβhαβ

= 2m∇(μAν) + 2∇μ∇νϕ, (5.14)

∇2 Aμ − ∇μ∇ · A = m(∇μh − ∇ · hμ), (5.15)

∇2h − ∇μ∇νhμν = 0. (5.16)

Equations (5.14)–(5.16) correspond to the field equations
governing linearized massive gravity on a Ricci-flat back-
ground within its Stückelberg formulation. The same equa-
tions of motion can be derived from a field theory approach:
one has to take into account the most general action func-
tional while keeping only a restricted class of non-minimal
couplings to the background, namely, the ones that do not
excite possible unphysical degrees of freedom [67]. The final
step involves performing the necessary Stückelberg tricks to
restore gauge invariance. As a final remark, it is worth not-
ing that the correct gauge symmetries can be derived from�
(4.54), yielding

δhμν = 2∇(μεν) δAμ = −m εμ, (5.17)

δAμ = ∇μ� δϕ = −m�. (5.18)

6 Conclusions

In this work, we have investigated the issue of consistently
coupling massive higher-spin fields to a general curved back-
ground within the worldline formalism, with our primary
focus being that of a first-quantized formulation of linearized
massive gravity. During this investigation, we have explicitly
shown the BRST quantization of the massiveN = 2 spinning
particle coupled to off-shell gravity, which, to the best of our
knowledge, has never been investigated before in the litera-
ture with these tools. Our results show that the model repro-
duces the Proca theory on curved spacetime with the specific
selection of the minimal coupling to the background, improv-
ing knowledge built on previous results and offering poten-
tial utility in the context of worldline computations employ-
ing this model. Subsequently, we have addressed directly
the issue of a first-quantized massive graviton, discussing
the correct reproduction of the Fierz–Pauli theory on a flat
spacetime through the dimensional reduction of the higher-
dimensional masslessN = 4 spinning particle. Additionally,
we addressed the challenges associated with the auxiliary
oscillators approach. Finally, we tried to couple the massive
particle to an Einstein background. Our findings suggest that
a Ricci-flat spacetime emerges as the only available back-
ground for consistency at the quantum level. Let us stress that
the theory constructed here is the worldline counterpart of the
linear theory of massive gravity, namely the Fierz–Pauli the-
ory from a QFT perspective: Sect. 5 has been devoted to the
correct reproduction, starting from the BRST system of the
spinning particle model (3.12), of the field equations and the
gauge symmetries of LMG in the Stückelberg formulation.
In particular, from the quantum field theory side, the same
results can be derived from the FP action put on a curved
spacetime, which is the theory for a massive spin 2 propa-
gating on non-flat geometry and which can be obtained as
the first approximation of a general massive gravity theory
around a given fixed background. Even from the quantum
field theory side, the construction of interacting theories of
massive gravity is much harder, and a well-defined non-linear
completion of the theory has been only recently constructed:
achieving such a result in the first quantization formalism – if
feasible – would require a considerable effort and is beyond
the scope of the present work.
With these results at hand, this work may be regarded as a
first step towards the realization of a first-quantized massive
graviton on an Einstein spacetime with non-zero cosmolog-
ical constant, either by identifying consistent improvements
in the dimensional-reduced BRST system, or fully pursuing
the auxiliary oscillators procedure, contingent on resolving
the seemingly simpler yet already intricate flat spacetime
scenario first. As a preliminary step in both instances, an
intriguing prospect involves investigating whether modifying
the model could result in a first-quantized partially massless
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graviton [70,71]. There are possible extensions worth explor-
ing, such as relaxing the constraint on the BRST Hilbert space
to subalgebras, which should in principle lead to the inclusion
inside the BV spectrum of the N = 0 supergravity, i.e. the
particle theory that has in its spectrum the graviton, the dila-
ton, and the antisymmetric Kalb–Ramond tensor field. Such
extensions might be pursued along the lines of [40], inves-
tigating possible couplings to the background fields through
deformations of the BRST charge. Furthermore, the massive
N = 4 worldline model developed here could be exploited
in future computations. One potential application involves
investigating the one-loop divergences of massive gravity,
reproducing, and potentially extending, the results recently
obtained from the quantum field theory side [72,73]. To pur-
sue this application, it is necessary to establish a suitable one-
loop quantization of the massive model and study the cor-
responding partition function on the one-dimensional torus.
The initial step would be to determine the correct measure on
the moduli space of the supergravity multiple, implementing
the correct projection on the massive gravity contribution,
following the analysis of [74]. The computation of the heat
kernel/effective action coefficients should proceed along the
lines of [75], where the counterterms necessary for the renor-
malization of the one-loop effective action of pure gravity
were computed using the massless N = 4 spinning particle.
This project is currently underway [59].
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