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We consider a one-dimensional system of noninteracting fermions featuring both boundary driving and
continuous monitoring of the bulk particle density. Due to the measurements, the expectation values of the
local density and current operators are random variables whose average behavior is described by a well-studied
Lindblad master equation. By means of exact numerical computations, we go beyond the averaged dynamics
and study their full probability distribution functions, focusing on the late-time stationary regime. We find that
contrary to the averaged values, the spatial profiles of the median density and current are nontrivial, exhibiting
qualitative differences as a function of the monitoring strength. At weak monitoring, the medians are close to the
means, displaying diffusive spatial profiles. At strong monitoring, we find that the median density and current
develop a domain-wall and single-peak profile, respectively, which are suggestive of a Zeno-like localization
in typical quantum trajectories. While we are not able to identify a sharp phase transition as a function of the
monitoring rate, our work highlights the usefulness of characterizing typical behavior beyond the averaged values
in the context of monitored many-body quantum dynamics.
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I. INTRODUCTION

An effective way to study transport in many-body quantum
systems is to induce a nonequilibrium steady state in the bulk
by means of an external boundary driving. In one-dimensional
(1D) systems, the problem can be described by a Lindblad
master equation [1], where nonzero currents are induced by
asymmetric boundary-driving terms [2]. This simple setting
allows one to investigate a rich phenomenology, including
anomalous transport and ergodicity-breaking effects arising,
e.g., due to integrability [2,3], kinetic constraints [4-6], or
disorder [7].

In addition to boundary driving, one can also consider
a bulk coupling to the environment. Simple Lindblad equa-
tions corresponding to this setting have been widely studied
in the past two decades, especially in 1D [8—14]. These works
have established that even weak decoherence-inducing terms
typically lead to diffusive transport, a generic feature of both
classical and quantum systems [15-18].

In this work, we consider a different but closely re-
lated problem, where the bulk of a boundary-driven 1D
system is continuously monitored via weak-measurement
processes [19-21]. While the averaged dynamics can be de-
scribed by a standard Lindblad equation, leading to diffusive
average transport, distinct histories of measurement outcomes
define an ensemble of quantum trajectories, displaying a
much more interesting behavior. Our work is motivated by
the recent literature on entanglement measurement-induced
phase transitions (MIPTs) [22-26], providing striking ex-
amples of how individual quantum trajectories may display
different phenomenology beyond the standard Lindbladian
framework [27,28]. However, in contrast to most of the work
in this literature which has investigated entanglement-related
and quantum information aspects, we will exclusively focus
on transport.
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We study a prototypical model of noninteracting free
fermions featuring both boundary driving (in the form of par-
ticle injection-depletion) and bulk monitoring of the particle
density. This model was first considered in Ref. [29] and,
very recently, in Ref. [30], in which how the entanglement
negativity is affected by the monitoring strength was studied.
We also note that in the absence of boundary-driving terms,
the model coincides with that studied in Refs. [31-35], in the
context of MIPTs.

It is important to stress that monitoring makes the dynam-
ics highly nontrivial and difficult to study, even in the absence
of interactions. For instance, it has been shown that the
entanglement dynamics of monitored free fermions display
a subtle behavior, with transitions and crossovers between
phases with subextensive scaling [31,33,34,36-54]. This phe-
nomenon was quantitatively understood only very recently,
exploiting a mapping to effective nonlinear-sigma-model field
theories [35,55-57]; see, also, [34,58].

In the presence of boundary driving, one may ask how the
properties of the particle density and current along individual
quantum trajectories are altered by the measurement rates.
This question is particularly natural in light of the apparent
competition between different effects: on the one hand, the
driving forces a particle flow through the system, and on the
other hand, strong monitoring tends to pin the state toward
an eigenstate of the measurement operation (pointer states).
Therefore, it is natural to expect qualitative differences in the
statistics of transport properties, similar to what happens for
the entanglement negativity [30].

In this work, we study the full probability distribution
functions of the local particle density and current, focusing
on the nonequilibrium stationary regime of the model. Our
main result is to highlight a qualitative difference between the
average and typical transport. The former is determined the
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FIG. 1. Cartoon of the setup. (a) A fermionic chain is subject
to the Hamiltonian H, left/right boundary driving and continuous
bulk monitoring, with strength I" and y, respectively. (b) The average
state p is obtained by neglecting the measurement register and is
described by the so-called dephasing model [69]. We compare the
average density matrix with the conditional one p;, depending on the
history of measurement outcomes {&,,}. (c) At strong monitoring,
the mean density displays a linear profile, whereas the locally typical
density (associated with the median) is characterized by a domain-
wall profile. (d) The average current is constant, while the locally
typical current is inhomogeneous, displaying a single-peak profile.

average density matrix, which is governed by a Lindblad mas-
ter equation displaying diffusive features [59-69]. The latter,
which we identify with the statistical median, is computed out
of the full probability distribution functions in the ensemble
of quantum trajectories, going beyond the Lindbladian de-
scription. We find that at weak monitoring, the medians of
local density and current are close to the means, displaying
diffusive spatial profiles. At strong monitoring, we find that
the median density and current develop a domain-wall and
single-peak profile, respectively, which are suggestive of a
Zeno-like localization in typical quantum trajectories. While
we are not able to identify a sharp phase transition as a func-
tion of the monitoring rate, our work highlights the usefulness
of characterizing typical behavior beyond the averaged values
in the context of monitored many-body quantum dynamics.

The rest of this paper is organized as follows. In Sec. II,
we introduce the model and the protocol that we consider. In
Sec. II B, we introduce the observables of interest, including
the local density, current, and their statistics. We present our
numerical results in Sec. III, specifically on the statistics of
particle density and current (Sec. IIIB) and their average
versus typical behavior. Our conclusions are consigned to
Sec. IV.

II. MODEL, METHODS, AND OBSERVABLES

We study a 1D system of noninteracting fermions, where
particles are injected and depleted at the left and right bound-
aries, respectively. We consider monitoring the local particle
density, in the limit of weak but frequent measurements, as
realized in, e.g., homodyne detection or the quantum-state dif-
fusion protocol [70,71]; cf. Fig. 1. Due to the boundary terms,
the system is open and described by a density matrix. Its
evolution is stochastic, due to the monitoring process. Thus,

the overall evolution is encoded by the following stochastic
master equation (SME):

L
dpe = dtLIps1+ Y (dTulpel + Dulpe]). (1)

m=1

L[o] = —i[H, o] + Dpnalc]. )

Equation (2) gives the first term in Eq. (1) and describes
the deterministic evolution of the system. Its first term is the
coherent dynamics driven by the Hamiltonian

(& emr + ¢l 8m), ?3)

where ¢,, and ¢/ are the canonical fermionic operators satisfy-
ing {¢n, &2} = 0, {ém, €]} = 8.0 The second term in Eq. (2)
is the boundary Lindblad dissipator describing injection and
depletion of particles,

Dinalo] = ['Q2¢] 0 &y — {&1], o})

+T(28, 08 —{é]er, o)) 4)

The continuous monitoring of the local density 7; = éjéi has
two effects on the evolution of the mixed state of the system,
as seen in the last term in Eq. (1). It introduces a local stochas-
tic term d Jyu[0],

dJInlo] = vy d&§ {m — (Aim)s., o}, &)

and also gives rise to a dephasing term originating from the
environment backaction,

Dalo] = —%[ﬁm, [, o] ©6)

Here, we defined the expectation value (o) = tr(pgo) and the
stochastic real variable d&,", satisfying the standard rules from
fto calculus @ = 0 and dé{”dé,’ = dtdy,1; see, e.g., [72] and
references therein. d&" can be interpreted as an infinitesimal
fluctuating noise term. We emphasize that bulk diffusion and
stochastic terms are controlled by the same scale y and should
not be understood as two independent competing processes
as in Ref. [73]. In this work, we follow the standard termi-
nology and define the set {0z (¢)} as the ensemble of quantum
trajectories, each labeled by a specific history of measurement
outcomes {&,,,}.

Due to the properties of the Ito noise which is uncorrelated
at different times, the average of Eq. (1) yields the following
Lindblad equation:

| =

p = —ilH, ] + Dona[p] + Dourc[p], 7

U

t

with Dyyi[o] = Y- Dylo], and D,[o] defined in Eq. (6).
As mentioned, this Lindblad equation is well studied. In fact,
it is analytically tractable: the k-point correlation functions
constitute a hierarchy of decoupled equations of motion, each
depending only on the set of r-point correlation functions with
r < k[59-61,69]. In this work, however, we will be interested
in the full ensemble of quantum trajectories, requiring us to go
beyond the Lindbladian framework.

144306-2



DENSITY AND CURRENT STATISTICS IN ...

PHYSICAL REVIEW B 109, 144306 (2024)

A. Continuity equation for monitored dynamics

In the absence of monitoring, the bulk Hamiltonian com-
mutes with the total number of particles, N = 3°, #,,. From
the continuity equation characterizing the Hamiltonian dy-
namics,

Oty = —ilfie, H] = — (1 = Ja), ®)

we obtain the well-known expression for the current density,
Jn = U@, & = &} En). ©)
Equation (8) implies that the expectation value of the local
current in the stationary regime must be constant along the

chain [63].

Monitoring significantly modifies this picture. Most promi-
nently, the continuity Eq. (8) has to be modified. To see this, it
is useful to write the derivative of the local density in the bulk

of the system, as generated by the SME (1). Using the fact that
the dynamics is Gaussian [74] (cf. Sec. III), we can derive

dny(§) = —[jm(§) = jm—1()]dt + dJp, (10)

Ay = 2dEuny(§) =2 Gk (§)dECkm(&), an
k

where we used the notation n,,(§) = (fim)z, ju(§) = (]A'm)g,
and Gy ,(§) = (czc,,,)g. Equation (10) takes the form of a
generalized continuity equation where a change in time in the
local density corresponds to a current flowing to the neigh-
boring site and to a stochastic fluctuating term dJ,,. Taking
the average over the noise, we get dJ,, = 0 and obtain an ex-
act continuity equation for the average current. However, the
fluctuating current dJ,, at site m is not zero along individual
quantum trajectories.

The term dJ,, comes entirely from the nonunitary noise
term in the SME. We can interpret dJ,, as a fluctuating charge
flowing out of (into) the measurement apparatus and entering
(leaving) the system. This observation will be useful to in-
terpret our results on transport statistics in the next section.
In order to avoid potential confusion, however, we emphasize
that this is just a mathematical interpretation of the formula,
but one should not claim that dJ,, is associated to a measur-
able, physical flow of charge in or out of the system/detector.

While the fluctuating local current j, does not satisfy a
conventional continuity equation, it still provides some infor-
mation on how the charge is coherently redistributed across
the lattice. For this reason, in the next sections, we will present
results on the statistics of the trajectory-resolved local density
and local current, n,,(¢) and j,,(§).

B. Average behavior and typical trajectories

The average over quantum trajectories of any linear func-
tional £ of the system density matrix can be rewritten in
terms of the average state o= Eel[pe], ie., Llpe] = L[p).
Conversely, for a nonlinear functional F, we have, in general,

J

Flpe]l # FIp). Setting A(§) = (A)e, with A = J,,, i, we are
interested in the probability distribution function [75-77],

P.(A;a) = E¢[8((A)e — a)], (12)

which is as a highly nonlinear functional of pg and, therefore,
beyond the reach of the Lindbladian formalism.

The probability P;(A; a) is fully characterized by its statis-
tical moments K, (A), which can be obtained in terms of the
derivatives of the generating function,

G,(A: ) = /dae—MP,(A;a). (13)

Contrary to the full-counting statistics typically studied in
many-body physics, which quantifies the fluctuations of the
measurement outcome of an observable in a given state (see
Ref. [78]), G;(A; L) characterizes the statistical fluctuations
of the expectation values A(£) in the ensemble of quantum
trajectories {p¢ }. For instance, the variance is given by

(AA) : = K> (A) — K (A)?
= Ee[(A);] — Ec[(A)e]*. (14)

In the next section, we will study the properties of P, (A; a).
We will be interested in the typical value of A(£) in the
ensemble of the quantum trajectories. While the notion of
the typical value of a probability distribution function is not
uniquely defined (and sometimes is taken as a synonym of the
average value), in this work we associate it to the median of
P:(A; a), which is defined as the value ({(A)) such that

((A))
/ P/(A;a)da =1/2. (15)
—00

The median is more naturally interpreted as an indicator of
typical behavior than the mean when the probability distribu-
tion function is highly skewed. We will show that this is the
case for the local particle density and current in the limit of
strong monitoring.

C. Evolution of the covariance matrix

In this work, we perform exact numerical computations
based on the formalism of fermionic Gaussian states [74],
following the approach used in Ref. [30]. We briefly review
it here for completeness.

Fermionic Gaussian states are defined by the fact that they
satisfy Wick’s theorem [74], and all correlation functions are
uniquely determined by the so-called covariance matrix,

Cns = trlpefei]. (16)

Crucially, the SME (1) preserves Gaussianity [30]. Namely,
an initial Gaussian state remains Gaussian along each of the
quantum trajectories. Therefore, one can derive an efficient
description of the dynamics in terms of the system covariance
matrix. Using fto calculus and Wick’s theorem, one finds [30]

de,l = idt(cm—l,] + Cm+1,l - Cm,l+1 - Cm,l—l) - )/(1 - 8m,[)Cm,ldt + ﬁ(d%}m + dE,l)Cm,l

L
- zﬁzcm,rdglrcr,l + ZFL(Sm,lal,ldt - Iﬂ((SmA,l + 81,1 + 81,L + 8m,L)Cm,ldt- (17)

r=1
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Following [30], we solve Eq. (17) by discretizing time and
splitting each time step into two subsequent intermediate steps
(one can check that the discretization error in this procedure
is vanishing in the limit where the discrete time interval ap-
proaches zero). In the first step, we evolve the system by the
Hamiltonian H and the boundary driving. This is done by
integrating over a time interval Az (for instance, using the
Runge-Kutta method) the differential equation

%C(l) =L[CH]+ P, (18)

where the linear operator . and the matrix P are obtained
from Eq. (17) setting y, d§;" = 0. We denote the covariance
matrix obtained in this way by C(z + At). As a second step,
we implement the nonunitary dynamics corresponding to the
bulk measurement process. For each site, this is given by the
transformation [cf. Eq. (1)]

= (19a)

Ty = expl/VdE iy — y At (i — (im)e)*].

In the numerical implementation, the random variables & are
independently drawn from a Gaussian distribution with zero
average and variance ]E[(Sl’")z] = At. Equation (19) can be
uniquely rewritten in terms of the covariance matrix, using the
theory of fermionic Gaussian states [40,74]. After a lengthy
but straightforward computation, we can write the trans-
formed covariance matrix as C(t + At) = Jyo... I [C(t +
At)], with

(19b)

Jn(C) = P(’”)|:C + x,(EM™C + CE™ —2CE™ ()
3 xm;— 1E(’")i|P(m) N tanh(eén) + lE(’"), 20)

where we defined the following matrix and coefficients:

1
D" =8| ———8ms + (1 =8u)|. (21
cosh(e;)

[E™r = 8miSm.rs (22)

€m = dE" + (2C,.m — )AL, (23)
tanh (¢,

X, anh (€) 24)

T 1= (1= Cpp)tanh(en)’

By repeating this procedure for each time step, we obtain
the evolved covariance matrix C(¢) for one particular history
of measurement outcomes {&,,,}. The full probability distri-
bution function is obtained by sampling different quantum
trajectories, repeating the full time evolution many times (each
time new random numbers are generated). The computational
cost of this method scales only polynomially in L and ¢ for a
single quantum trajectory, allowing us to reach large system
sizes and simulation times.

III. NUMERICAL RESULTS

In this section, we present the results of our numerical
simulations. For convenience, we initialize the system in the
infinite-temperature state, which is Gaussian and described by

the covariance matrix C = 1, /2. The choice of the initial state
is immaterial, as long as we are only interested in the late-time
stationary regime, which is reached at times  ~ (L/y)? [30].
Note that in this regime, the probability distribution function
in Eq. (12) becomes independent of time. For our numerical
simulations, we chose At = 0.05 and verified that our results
are stable upon decreasing At further. For each value of the
system parameters y, I', and L, we have sampled Ny, = 10°
quantum trajectories.

A. Trajectory-resolved vs averaged values

We begin by discussing the qualitative features of the pro-
files of j,,(&) and n,,(§) in individual quantum trajectories, as
the measurement rate is increased. We focus on a sufficiently
large time ¢ > (L/y)*. To this end, it is useful to make a
comparison with the averaged values in the so-called nonequi-
librium steady state (NESS), which were analytically derived
in Ref. [63], reading

lim 7 (®) =2 N5 = - 1 ~ 2
P T+ +@L—Dy/2 yL
2s)

=00

lim 7,(8) = 1 +jNESS[1 +(m— 1)%

1
+ E(Sm,l - (Sm.L):| . (26)

We see that the mean current and density profiles display a
crossover from ballistic to diffusive transport as the system
size increases. In the limit where L is the largest length scale,
the density linearly decreases from one end to the other, with
a uniform current jNESS oc 1/L. This is consistent with Fick’s
law, with the current approaching zero in the thermodynamic

v=1.06

1L
1.0 B %
£0.5 By i
B ~
SN,

0.01, i 91 0.04; i ¥ eite

0.0 0.5 1.0 0.0 0.5 1.0
m/L m/L

FIG. 2. Comparison between the average values of n,,, j, (or-
ange solid lines) and those in a randomly generated, individual
quantum trajectory (gray markers) for various measurement rates and
a sufficiently late time, r > (L/y)?. Left panels: At low y, the values
in individual trajectories are typically close to the average ones.
Right panels: For large y, the mean values are strongly influenced by
atypical configurations and fluctuations are more pronounced. Here
we chose I' = 1, while the system size is L = 160.
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FIG. 3. Histograms corresponding to the probability distribution functions of the particle density P(n,,) (top) and current P(j,,) (bottom).
The plots are obtained by sampling the dynamics at sufficiently large times. We consider a chain of size L = 160 with I' =1 and vary
the monitored strength y = 0.2, 0.4, 0.8, 1.2. We compare the statistics at the boundaries m = 1, L and at different positions in the bulk,
m = L/8, L/4, L/2. We have tested that the average density and current computed out of the data shown here match the analytic result for the

Lindbladian steady values, up to the statistical accuracy.

limit, as is typical for diffusive scaling [63,69] [cf. Figs. 1(c)
and 1(d)].

In a single quantum trajectory, the profiles of j,,(§) and
n, (&) are not smooth due to the fluctuations induced by the
measurements and we find that their qualitative features de-
pend on the measurement rate. An example of our data is
reported in Fig. 2. For a weak-measurement rate (left panels),
we see that the amplitudes of fluctuations are small, and
Jm(&), n,y(§) are close to their averaged values. Conversely,
at a large-measurement rate (right panels), the fluctuations are
large. In particular, we note that the probability distribution
of n,, has peaks near 0 and 1. The distribution of j,, does not
have peaks away from zero, but it displays tails that reach out
towards +1.

B. Statistics of particle density and current

The previous discussion suggests that depending on the
measurement rate y, the average properties of the state are
dominated by either values close to the mean (small y) or
far from it (large ). We make this observation quantitative
by studying the full statistics of the observables of interest.
To this end, we compute the probability distribution functions
P(j,) and P(n,,) [cf. Sec. IIB], which we plot in Fig. 3
for different values of the monitoring rate y and position
along the chain m, for a system of length L = 160. From the
plots, we can immediately appreciate qualitative differences
between the boundaries and the bulk of the system.

Let us first focus on the low-y regime (left panels in Fig. 3).
We see that the bulk current (computed at position m = L/2)
is approximately normally distributed with a large variance.
At the same time, the density has a nearly flat histogram: in

the limit of very low-measurement rate, almost all particle
configurations are equally likely, as the particles flow through
the system. Conversely, the statistics of local particle density
and current is very different at the edges of the chain. We
see that the probability distribution functions of the particle
density are increasingly skewed as m is moved close to the
boundaries, displaying exponentially suppressed tails. At the
same time, P(j,,) develops a sharp peak close to zero current
and broad tails which are strongly asymmetric due to the
presence of the pump/loss terms. As the measurement rate
is increased (right panels in Fig. 3), the peak at the boundary
becomes sharper, while the bulk develops fatter exponential
tails and a more pronounced (albeit lower) zero-current peak.
The distribution function P(n,,) is also qualitatively different
at large monitoring. In the bulk, the distribution develops two
peaks at the values n,, = 0, 1, while the peaks at the bound-
aries are more pronounced.

C. Particle-density profiles

We first extract from our data the typical behavior of the
expectation values of the particle density, n,,(§). As discussed
in Sec. IIB, we do this by computing the median of its
probability distribution function, which we denote by ((n,,)).
Our results are reported in Fig. 4(a), showing the profiles
of the locally typical density along the chain for different
measurement rate values y and for fixed L = 128.

We see that the spatial profiles are qualitatively different
from what is expected for conventional diffusive behavior [2].
While the density profiles are linear at small y, being very
close to the average one, they are deformed as y increases,
developing a domain-wall profile as y — oo. This is typical
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FIG. 4. (a) Typical density for various y (for L = 128). We ex-
tract the finite-size fit at each L via Eq. (27). (b) Scaling of 7}, vs the
measurement rate y. Our data show a crossover between a localized
behavior with y 2 0.7 and one with y < 0.7 where the system is
weakly delocalized.

of localized behavior, with the particles being pinned near
the edges to values corresponding to full and empty sites. We
interpret this effect as a signature of Zeno-like localization due
the interplay between the monitoring process and boundary
drive. The former tends to freeze the system in an eigenstate
of the measurement operators with no charge fluctuations,
while the latter fixes the density at the boundaries and breaks
the symmetry between the full and empty sites. On the other
hand, the average density profile at strong monitoring remains
diffusive, with a slope independent of y; see Eq. (26).

For large but finite values of y, the shape of the profiles
is qualitatively similar to the one encountered in the presence
of anomalous transport, interpolating between diffusive and
localized behavior [2]. In this case, the shapes of the profiles
as a function of the scaling variable x = m/L can be predicted
in the large-L limit, heuristically assuming a space-dependent
diffusion constant [79-81]. Here we take a simpler empirical
approach, and consider fitting the numerical data against the
function

1

) = T G

27
The fitting parameter 7. should be interpreted as an effective
temperature, competing with the tendency of the system to lo-
calize. As shown in Fig. 4(b), we find that for large y, Eq. (27)

0.20
=02 =08 0 (b)
0151+ v=04 + v=10 )
A 7 =0.6 (a) |[= °
201 5
QJ . =10
= m=1
0.05 ~15 vy=02 + =038
7=04 + y=10
0.00 | T S |
0 1 2 20 50 100
x=m/L L

captures well the behavior of the typical particle density since
the resulting fit becomes independent of the system sizes.
At low and intermediate y, Tp = T (L) displays a finite-
size scaling, slowly decreasing as L increases. Therefore, our
results suggest the existence of two different regimes as a
function of y [depending on whether or not T¢¢ (L) depends on
L]. However, our data do not allow us to identify whether this
change is associated to a true phase transition or crossover, as
L increases. For the available system sizes, the change in the
behavior of Tii appears to take place at y, ~ 0.7. Note that
the smallest value of y chosen in Fig. 4(b) is dominated by
finite-size effects for L < 128. This can be seen from Eq. (25),
from which we see that the asymptotic diffusive behavior is
realized for L > 2/y. Similar finite-size effects should be
expected in Fig. 5.

We further validate these results in Appendix A, where the
mode of n,, is considered as another typicality indicator.

D. Current-density profiles

Next, we discuss the profiles of the typical current density
Jm(€), as quantified by the median of its probability distribu-
tion function (denoted by ((j,))). Our results are reported in
Fig. 5(a). For small y, j, is slowly varying in space, while
upon increasing the rate, it becomes strongly suppressed at
the boundaries and nonzero only in the central region of the
chain, deviating from the typical constant diffusive profile.
To be quantitative, we study the dependence of ((j,)) with
the system size L, considering both the current close to the
boundary [Fig. 5(b)] and in the bulk [Fig. 5(c)], for different
measurement rates. In each case, we fit the numerical data
against the function

((m)) ~ exp (— L/E).

Here, £ can be interpreted as an effective space-dependent
correlation length. In the limit of very large y, we expect
gloc — 0, consistent with Zeno localization. The fits are per-
formed neglecting system sizes L < Ly, for increasing Ln,
and considering only larger L up to L = 160. Examples of our
numerical data for ({j,)) at the boundaries and in the bulk are
reported in Figs. 5(b) and 5(c), while our results for &, are
plotted in Fig. 5(d). We see that at the sizes that we study, the
decay of the current is not clearly exponential, with the plots
showing a nonzero curvature. Therefore, the fit in Eq. (28)

(28)

0 150
(c) (d) Luin = 8
EDYE b Lyin = 16
= 100 4+ Ly =32
= m=1L/2 50
—6 v=0.2 v=0.8
vy=04 + v=1.0
i 50 100 ¥o 05 10 15
L

FIG. 5. (a) Typical current for various measurement rates for L = 96. (b),(c) Log-log plots for ({j,)) for various L and y at (b) m = 1 and
(c) m = L/2. We extract the estimate localization length via the fit in Eq. (28), neglecting L < L, [where the values of Ly, are reported in
(d)]. (d) Scaling of the exponents with y at various Ly, for m = 1 (blue lines) and m = L/2 (orange lines).
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should be taken with some care. Still, Fig. 5(d) shows that the
fit is accurate in the limit of large y .

The localization length appears to be smaller at the bound-
ary, and in any case decreasing as y increases, as expected.
At the boundary, we find £ ~ 1/y for large gamma. Once
again, we are not able to identify a sharp transition in the
features of é,l,j’c as a function of y. However, our results for
the boundary correlation length suggest the existence of two
regimes: for small y, it appears to weakly increase with the
system size, while for large y, it is constant within the fitting
error. Consistent with our findings for the particle density, the
two regimes are separated by the value y ~ 0.7, at least for
the system sizes which we can reach. We also note that in the
bulk, no immediate difference emerges in the scaling of £1°¢.

It is interesting to interpret these results in light of the mod-
ified continuity equation for the charge discussed in Sec. IT A.
In fact, from a mathematical point of view, we see from
Eq. (11) that the amount of local particle density flowing
randomly into the detector is controlled by the covariance
matrix along that quantum trajectory. It is easy to see that
the freezing of charge fluctuations at the boundaries implies
areduced net flow of charge entering or leaving the system, as
we can see from the continuity equation. However, one should
keep in mind that the nonunitarity of the monitored dynamics
makes it difficult to interpret the transport behavior discussed
here in terms of conventional hydrodynamics.

IV. CONCLUSIONS

In this work, we have studied a prototypical model of a
continuously monitored many-body system subject to external
driving, and quantitatively analyzed its properties beyond the
Lindbladian framework. Focusing on the late-time limit of
standard transport observables, namely, local particle density
and current, we have shown how their probability distribu-
tions exhibit different qualitative features as a function of
the monitoring rate. In particular, we have shown how the
profiles of their medians are similar to those encountered in
anomalous transport in standard Lindbladian settings. In the
limit of very large monitoring rate, we found that the profiles
exhibit features which are typical of localized phases, with
a domain-wall and a single-peak profile for the local particle
density and current, respectively. While we have not been able
to identify a sharp phase transition as a function of the mon-
itoring rate, our work highlights the usefulness of typicality
probes beyond the mean value to extract useful information
on the ensemble of quantum trajectories.

It would be interesting to substantiate our findings using
recently developed field-theoretical approaches for monitored
free fermions; see, e.g., Refs. [34,35,57]. Another natural
question is how transport features in individual quantum tra-
jectories would be modified in the presence of additional
unitary noise or interactions. We leave these questions for
future works.

v=02 L =16
v =04 L=32
A0.75< v =06 1.0 + L=64
S + =10 - 4+ L=280
= 0.50 Ty=16 |73
g &~
0.251
0.001 —_—
0.0 0.5 1.0 0.5 1.0 1.5

x=m/L

FIG. 6. (a) Mode of n,, for L = 128 and various values of y. The
mode highlights a domain-wall shape, consistent with the qualitative
analysis discussed in the main text. (b) Scaling of 7, extracted from
the mode vs the measurement rate y. As for the median, our data
show a crossover between a localized behavior and a delocalized one
around y ~ 0.7.
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APPENDIX: ADDITIONAL NUMERICAL RESULTS

In this section, we discuss the mode of n,, as an additional
indicator of typicality. This quantity, denoted as mode (n,,),
is defined as the location of the maximum of the distribution,
P(n,,). The quantitative values of the mode dramatically de-
pend on the data binning for the histograms; cf. Fig. 3. In this
section, we consider two realizations of n,,(£;) and n,,(&,) the
same if [1,,(&1) — np(€2)] < 0.3 x 1072 ~ 1/ /Ny

Our results, reported in Fig. 6, corroborate the conclusions
in Sec. III. The spatial profiles are qualitatively different from
the conventional diffusive behavior, and at y — oo, the den-
sity profiles reach a pronounced domain-wall behavior. We
further validate the Zeno-like localization considering the fit
in Eq. (27) on the mode data. Our results are presented in
Fig. 6(b). Here, T, >~ 0 for y = 0.7, and T, > 0 for y < 0.7.

Two comments are in order. First, the quantitative differ-
ence between the median and mode is expected. The ensemble
of quantum trajectory is not self-averaging, and different
indicators highlight inequivalent aspects. Furthermore, quan-
titative conclusions on the mode should be taken with some
care due to the aforementioned data binning dependence.
In contrast, the average and median do not depend on the
binning of the dataset, thus providing more robust statistical
indicators.
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