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In this paper, we address the problem of multi-modal retrieval of fashion products. State-of-the-art
(SOTA) works proposed in literature use vision-and-language transformers to assign similarity scores
to joint text-image pairs, then used for sorting the results during a retrieval phase. However, this
approach is inefficient since it requires coupling a query with every record in the dataset and computing
a forward pass for each sample at runtime, precluding scalability to large-scale datasets. We thus propose
a solution that overcomes the above limitation by combining transformers and deep metric learning to
create a latent space where texts and images are separately embedded, and their spatial proximity trans-
lates into semantic similarity. Our architecture does not use convolutional neural networks to process
images, allowing us to test different levels of image-processing details and metric learning losses. We
vastly improve retrieval accuracy results on the FashionGen benchmark (+18.71% and +9.22% Rank@1
on Image-to-Text and Text-to-Image, respectively) while being up to 512x faster. Finally, we analyze
the speed-up obtainable by different approximate nearest neighbor retrieval strategies—an optimization
precluded to current SOTA contributions. We release our solution as a web application available at
https://disi-unibo-nlp.github.io/projects/fashion_retrieval/.
� 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Text and image multi-modal retrieval is the problem of using a
query represented by a sentence or an image to retrieve other texts
or images in a dataset. Tackling this task in the fashion domain is
notoriously challenging [1]. Specifically, it demands the ability to
manage queries referring to fine-grained details of clothes within
an online catalog, comprising attributes and noun phrases (e.g.,
”Low sneakers in black polished leather, round toe, closure with
tone-on-tone laces, padded tongue and collar.”). Meeting this
requirement is indeed not requested by the retrieval in the general
domain where, on the contrary, the focus is on coarse-grained
objects inside the image, and descriptions are mainly high-level,
like ”a little dog is holding a ball in his mouth” or ”a yellow fire
hydrant in front of a blue wall”.

State-of-the-art (SOTA) results for fashion retrieval have been
recently achieved by vision-and-language (V + L) transformers,
i.e., transformers [2] able to process both texts and images in a sin-
gle architecture. Despite the remarkable achievements, they suffer
from a major drawback: input modalities still have to be strictly
coupled and jointly processed to produce a similarity score that
is used to get the most relevant results to a query. This means that
a forward step must be computed for each query-document pair at
test time, which is a highly inefficient solution if one must perform
retrieval on large-scale datasets.

In this paper, we propose integrating deep metric learning
(DML) after self-supervised pretraining to boost multi-modal
retrieval efficiency and efficacy, with the same model usable as
an image and/or text encoder. Mechanically, our architecture fore-
sees a single V + L transformer with two-stage training. Firstly,
texts and images interact within the model, learning deep relation-
ships between them. Then, learned weights are decoupled, and
DML is used to construct a latent space in which texts and images
are separately embedded, where the distance between points
translates into a measure of similarity between the actual data.
We demonstrate that deep multi-modal relationships acquired
via self-supervision can be exploited by DML to tune text and
image representations further. Note that this approach differs from
existing solutions, which either utilize a single interaction-focused
V + L transformer or two different text and image encoders trained
with DML and a representation-focused architecture.
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By decoupling text and image embeddings, we take only one
inference step at runtime to encode the query, which can then be
compared with document embeddings pre-computed offline. This
design also enables the adoption of multidimensional indices with
which multi-modal retrieval is significantly faster. Retrieval per-
formance similitude across different datasets confirms our solu-
tion’s goodness and ability to generalize.

We conduct extensive experiments by testing different ranking
losses in the DML phase, showing how they compare with the tri-
plet loss, which is still the most used loss function in the multi-
modal retrieval literature. Unlike previous contributions, our archi-
tecture fully replies to the real-world needs imposed by fashion
product retrieval, non requiring each image to be processed with
pretrained convolutional neural networks (CNNs) and capturing
fine-grained details.

Our transformer architecture with a two-stage training
approach pushes SOTA Rank@K accuracy for Text-to-Image and
Image-to-Text retrieval on the well-known FashionGen [3] dataset,
also registering promising results on DeepFashion-Synthesis [4].
Additionally, we show that our model is much more time-
efficient, up to 512x faster than the SOTA ones, and could be used
on large-scale datasets using multi-dimensional indices and
approximate nearest neighbor semantic search to speed up
retrieval.
2. Related Work

2.1. Transformer-based Fashion Multi-Modal Retrieval

Multi-modal retrieval in the fashion domain has been recently
addressed by FashionBERT [1] and KaleidoBERT [5] V + L trans-
formers. Contrary to the latest contributions in general-domain
retrieval with transformers [6–10], such architectures do not rely
on extracting regions of interest (RoIs), which notoriously tend to
ignore small-grained details. Instead, images are subdivided into
square patches and processed via a pretrained ResNet [11] model.
However, operating with ResNet translates into storing a pre-fixed
2048D vector for each patch which (i) produces a negative impact
in terms of memory and time complexity, (ii) does not scale to
smaller image patches or images with higher resolution. Motivated
by these issues, some up-to-date models—such as MVLT [12]—di-
rectly manage the raw visual patches without extra frozen ResNet
preprocessing models and introduce a masked image reconstruc-
tion task (end-to-end pretraining scheme). Nevertheless, they
ignore DML.

Moreover, traditional transformer-based solutions necessitate
texts and images to be coupled and simultaneously fed to the
model, which outputs a similarity score between them. As
addressed in [13–16], this excludes the possibility of defining
multi-dimensional indices on embeddings (e.g., Inverted File
Indices, PCA dimensionality reduction, Product Quantization
[17]), thereby precluding applications on massive datasets where
fast retrieval methods are essential. Indeed, the necessity of
traversing every query and gallery item pair in single-stream archi-
tectures frequently causes unacceptable speed in cross-modal
retrieval applications. Although the authors of FashionBERT pro-
pose a masking strategy for using their model with the least waste
of time and effort, they do not provide any supporting experi-
ments; indeed, we find it not working well in practice (see D).
For these reasons, the community is witnessing a transition toward
dual encoding.

We introduce a V + L transformer that does not use ResNet to
process patches. This leads to a lighter architecture that allows
experimenting with different levels of image-processing details
easily. In our work, we also show that it is possible to combine
2

V + L transformers and DML through a two-stage training process
designed to generate cross-modal-aware individual latent represen-
tations of texts and images that we prove to be more efficient in
large-scale retrieval scenarios.
2.2. Multi-Modal Retrieval with Deep Metric Learning

Deep metric learning has caught the attention of many
researchers dedicated to natural language processing tasks
[18,19], with non-negligible effectiveness also established in low-
resource regimes. An efficient solution for multi-modal retrieval
has been proposed by Frome et al. in VSE [20]; a skip-gram model
and a CNN are trained with triplet loss [21] to generate a common
text-image latent space where semantic similarity is measured
with the Euclidean distance. Subsequently, several contributions
emerged to enhance its efficacy. For instance, VSE++ [22] added
the hard mining technique during the training phase to focus on
more informative samples. SCAN [23] and PFAN [24] later sug-
gested including some interaction between text and image repre-
sentations in the form of ad hoc attention layers; these works
also differ from VSE and VSE++ since they first introduced Fast R-
CNNs [25] to extract RoIs from images and help the model concen-
trate on the critical parts of an image. Lately, CLIP [26], and in par-
ticular its fashion adaptation FashionCLIP [27], proposed to use
contrastive pretraining with separate image and text encoders to
generate a shared latent space in which performing several
multi-modal tasks. Belonging to the same family, Shin et al. pro-
posed e-CLIP [28], the result of the industrial application of CLIP
on a massive e-commerce dataset consisting of 330 M pairs (no
significant architecture innovations). CMA-CLIP [29] extended a
pre-trained CLIP with two types of cross-modality attention, i.e.,
sequence-wise and modality-wise, the first designed to model
fine-grained patch-token relationships, the second to weigh each
input modality by its relevance for the downstream task. Yet,
CMA-CLIP and e-CLIP are not tested on retrieval tasks, with the lat-
ter not even assessed on FashionGen.

After our first submission, FaD-VLP [14] and FashionViL [15]
exhibited significant gains on FashionGen, utilizing contrastive
learning to align text and image representations. FaD-VLP is a
decoder-based model architecture empowered by fashion-
specific pretraining, including two tasks centered on weakly-
supervised triplets. On the other side, FashionViL consists of three
encoders (text, image, text + image) and two V + L pretraining tasks
leveraging fashion data specialties, i.e., multiple images/views for
the same product and attribute-rich descriptions. Differently from
all previous works, FaD-VLP and FashionViL are the only models to
trade on multiple heterogeneous datasets for pretraining (other
than FashionGen), being not directly comparable for fairness and
reaching more than 6� our instance count. Furthermore, they both
use ResNet50 for image encoding and—as explicitly declared in the
original publications—are resource-hungry, with FaD-VLP relying
on two 8 GPU NVIDIA A100 nodes for pretraining.

Another concurrent work published during the revision of this
paper is CommerceMM [16]. It grasps text-image pairwise rela-
tions through contrastive learning and nine new pretraining tasks
on cross-modal and cross-pair data. By contra, it counts a single
pretraining phase, relies on trainable image encoders (e.g.,
ResNet50/ViT), and is not pretrained on FashionGen.

Our contributions are not focused on designing novel pretrain-
ing tasks but on exploring an original and highly-efficient combi-
nation of multi-modal self-supervision and DML. In contrast to
the aforementioned solutions, we (i) employ a ResNet-free V + L
self-supervised training with a multi-task loss to uncover hidden
semantic relationships between texts and images, (ii) test multiple
DML losses that, as we demonstrate, provide better results com-
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pared to the widely used triplet loss, (iii) achieve new state-of-the-
art performance, keeping the same pretraining dataset.

3. Methodology

3.1. Model Architecture

Fig. 1 depicts our model’s architecture. We design a BERT-like
transformer with additional layers to process visual and textual
inputs. Since we apply our model to a multi-modal retrieval task
in the fashion domain, texts and images are, in our case, descrip-
tions and photos of fashion products.

Each text is tokenized using the SentencePiece vocabulary bor-
rowed from RoBERTa [30]. Two special tokens ([CLS] and [SEP])
are attached at the beginning and end of the sequence. Each token
is processed through a text embedding layer that transforms it into
a dense vector t 2 R768. Positional embeddings are then added to
the representation thus obtained. Finally, segmentation embed-
dings are employed to differentiate it from visual input: we use
an array of zeros for texts and an array of ones for images.

We split each image into fixed-size square patches that are then
flattened in a linear sequence: an H �W image with C channels
i 2 RW�H�C is transformed into a one-dimensional tensor

s 2 RN�ðP2 �CÞ where P is the patch size and N ¼ HW
P2

is the total num-

ber of patches. Each patch is projected into the same R768 space of
text tokens through a linear projection layer. Positional and seg-
mentation embeddings are also added to the resulting vector. Text
and image representations are then concatenated ½t; s� and fed into
a transformer encoder, where they can interact through the self-
attention layers.

We do not extract RoIs from images, as it has already been pro-
ven ineffective in the fashion domain [1]. Unlike FashionBERT and
KaleidoBERT, however, our solution doesn’t even depend on pre-
trained CNN networks (e.g., ResNet) to process images, and each
patch is projected through a single linear layer. This allows us to
effortlessly choose the granularity with which images are subdi-
Fig. 1. Model architecture. On the language side, descriptions are processed following th
intermediate representation is extracted for each token using text, segmentation, and p
that—similarly to text processing—are masked and processed through image, segmentat
fed into a multi-modal fusion encoder (transformer-based). The model is trained on th
Prediction.
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vided and select the best detail level to work with—a practice
otherwise heavily computationally expensive (e.g., halving the
patch size would result in 4 times the number of patches and an
equivalent number of ResNet forward steps).

3.2. Pretraining

We pretrain the model on text-image pairs with a multi-task
loss to learn semantic relationships between visual and textual
inputs. The training tasks are described in the following
paragraphs.

Text-Image Alignment (TIA): We use the output of the [CLS]

token as input to a binary classifier that must predict whether
the given text and its paired image are related to each other (in
our case ”related” means that the text is describing the image).
Given a text-image pair ðt; pÞ sampled from the dataset D and the
score sðt; pÞ returned by the classifier, we use the binary cross-
entropy loss (Eq. 1).

LTIAðhÞ ¼ �Eðt;pÞ�D½y log shðt;pÞ þ ð1� yÞ logð1� shðt;pÞÞ�; ð1Þ
where y is the true label of the input and h denotes the model
weights that can change during training.

Masked Language Modeling (MLM):We randomly mask 15% of
input text tokens: 80% of the time they are replaced with a special
[MASK] token, 10% with a random word, and 10% they stay
unchanged. Denoting with tni ¼ ft1; t2; . . . ; ½MASK� i; . . . ; tng the
input sentence in which the i-th token has been masked, the net-
work must minimize the loss depicted in Eq. 2 for all masked
tokens ti.

LMLMðhÞ ¼ �Eðt;pÞ�D½logPhðtijtni;pÞ�; ð2Þ
where Phðtijtni;pÞ signifies the probability assigned to the masked-
out token ti by the model given its surrounding text tni and image
patches p.

Masked Patch Prediction (MPP): We randomly mask images
instead of descriptions, corrupting 20% of image patches as fol-
e BERT procedure: they are tokenized and masked with a fixed probability, then an
osition embedding layers. On the vision side, images get split into squared patches
ion, and position embedding layers. The representations are then concatenated and
ree tasks: Text-Image Alignment, Masked Language Modeling, and Masked Patch
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lows: 80% of the time, we substitute them with a random one, 10%
of the time, we replace them with another patch in the image; we
leave the remaining 10% untouched. As proposed in [31], we ask
the model to predict the 3-bit mean color of each masked patch,

thus having a classification problem with ð23ÞC classes (=512 in
our case) where C is the number of channels. Given the input
patches p ¼ fp1; p2; . . . ; pmg, we denote with
pni ¼ fp1; p2; . . . ; ½MASK� i; . . . ; pmg the sequence in which the i-th
patch has been masked. For every masked patch, we minimize a
cross-entropy loss similar to the MLM one (see Eq. 3).

LMPPðhÞ ¼ �Eðt;pÞ�D½log Phð�pijpni; tÞ�; ð3Þ

where Phð�pijpni; tÞ marks the probability assigned by the model to
the target 3-bit mean color �pi conditioned on the surrounding
patches pni and the input description t.

The final loss—shown in Eq. 4—is the sum of the three losses.

LðhÞ ¼ LTIAðhÞ þ LMLMðhÞ þ LMPPðhÞ: ð4Þ
3.3. Metric Learning

After completing the first training phase (Section 3.2), we per-
form a second training using the obtained weights to learn a latent
space where both texts and images can be individually embedded.
We point out this is not immediately possible since the model
requires both a text span and an image in input for early fusion.
To overcome this limit, we leverage our two distinct encoding
channels (Fig. 1). Pointedly, when a modality is provided in input,
we turn off the encoding channel related to the other modality
(Fig. 2). In both cases, we take the embedding v 2 R768 from the
[CLS] token as a latent representation for the given input and
use it to train the model with a metric learning loss. By doing so,
we merge one-stream and two-stream architectures to comple-
ment each other’s inadequacies, having in the second stage a
model that can work both as a text encoder and an image encoder.

Previous works that have tackled multi-modal retrieval with
DML have primarily used triplet loss to train their models
[20,22,23]. In our work, we also analyze other losses proposed
more recently in the literature, namely: Angular Loss [32] and
Multi-similarity Loss [33].

In Triplet Loss, three elements (i.e., anchor, positive, and nega-
tive) are combined to form a triplet of embeddings (xa; xp; xn) such
that ya ¼ yp and ya; yp – yn, where y denotes the label of a given
element. The goal is for the distance between the anchor and the
Fig. 2. Training architecture for metric learning. When a text is given in input, the imag
processing channel is not utilized. The output vector relative to the CLS token acts as a la
the same product or a different one to construct positive and negative pairs, respectively.
the corresponding image as a positive element, and another random image as a negative
positive or negative elements during our training.

4

negative to be greater than the distance between the anchor and
the positive, at least by a margin m, which is left as a hyperparam-
eter. Given a batch B of N samples, the formula for the loss is
reported in Eq. 5.

L ¼ 1
N

XN
i¼1

maxð0; dðxðiÞa ; xðiÞp Þ � dðxðiÞa � xðiÞn Þ þmÞ; ð5Þ

d is a distance function (e.g., euclidean, cosine).
The Angular Loss was presented to improve on the classical Tri-

plet Loss by not considering the distance between anchor, positive
and negative samples but focusing instead on the angle between
them (Eq. 6).

L ¼ 1
N

X
xa2B

log 1þ
X
xn2B

expðf a;p;nÞ
" #( )

; ð6Þ

with f a;p;n ¼ 4 tan2 aðxa þ xpÞ>xn � 2ð1þ tan2 aÞx>a xp and a
hyperparameter.

The Multi-similarity Loss is the most recent of the three. It is
based on the assumption that multiple similarities between
anchors, positives, and negatives should be considered when sam-
pling and weighting pairs so that the most informative ones are
used during training. The corresponding loss is formulated in Eq. 7.

L ¼ 1
N

XN
i¼1

1
a
log 1þ

X
k2Pi

e�aðSik�kÞ

2
4

3
5þ 1

b
log 1þ

X
k2Ni

e�bðSik�kÞ

2
4

3
5

8<
:

9=
;;

ð7Þ
where Sij represents the similarity between samples i and j (e.g.,
cosine similarity or dot product); a;b and k are hyperparameters,
Pi and Ni are the index sets of positive and negative pairs for the

anchor xi defined as Ni ¼ kjSik > minyi¼yj Sij � �
n o

and

Pi ¼ kjSik < maxyi–yj Sij þ �
n o

, where � is a hyperparameter.

Once the model is trained with one of the aforementioned rank-
ing losses, we can perform multi-modal retrieval (text-to-image or
image-to-text) in the following way. Given a query q (text or
image) and a list of candidate documents (texts or images)
D ¼ fd1; . . . ; dng:

1. the query q is fed into the model to obtain the corresponding
embedding vector;

2. the process is repeated for all d 2 D (note that this operation
should be performed offline to improve efficiency);
e processing channel is disabled; in the same way, if an image is provided, the text
tent representation for both modalities. Given a description, we take the image from
The figure portrays an example where the description is used as an anchor element,
sample. This order is not mandatory, and both texts and images are used as anchors,
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3. the nearest neighbor search (k-NN) is conducted between the
query embedding and document embeddings (this can be opti-
mized using indexing strategies);

4. the nearest documents are the ones considered to be more rel-
evant to the given query.

A summary of this procedure applied to a text-to-image retrieval
scenario is illustrated in Fig. 3.
4. Experiments

4.1. Dataset

We test our model on two distinct datasets: FashionGen [3] and
DeepFashion-Synthesis [4]. FashionGen contains 293,008 images
(256x256 size) of fashion products paired with textual descriptions
provided by professional stylists. It includes a total of 67,666 prod-
ucts photographed several times at different angles up to a maxi-
mum of 6. Besides a textual description, each product is also
accompanied by a category (e.g., Tops, Pants, Boots) and a subcat-
egory (e.g., Wingtip Boots, Desert Boots, Tall Boots). The dataset is
split up into 260,480 records for training and 32,528 for validation.

DeepFashion-Synthesis [4] comprises a subset of 78,979 images
(128x128 size) from the DeepFashion attribute dataset, in which
the person faces the camera and the image’s background is not
too noisy. Each photo has one brief sentence expressing the
clothes’ visual characteristics (e.g., the color, texture, or the sleeves’
length). 70000 images are used for training and the remaining
8979 for validation.

For pretraining, we extract two records for each entry in the
dataset: one positive < text, image > pair in which we take the
description of a product with its corresponding image, and one
negative < text, image > pair in which the same description is
paired with a random image taken from the same subcategory.
For FashionGen, we end up with a total of 520,960 pairs for train-
ing and 65,056 for validation; for DeepFashion-Synthesis, we have
140,000 and 17,958 records for training and validation,
respectively.

For DML, we use an online triplet mining strategy at each iter-
ation: we take a batch of N random products and encode their
description and image, producing a total of 2N embeddings. Each
of them is used once as an anchor element considering the descrip-
tion or the image coming from the same product as a valid positive
sample; the remaining text and image embeddings extracted from
different products are used as negative elements.

Please note that both datasets are not designed for retrieval
tasks. Given the unavailability of baseline text-to-image and
image-to-text retrieval scores for DeepFashion-Synthesis and the
impossibility of faithfully generating image features with Fash-
ionBERT on other datasets than those considered by the authors2,
we conduct main head-to-head comparisons and ablation studies
on FashionGen. Notably, DeepFashion-Synthesis further enriches
our evaluation setup by capturing diverse multi-modal settings
and challenges. In fact, contrasted with FashionGen, it is character-
ized by ”simpler” images of everyday clothes, which are described
in less detail with shorter captions.
4.2. Results

We evaluate our model on two multi-modal retrieval tasks:
Text-to-Image and Image-to-Text retrieval. For fair comparisons,
2 FashionBERT unknown image preprocessing pipelines and ResNet implementa-
tion inconsistencies (ResNet-50 instead of ResNeXt-101), https://github.com/alibaba/
EasyTransfer/issues/28.

5

we adopt the same evaluation methods used in [1,5]. All the models
are evaluated under the same conditions, exclusively exploiting Fash-
ionGen3. Details about models, training, and hardware configurations
are listed in A and B.

1. Text-to-Image Retrieval (TIR): Given a product description in
the dataset, the model is asked to find the corresponding image
among 100 other random images of products from the same
subcategory.

2. Image-to-Text Retrieval (ITR): Given an image of a product in
the dataset, the model is asked to find the corresponding
description among 100 other random descriptions of products
from the same subcategory.

First, we run some experiments on the FashionGen dataset, testing
multiple models that differ by the patch size used to split images
and the ranking loss employed. In particular, we test 32x32 and
16x16 patch sizes (an additional examination with 8x8 patches is
reported in Section 5). Model performances are evaluated using
the Rank@K metric (with K ¼ f1;5;10g) that measures how many
times the correct image or text appears in the first K retrieved doc-
uments. The results are reported in Table 1.

Multi-similarity loss obtains the highest scores compared to the
Triplet and Angular losses. We think this is due to its weighting
and mining strategy, allowing the model to train on the most infor-
mative samples. We also observe that a fine-grained subdivision
with smaller image patches leads to higher accuracy for all ranking
losses, proving how greater detail allows the model to understand
more complex relationships between an image and its description.
The best model overall is the one that uses 16x16 patches and is
trained with Multi-similarity loss.

In Table 2 we compare our results with other contributions
proposed in literature tested on the FashionGen dataset, in partic-
ular: VSE [20] and VSE++ [22] project texts and images into a joint
latent space using an LSTM as text encoder and ResNet as image
encoder, both trained with Triplet Loss; SCAN [23] and PFAN [24]
add RoIs extraction and ad hoc attention mechanisms (but with-
out employing the full transformer architecture); ImageBERT [6],
ViLBERT [10], VLBERT [7] and OSCAR [9] are vision-and-
language transformers that process RoIs and text tokens in a sin-
gle architecture that is trained to assign a similarity score to text-
image pairs; FashionBERT [1] and Kaleido-BERT [5] employ a sim-
ilar strategy but they work by subdividing images into squared
patches that are then transformed through ResNet into dense vec-
tors that are processed together with text tokens (they are the
current SOTA transformer models for multi-modal retrieval in
the fashion domain).

The results shown in Table 2 demonstrate that we outperform
all previous works proposed in the literature, corroborating the
effectiveness of our solution even in the scenario with non-
interacting text and image embeddings inside the self-attention
layers. Moreover, we conducted an experiment training our model
on a second dataset, Deepfashion-synthesis, to prove that our
approach also works well on other sets of images and texts. The
results are showcased in Table 3 compared to the ones obtained
on FashionGen. In general, the accuracies are similar for the two
datasets, despite the differences in the type of texts and images
available. The descriptions of DeepFashion-Synthesis are, in fact,
shorter on average than the ones in FashionGen and, therefore, less
specific. However, we do not have a notion of ’subcategory’ in the
DeepFashion dataset, so the candidate texts and images for each
query are sampled randomly from the whole test set, making the
3 We exclude [14–16,28,29,12] from our baselines due to different pretraining
datasets or code unavailability (i.e., reproducibility and equal-settings judgment not
possible).



Fig. 3. Example of text-to-image retrieval with our architecture. The top section shows the operations to be performed offline to store image embeddings and organize them
using a multi-dimensional index. The bottom part shows the real-time retrieval of relevant results starting from the query provided by the user.

Table 1
Results obtained by training our model using different patch sizes (P = 32, 16) and different ranking losses (MS = Multi-similarity, AN = Angular, TP = Triplet) on Image-to-Text and
Text-to-Image retrieval tasks on the FashionGen dataset. The best results are highlighted in bold.

Model TIR ITR

Rank@1 Rank@5 Rank@10 Rank@1 Rank@5 Rank@10

Patch Size = 32 + MS 39.5% 72.5% 84.5% 38.5% 75.4% 85.6%
Patch Size = 16 + MS 43.1% 76.6% 87.6% 46.7% 80.0% 89.3%
Patch Size = 32 + AN 19.8% 49.6% 64.4% 20.8% 55.9% 69.7%
Patch Size = 16 + AN 21.8% 52.2% 68.8% 26.2% 57.7% 73.1%
Patch Size = 32 + TP 21.5% 52.2% 68.2% 22.5% 54.5% 70.3%
Patch Size = 16 + TP 24.1% 55.7% 69.9% 21.2% 55.0% 70.8%

Table 2
Results obtained by our best model (Multi-similarity loss with 16x16 patches) compared to previous solutions proposed in the literature for Text-to-Image (TIR) and Image-to-
Text (ITR) retrieval on the FashionGen dataset. We also report the SumR metric for each model, computed as Rank@1 + Rank@5 + Rank@10. The best results are highlighted in
bold.

Tasks VSE VSE++ SCAN PFAN ViLBERT VLBERT Image
Bert

OSCAR Fashion
Bert

Kaleido
Bert

Our
P = 16 + MS

ITR R@1 4.01% 4.59% 4.59% 4.29% 20.97% 19.26% 22.76% 23.39% 23.96% 27.99% 46.70%
R@5 11.03% 14.99% 16.50% 14.90% 40.49% 39.90% 41.89% 44.67% 46.31% 60.09% 80.00%
R@10 22.14% 24.10% 26.60% 24.20% 48.21% 46.05% 50.77% 52.55% 52.12% 68.37% 89.30%

TIR R@1 4.35% 4.60% 4.30% 6.20% 21.12% 22.63% 24.78% 25.10% 26.75% 33.88% 43.10%
R@5 12.76% 16.89% 13.00% 20.79% 37.23% 36.48% 45.20% 49.14% 46.48% 60.60% 76.60%
R@10 20.91% 28.99% 22.30% 31.52% 50.11% 48.52% 55.90% 56.68% 55.74% 68.59% 87.60%

SumR 75.20 94.16 87.29 101.90 218.13 212.84 251.36 241.30 251.53 319.52 423.30

Table 3
Results obtained by our best model (patch size P = 16, multi-similarity ranking loss MS) on the DeepFashion-Synthesis dataset compared to FashionGen.

Dataset TIR ITR SumR

Rank@1 Rank@5 Rank@10 Rank@1 Rank@5 Rank@10

FashionGen 43.10% 76.60% 87.60% 46.70% 80.00% 89.30% 423.30
DeepFashion-Synthesis 41.40% 82.20% 92.50% 48.30% 82.35% 92.70% 439.45
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task less challenging for our model. Nonetheless, the results in
Table 3 demonstrate that our architecture generally works with
long and short captions and different-resolution images.

Moreover, we argue that our solution is efficient since docu-
ment embeddings can be pre-computed, and the nearest neighbor
6

search can be optimized using multi-dimensional indexing strate-
gies. We further examine this claim in Section 4.3. For qualitative
evaluations (i.e., t-SNE visualization and retrieval examples) and
a reference guide for our open web application, the reader is
referred to C and E.
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4.3. Retrieval Efficiency

One of the advantages of decoupling text and image embed-
dings is that it is possible to index the vectors offline and perform
retrieval by nearest neighbor search significantly faster. In this sec-
tion, we quantify the efficiency gain by measuring the time
required to retrieve the top 100 documents relative to a given
query on different database sizes. We compare the times required
by our model with FashionBERT to show the advantages of our
solution compared to the state-of-the-art. We test 3 different
strategies for our model: (i) Naïve k-NN, which stores full vectors
in memory and computes the exact distance between them; (ii)
Inverted File Index (IVF) strategy, which segments the dataset into
a fixed number of Voronoi cells in the multi-dimensional space
and, at search time, only compares the query vector with the vec-
tors contained in the same cell; (iii) Inverted File Index with PCA
reduction, which performs IVF retrieval after reducing the dimen-
sion of the vectors to a fixed configurable number. The last two
tests show that having separate text and image embeddings makes
it possible to use approximate nearest-neighbor techniques that
are much more efficient on large datasets. Fig. 4 shows the time
required by each index type to retrieve the top 100 documents
on samples of 10.000, 100.000, and 1.000.000 records.

As we see, our solution is up to 512x faster than FashionBERT.
Moreover, IVF and PCA reduction lead to significantly higher per-
formances with respect to the Naïve Search, especially for large
database sizes. Previous SOTA approaches, such as FashionBERT
and Kaleido-BERT, cannot benefit from these types of efficient
indexing strategies, and their response time exceeds 2 s already
with a dataset of 10.000 records.
5. Ablation Studies

5.1. Pretraining and Metric Learning Contribution

To test the contribution of the different training phases, we con-
ducted the following ablation studies on the FashionGen dataset:
(i) we took the pretrained model without metric learning and used
the Text Image Alignment score to reorder the retrieval results; (ii)
we ran an experiment training the model with metric learning
only, skipping the pretraining phase; (iii) we implemented a solu-
tion similar to VSE which, however, uses BERT as text encoder,
ResNet as image encoder, and trains them with multi-similarity
Fig. 4. Time required by different retrieval strategies to process 1000 queries on database
X cells; PCA64 at the beginning indicates that the vectors are first reduced with PCA fro
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loss. The results of the experiments are reported in Table 4 (with
our best model for comparison).

Our solution, which combines both pretraining and metric
learning, is the one that obtains the highest accuracy. The models
that use only one of the two phases bring worse results, proving
that the combination of self-supervised pretraining with trans-
formers and DML leads to better multi-modal retrieval capabilities.
Despite getting lower metrics, the other two models are still
slightly better than KaleidoBERT; this also means that the trans-
former architecture we propose, with the subdivision of images
in more fine-grained patches and the removal of ResNet prepro-
cessing, contributes to improving the performance of the model.

Regarding the BERT + ResNet model, we can see that it achieves
rather good results; this confirms once again the effectiveness of
the multi-similarity loss, used in this case with two separate pre-
trained models such as BERT and ResNet. However, we note that
our solution is still more effective, proving the advantages of our
pretraining phase in which texts and images interact within the
attention layers.
5.2. Fine-grained subdivision

Results from Table 1 show that the models with a patch size of
16 pixels perform better than the ones with 32x32 patches. This is
probably because using a fine-grained subdivision leads the model
to focus on smaller details that provide a better understanding of
the image. We have experimented with FashionGen, training the
model using 8x8 patches to test this claim further.

However, one drawback of reducing the patch size is that the
resulting number of patches increases quadratically. Setting the
size to 8 pixels leads indeed to a total of 1024 patches for each
image (and a longer sequence length overall if we consider text
tokens). Using quadratic attention, pretraining would have ended
in �320 h (almost two weeks), and batch size should have been
lowered to 2 records. To reduce training time and keep the same
batch size used in the other experiments, we have thus replaced
the classic quadratic attention with Performer [34] linear atten-
tion—popular to manage long inputs without operating chunk-
level segmentation [35]—reducing training time from �320 h to
�175 h and keeping the same batch size. We only tested multi-
similarity loss in the metric learning phase since it was the one
that led to the best results in the previous experiments. Results
are reported in Table 5.
s of different sizes. IVF < X > is the inverted file index that subdivides the space into
m R768 to R64.



Table 4
Contribution of the different training phases of our architecture in downstream results. The best results are highlighted in bold.

Model TIR ITR SumR

Rank@1 Rank@5 Rank@10 Rank@1 Rank@5 Rank@10

Pretrain Only 36.3% 71.7% 87.2% 37.0% 75.3% 89.0% 396.5
Metric Learning Only 33.6% 62.6% 76.2% 36.2% 64.2% 77.6% 350.4
BERT + ResNet 41.8% 72.5% 81.6% 44.2% 79.9% 88.9% 408.9
Pretrain + Metric Learning (Our) 43.1% 76.6% 87.6% 46.7% 80.0% 89.3% 423.3

Table 5
Results obtained training performer on FashionGen with 8x8 patches. We report for comparison also the results of the models with a patch size of 16x16 and 32x32 pixels. The
best results are highlighted in bold.

Model TIR ITR SumR

Rank@1 Rank@5 Rank@10 Rank@1 Rank@5 Rank@10

Patch Size = 8 (Performer) 41.8% 73.7% 87.1% 45.7% 77.8% 87.8% 413.9
Patch Size = 16 43.1% 76.6% 87.6% 46.7% 80.0% 89.3% 423.3
Patch Size = 32 39.5% 72.5% 84.5% 38.5% 75.4% 85.6% 396.0

G. Moro, S. Salvatori and G. Frisoni Neurocomputing 538 (2023) 126196
While there is an improvement going from 32x32 patches to
16x16, we can see that this does not happen when going from
16x16 to 8x8 patches. One reason may be that this granularity is
too fine-grained and does not allow the model to focus on truly rel-
evant parts of the images. Another possibility could be that the
approximation introduced by Performer to optimize the attention
mechanism is not accurate enough, leading to lower accuracy.
6. Conclusions

We presented an efficient and effective approach for Text-to-
Image and Image-to-Text retrieval in the fashion domain that com-
bines vision-and-language transformers and deep metric learning.
In contrast with SOTA solutions, where texts and images are cou-
pled and simultaneously fed to the model to produce a similarity
score, we propose to decouple text and image embeddings through
a two-stage training phase. Deep metric learning generates a latent
space where texts and images can be individually embedded. Their
distance translates into a semantic similarity score that can be
used to sort retrieval results. We proved the efficacy of our solution
in the fashion domain, improving all SOTA Rank@K accuracies for
Text-to-Image and Image-to-Text retrieval on the FashionGen
dataset. In addition, we conducted several ablation studies testing
different ranking losses for metric learning and different levels of
detail (i.e., number of patches) with which images are fed into
the model, showing how the combination of these influences the
overall results. Lastly, we run experiments to prove the efficiency
of our model on large-scale datasets with and without indices,
revealing that our architecture can scale up to millions of records,
in contrast to previous SOTA approaches, which are significantly
slower.

Future Directions: Based on our findings and previous work, we
envisage promising future research directions. To better guide
semantic search and information retrieval while devising efficient
and interpretable methods, we highlight the value of Neuro-
Symbolic AI [36] and distributed learning [37]. Performances
may skyrocket by infusing—jointly with raw texts and images—
their unambiguous structured representations. The latter include
semantic parsing graphs [38–40] or corpus-aware latent correla-
tions for text [41–44] (e.g., with TF-IDF weighting [45] as node rel-
evance score, link discovery via randomized perturbation [46,47])
and visual segmentation graphs for images [48]. Retrieval from
external knowledge graphs and unstructured memories [49] can
also act as a data augmentation strategy to cope with the lack of
instances, usually addressed with transfer learning methods [50].
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Appendix A. Implementation Details

We implemented our model using PyTorch [51] starting from an
existing implementation of the Transformer model available in the
HuggingFace’s Transformers library [52] to which we added the
image processing layers and the Masked Patch Prediction head in
order to compute the image reconstruction loss. For the metric
learning phase, we used the Pytorch Metric Learning library [53].

The Transformer architecture consists of 12 layers with a 768
hidden size, 12 self-attention heads, and a 3072 intermediate size;
we used gelu as the activation function and a 0.1 dropout factor.
We started with pretrained weights loaded from the RoBERTa-
base model. The Masked Patch Prediction head and the image pro-



Fig. C.5. Two examples of errors caused by the query image (top row) and the
target image (bottom row) being photos taken from the back.
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cessing layers, which are not available in the traditional architec-
ture, were randomly initialized from a 0 mean, 0.2 standard devi-
ations normal distribution.

Appendix B. Training Setup

The models were trained using a single GeForce RTX 3090 GPU
with 24 GB of available RAM. We used the same Adam optimizer in
both training phases with parameters b1 ¼ 0:95; b2 ¼ 0:999, and
weight decay 1e�4. Pretraining was run for 20 epochs with a batch
size of 16 records and base learning rate of 2e�5 warmed up for the
first 5000 steps and reduced during training using a cosine
scheduling strategy. For the metric learning phase, the number of
epochs was reduced to 10, and we set a constant learning rate of
2e�5. Each batch consisted of 16 products from which we extracted
16 descriptions and 16 images for a resulting batch size of 32
embeddings. For triplet loss we set m ¼ 1:0 and employ a semi-
hard mining strategy so that only triplets that satisfy the condition
dðxa; xpÞ < dðxa; xnÞ < dðxa; xpÞ þm were used. We set d to be the
Euclidean distance. For Angular Loss we used a ¼ 45� and in
Multi-similarity Loss we set a ¼ 2; b ¼ 40; k ¼ 0:5; � ¼ 0:1 and we
set Sij to be the cosine similarity.

Appendix C. Qualitative Evaluation

C.1. Source of Errors

To investigate why and when our model makes mistakes, we
took the queries from the FashionGen test set for which it could
not find the correct target among the top 10 results. Table C.6
shows the percentage of queries of a specific category incorrectly
retrieved, both for Text-to-Image and Image-to-Text use cases.
We note that there are some categories for which the model makes
more ”mistakes”. We justify this behavior with the underrepresen-
Table C.6
Percentage of queries of a specific category for which the target is not return
top is for retrieval, and the one on the bottom is for
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tation of these classes (e.g., BELTS & SUSPENDERS, FINE JEWELRY)
in the training dataset, which limits the number of samples fed to
the model.

Moreover, from qualitative and empirical analysis, we saw that
the following situations are the other most common source of
errors:

� Target or query images are photos of the product taken from the
back (Fig. C.5). Since descriptions sometimes refer to frontal
details, it is challenging for the model to recognize them when
they are not visible in the image.

� Target or query images for Bags, Jewelry, and Glasses contain a
person wearing them instead of having the object in the fore-
ground (Fig. C.6).
ed in the first 10 results (Out-of-@10). For each category, the value on
.



Fig. C.6. Two examples of errors caused by a query (top row) or target image
(bottom row) that contains accessories worn by a person in the photo.

Fig. C.7. Two examples of failed queries due to the highly generic products. Despite
being incorrect, the first result returned by the model is still similar to the target.
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� The query text or image is too generic (Fig. C.7). Some akin
clothes in the dataset, such as white t-shirts, have almost iden-
tical images and are often described similarly. Even if we seek a
specific target, multiple results could be relevant when a query
is too generic.

C.2. t-SNE Visualization

In Fig. C.8, we provide a low-dimensional representation of the
latent space generated with our best model. We took the Fash-
ionGen validation set and run the t-SNE algorithm to project the
768-dimensional image embeddings into a 2D space. We used
scikit-learn [54] implementation of t-SNE with the following
parameters: perplexity = 65, early_exaggeration = 12.0,
n_iter = 2000, random_state = 42, learning_rate = 200,
init=’pca’. We also embedded four random captions to show that
they are placed near the images they describe and that the seman-
tic relationship is preserved.
4 To incorporate this model in the application, we used the code and pretrained
weights available at https://github.com/alibaba/EasyTransfer/tree/master/scripts/fas
hion_bert
Appendix D. Ineffectiveness of FashionBERT in Managing Text-
only and Image-only Queries

In the ”Industry Application” section of the FashionBERT paper,
the authors claim that their vision-language transformer can be
10
used to encode text-only and image-only queries. Concretely, they
say that their model can extract text and image embeddings by
masking out all the image tokens or text tokens according to the
type of input provided. However, the authors did not present any
experiment to validate this idea, and we claim that it does not
work in practice since the model is not trained to handle single
texts or images in input. Furthermore, no other paper that uses a
similar retrieval architecture (e.g., OSCAR, ViLBERT) suggests using
this approach, not even KaleidoBERT. The efficiency issue of V + L
transformers is, in fact, a problem that has also been studied and
described in the work of Miech et al. [13].

To prove that the masking approach proposed in FashionBERT
does not work, we tested it on the FashionGen dataset using our
pretrained model and reported the results in Table D.7. As we
can see, the Rank@K is only slightly above the accuracy of a ran-
dom ranker; this shows that the latent representations extracted
by masking out the tokens of one modality are not preserving
the necessary information.
Appendix E. Web Application

In this section, we provide a brief description of the web appli-
cation that we have released at https://disi-unibo-nlp.github.io/pro
jects/fashion_retrieval/. The website can be used to perform text-
to-image retrieval with both our model and FashionBERT4 and
compare their retrieval performance. The web application contains
two pages: Search Description and Free Search.

Search Description Page: This page can be used to semantically
search a product by its formal description (Fig. E.9). A web form
allows selecting the following options.

� Model: the model to be used for retrieval (our or FashionBERT).
� Candidate Set: the dataset among which the product will be
searched. Possible options are reported below. Please note that
FashionBert requires pre-computed ResNet vectors as addi-
tional input, but authors released such data only for the valida-
tion images.
-Fixed Size Dataset: search a product among other 100 ran-
dom ones from the same subcategory (this reproduces the
test scenario used in this paper).
-Validation Dataset: search a product among the whole val-
idation dataset (�7500 products).
-Training Dataset: search a product among the whole train-
ing dataset (�60000 products, only available if the selected
model is our).
-Training + Validation: search a product using the full data-
set (�67500 products, only available if the selected model is
our).

� Product: choose the product whose description will be used as
a text query.

� K-NN Strategy: the nearest neighbor retrieval strategy (only
available if model is our).
-In-Memory: use naïve nearest neighbor retrieval on embed-
dings loaded in memory.
-Postgres: use nearest neighbor retrieval on embeddings
saved in a Postgres database.
-Index: use a multidimensional index for a faster search
(note that you get the most significant speed-up when the
largest dataset size is selected).

To test the difference in accuracy between our model and Fash-
ionBERT, try to search for the ”Red Faded Plaid Shirt” product. First,



Fig. C.8. t-SNE visualization of the FashionGen validation set using image embeddings extracted with our model. 4 random captions are also embedded to show that semantic
relationships are preserved. Best viewed in color at high resolution.
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Table D.7
Results obtained performing retrieval on the FashionGen dataset using the pretrained model as suggested in the FashionBERT paper (i.e., masking out all image tokens or text
tokens to encode text-only and image-only queries).

Model TIR ITR SumR

Rank@1 Rank@5 Rank@10 Rank@1 Rank@5 Rank@10

Pretrain with masking 2.2% 6.6% 12.7% 3.6% 10.7% 20.0% 54.8

Fig. E.9. View of the Search Description Page on our Fashion Retrieval webapp.

Fig. E.10. View of the Free Search Page on our Fashion Retrieval webapp.
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select Model = our, Candidate set = Validation dataset,
Product = Red Faded Plaid Shirt and K-NN strategy = in

memory. If you click the ”Search” button, you’ll see that the correct
target image, highlighted with a green border, is retrieved as the
first result. If you switch from Model = our to Model = fashion-

bert, you’ll see that the target image is returned as the 18th result.
Furthermore, our model is more than 100x faster than FashionBERT
(�0.5 s against �60 s) to find an image among almost 7000
products.

Free Search Page: The Free Search page (Fig. E.10) can be
adopted to write a custom query and retrieve the most similar
images using our model. The images are retrieved from the full
FashionGen dataset (i.e., training + validation images).

We suggest trying the following queries to test the capabilities
of our model:

� ‘‘Short sleeve t-shirt in white. Black print at front”;
� ‘‘Long sleeve t-shirt in white. Red print at front”;
� ‘‘Skinny-fit jeans in light blue”.
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