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Abstract
Understanding the allosteric mechanisms within biomolecules
involved in diseases is of paramount importance for drug dis-
covery. Indeed, characterizing communication pathways and
critical hotspots in signal transduction can guide a rational
approach to leverage allosteric modulation for therapeutic
purposes. While the atomistic signatures of allosteric pro-
cesses are difficult to determine experimentally, computational
methods can be a remarkable resource. Network analysis built
on Molecular Dynamics simulation data is particularly suited in
this respect and is gradually becoming of routine use. Herein,
we collect the recent literature in the field, discussing different
aspects and available options for network construction and
analysis. We further highlight interesting refinements and ex-
tensions, eventually providing our perspective on this topic.
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Introduction
The word allosteric was coined by Monod and Jacobs to
describe a mechanistic model previously proposed by

Changeux for “apparently competitive” enzyme inhibi-
tion [1]. The term was meant to convey the presence of
two topologically distinct binding sites, one for the
substrate and one for the inhibitor (more in general, the
www.sciencedirect.com
allosteric effector), and that the inhibition was mediated
by a conformational change of the enzyme, rather than
by mutual exclusion on the catalytic site [1]. The model
was then generalized envisioning an equilibrium of two
pre-existing protein conformational states with different

affinities for both the substrate and effector, and that
the preferred conformation is selected upon effector
binding [2]. Such a model, known as MWC (Monod-
Wyman-Changeux), is in sharp contrast with the
almost contemporary KNF (Koshland-Némethy-Filmer)
model, in which the allosteric conformational transition
is rather seen as induced by the effector [3]. Over the
years, the concept of allostery has significantly evolved,
including not only conformational changes but also
changes in conformational entropy (usually referred to as
entropically-driven allostery or “dynamic allostery”)

[4,5]. Furthermore, it has been proposed that all pro-
teins are potentially allosteric [6], underscoring the
importance of allosteric communication in their mech-
anistic functioning [7].

Modulating the function of proteins involved in diseases
is ultimately the goal of drug discovery, and indeed,
several drugs bind to allosteric effector sites, exploiting
allostery as their mechanism of action [8]. Allosteric
drugs offer several potential advantages over conven-
tional drugs [9]. For example, since allosteric sites are

expected to be less evolutionarily conserved than
enzyme active sites or receptor orthosteric sites, allo-
steric drugs hold great potential whenever selectivity
toward a specific member of a protein family is required.
Furthermore, allosteric drugs can be used to circumvent
drug resistance to orthosteric sites [8]. From a compu-
tational standpoint, the identification of allosteric
pockets is as important as the identification of potential
binders at those sites. However, while the latter can be
carried out with well-established methodologies, like
molecular docking and virtual screening, the identifi-

cation of allosteric sites is less consolidated.

The identification of allosteric sites is a twofold prob-
lem: pocket identification and characterization of the
allosteric communication involved by targeting that
pocket [10]. Here we focus on a subset of the several
computational methods available for covering the latter
aspect [11]. Considering the intimate relationship
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2 New Concepts in Drug Discovery (2024)
between allostery and protein dynamics, Molecular
Dynamics (MD) simulations have emerged as a natural
choice to probe allosteric communication. Thus, several
computational methods based on MD sampling, but
relying on different conceptual frameworks, have been
developed over the years for disentangling allostery
[12]. Recognizing that proteins can be viewed as net-
works of interacting nodes, herein we focus on the

methods combining MD simulations and network anal-
ysis to investigate allosteric communication, and review
their recent applications to pharmaceutically relevant
systems. Following the recent surge of artificial intelli-
gence (AI) to tackle complex problems in the life sci-
ences, approaches leveraging AI are also increasingly
being applied to investigate allostery. For further
Figure 1

General workflow to perform network analysis on MD simulation data. (a) In the
i) a contact map (black and white matrix, on the left) that defines edges connecti
with edge weights. The nodes (green circles with labeled node index, on the bot
can be then performed on the constructed network to extract relevant information
of node communities. Here, we used a toy network for illustrative purposes. A
networks may encompass a higher number of edges compared to suboptimal
efficient. Different options exist to partition the network into communities, and
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insights into this emerging class of methods, that are not
covered in this review, we remand to recent exhaustive
surveys [13,14].

Building and analyzing a correlation-based network
The underlying assumption behind the computational
methods covered in this review is that the communi-
cation between allosteric and functional sites can be
detected through MD simulations even without
explicitly observing the entire allosteric transition,
which is generally expected to occur in timescales that

are difficult to sample. The study of allostery therefore
focuses on the identification of coupled motions be-
tween topologically distinct structural elements from
the analysis of inter-residue correlation data stored in
network construction stage, MD trajectories (top structure) are used to build
ng nodes and ii) a filtered correlation matrix (in blue color scale, on the right)
tom structures) represent residues of the biomolecule. (b) Different analyses
, such as the study of optimal and suboptimal pathways or the identification
s shown in the schematic, optimal pathways (dark orange) in weighted
ones (yellow), as long as information transfer along those edges is more
in this example we used the popular Girvan–Newman algorithm.
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the MD trajectory (Figure 1(a)) [7]. Such correlated
motions are then framed in terms of a network that is
further interrogated through conventional graph theory
algorithms or ad hoc tools (Figure 1(b)). Additionally, the
effect of ligands or mutations on the allosteric commu-
nication can be rationalized by comparing networks
derived from simulations carried out under different
conditions (e.g. unbound protein, effector-bound pro-

tein, etc.).

The network is built by mapping the N residues of a
protein into N nodes of a weighted graph (Figure 1(a),
green circles with labeled node index on the bottom
structures). The information regarding connectivity
between nodes is specified in the adjacency matrix, a
square symmetric N � N matrix, where, in its simplest
form, the elements represent the pairwise contacts
established during the simulation (Figure 1(a), black
and white matrix and respective bottom network).

Such a contact map matrix requires three adjustable
parameters: i) the distance cutoff used to consider a
contact as formed in a given instant of time, ii) the
atoms among which such a distance cutoff must be
evaluated, and iii) the fraction of simulation time that
is used to consider a contact as statistically relevant
[15]. Typically, the contacts are evaluated by measuring
the distance between Ca atoms of non-consecutive
residues, but the residue center of mass as well as
the minimum distance among all the heavy atoms of
the considered residues can also be used (see Table 1).

We note that the residue atoms (or groups thereof)
employed for constructing the contact map are not
necessarily the same ones used in the graphical rep-
resentation of the nodes of the network, for which the
Ca atoms are mostly employed.

The edges between nodes, which are binary in the
contact map, are then weighted to return a continuous
range of values representing the probability of infor-
mation transfer encoded by the degree of correlated
motions (Figure 1(a), matrix in blue color scale and
respective bottom network). In this respect, the contact

map serves as a filter for the correlations based on their
physical proximity. Typically, the edge weight is set as:
wij ¼ � ln ð��cij

�
�Þ, where cij is the normalized covariance

(or cross-correlation) [15]. However, different metrics
can be adopted for both the edge weight and the mea-
sure of correlation. For example, the generalized corre-
lation coefficient [67], which is based on the concept of
mutual information (MI) [68], allows the detection of
both linear (rLMI) and non-linear (rMI) relationships,
and is preferred over cross-correlation in most recent
applications (see Table 1) [16e19,28e30,38e43,46,55,
64,69]. Furthermore, the bare MI can be directly used
[21,22,27,47,49e51,63,65,66,70,71]. In any case, we
stress that these correlation metrics are based on equi-
librium properties of individual conformational ensem-
bles, rather than dynamic quantities [5].
www.sciencedirect.com
Allosteric communication can be finally characterized by
identifying communication pathways, critical nodes, or
by partitioning the network into communities
(Figure 1(b)). Communication pathways are deter-
mined between pairs of nodes, usually termed source
and target (or sink), which are expected to act as end-
points for the allosteric communication (Figure 1(b),
top schematics). The Floyd-Warshall [16,18,19,29,

38e41,43e45,53] and the Dijkstra [25,28,37,46,55,61,
65,66] algorithms are well-established choices to iden-
tify optimal (i.e. shortest) pathways in the network.
Inspecting a number of suboptimal pathways, which are
closest in length to the optimal one, can also be crucial
to pinpoint alternative routes for communication
transfer or to highlight recurring nodes. Available
options for this scope are the Yen’s K-shortest path
[48,52], the Weighted Implementation of Suboptimal
Paths (WISP) [23,24,53,62,72], and the Subset of
Adjacent Nodes (SOAN) algorithms [46,73]. Relevant

nodes in information transfer can also be identified via
centrality measures. The betweenness centrality of a
node, in particular, quantifies the number of unique
shortest paths passing through that node [31,37,47,
61,64e66].

Differently, community analysis provides a coarse-
grained picture of the network, where highly connec-
ted nodes are grouped together into distinct commu-
nities (Figure 1(b), bottom schematics). This can prove
particularly beneficial in disentangling the information

transfer between regions of large biomolecular assem-
blies, especially when limited knowledge about the
system hinders the focus on specific nodes. This task
typically leverages the Girvan-Newman algorithm
[25,31,47,48,53], which uses as partitioning criterion
the edge betweenness (EB), i.e. the number of shortest
paths crossing a given edge. The resulting community
network can provide a simplified representation, where
nodes correspond to different communities and edges
are weighted by an inter-community EB. An interesting
alternative is the more heuristic Louvain algorithm
[29,32], based on modularity optimization, demon-

strating an improved performance that can be suitable
to larger macromolecular complexes comprising large
amounts of nodes. Lastly, communities can be inten-
tionally enforced to observe communication exchange
between specific regions, such as domains or binding
pockets [38,39,42].

As a final note, we wish to remark that the results
that can be obtained by such a framework composed
of network construction and analysis are ultimately
dependent on the underlying MD sampling.

The practice of performing MD simulation replicates,
which is always advisable to mitigate sampling
limitations, can be beneficial also in this context.
Additionally, a more thorough exploration of the
conformational space can be achieved through
Current Opinion in Structural Biology 2024, 86:102820

www.sciencedirect.com/science/journal/0959440X


Table 1

Recent applications of network analysis based on MD simulations to study allosteric mechanisms in pharmaceutically relevant systems. For each of the reported articles, the table
reports information on network construction (features, metrics, and contact map type), on the underlying MD sampling, on the presence of ligands (in the simulations, and possibly in
the network as nodes), on the type of path and community analyses, on the application of multi-ensemble strategies, and on the use of specific software. Abbreviations: i) continuous
(cont.), discontinuous (disc.), ii) Mutual Information (MI, rMI if generalized), Linear Mutual Information (LMI, rLMI if generalized), Cross-correlation (c), Distance Fluctuations (DF), Local
Spatial Patterns (LSP); iii) Hamiltonian Replica Exchange (HREX), metadynamics (metad), accelerated MD (aMD), Gaussian accelerated MD (GaMD); iv) Floyd-Warshall (FW), Dijkstra
(DK), Weighted Implementation of Suboptimal Paths (WISP), Yen’s K-Shortest Path (YK), Betweenness Centrality (BC), Subset of Adjacent Nodes (SOAN), Signal-to-Noise Ratio
(SNR); v) Girvan-Newman (GN), Louvain (LV), Guimerà-Amaral Cartography (GA), Hierarchical Clustering (HC); vi) Dynamical Perturbation Contact Network (DPCN), difference Con-
tact Network Analysis (dCNA). * indicates ligands different from small molecules, such as ions, lipids, sugars, peptides.

Publication Features Contact map Metric MD sampling Has
ligands

Ligand
as nodes

Path analysis Community
analysis

Multi-ensemble Software

Naseem-Khan [16] Ca, P, N1 disc. rMI Plain Yes No Optimal (FW) – – DyNetAn
Ginex [17] Ca disc. rMI Plain No – – – – DyNetAn
Tajima [18] Ca disc. rMI Plain No – Optimal (FW) – – DyNetAn,

NetworkX
Krishnan [19] Ca disc. rMI Plain No – Optimal (FW) – – RING, NetworkX
Liu [20] Dihedrals cont. 1/c Plain Yes No – – – –

Kinnebrew [21] Ca cont. MI Plain Yes Yes Information flow – – Allopath
Zhang [22] Ca disc. c, MI Plain Yes Yes Optimal (FW),

Suboptimal (FW),
information flow

– – Network view

Kihn [23] Residue COM disc. c Ratcheted MD Yes No Suboptimal
(WISP)

– – WISP

Sun [24] Ca disc. c GaMD Yes* No Suboptimal
(WISP)

– – WISP

Calvó-Tusell [25] Ca disc. c aMD Yes No Optimal (DK) GN – SPM Web Tool
Gheeraert [26] Heavy atoms disc. no. contacts Plain Yes* No – – DPCN –

Kornev [27] Cartesian and
internal

disc. LSP, LMI, c Plain Yes Yes – GA – Bio3D, rnetcarto

Maschietto [28] Ca disc. rMI Plain Yes No Optimal (DK) – – –

Yang [29] Ca disc. rLMI Plain Yes* Yes Optimal (FW),
Suboptimal (YK)

LV – Correlationplus,
Gephi, NetworkX

Ray [30] Ca disc. rLMI Plain Yes No – – – Bio3D
Santos [31] Heavy atoms disc. c Plain Yes No BC GN – Bio3D
Barbera [32] Beads disc. no. contacts Plain Yes No – LV dCNA adapted from

dCNA
Fung [33] Ca disc. no. contacts Plain Yes* No – GN dCNA Bio3D, dCNA
Li [34] Heavy atoms disc. no. contacts GaMD/Plain Yes No Suboptimal (YK) GN dCNA dCNA
Kumutima [35] Heavy atoms disc. no. contacts Plain Yes* No Suboptimal (YK) – dCNA Bio3D
Yao [36] Heavy atoms disc. no. contacts Plain Yes Yes Suboptimal (YK) – dCNA dCNA
Costa [37] Heavy atoms disc. c Plain No – Optimal (DK), BC – – NetworkX
Sinha [38] Ca, P, N1, N9 disc. rMI Plain No – Optimal (FW),

Suboptimal (YK),
SNR

Enforced, for
SNR

– DyNetAn,
NetworkX

Molina Vargas [39] Ca, P, N1, N9 disc. rMI Plain No – Optimal (FW),
Suboptimal (YK),
SNR

Enforced, for
SNR

– DyNetAn,
NetworkX

Liu [40] Ca, P, N1, N9 disc. rMI Plain No – Optimal (FW) – – DyNetAn
Yovanno [41] Ca disc. rMI Metad No – Optimal (FW) – – DyNetAn
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Aguti [42] Heavy atoms disc. rMI, DF, pocket
cross-talk

Plain No – – Enforced as
pocket residues

– DyNetAn,
Pocketron,
NetworkX

Li [43] Ca disc. rMI GaMD Yes Yes Optimal (FW) – – DyNetAn
Spinello [44] Residue COM disc. c Plain No – Optimal (FW),

Suboptimal (FW)
– – CPPtraj,

DyNetAn
Dube [45] Heavy atoms disc. c Plain Yes Yes Optimal (FW) – – CARMA,

Network View
Konovalov [46] Ca and one side

chain heavy atom
cont. rLMI Plain No – Optimal (DK),

Suboptimal
(SOAN), Path
lumping

– – g_correlation

Soya [47] Ca disc. LMI Plain Yes No BC GN – wordom, Bio3D
Dayananda [48] Ca disc. c Plain No – Suboptimal (YK) GN – Bio3D
Janaszkiewicz [49] Residue COM cont. MI Plain Yes Yes Information flow – – Allopath
Tóth [50] Residue COM cont. MI Plain Yes Yes Information flow – – Allopath
Tóth [51] Residue COM cont. MI Plain Yes* Yes Information flow – – Allopath
Cheng [52] Backbone beads disc. c Plain No – Suboptimal (YK) HC – Bio3D
Omotuyi [53] Ca disc. c Adaptive

sampling/Plain
Yes No Optimal (FW),

Suboptimal
(WISP)

GN – Bio3D, WISP

Gheeraert [54] Heavy atoms disc. no. contacts Plain
(T = 303.15 K,
323.15 K)

No – – Connected
Component
Analysis

DPCN Scipy, MDtraj,
NetworkX

Maschietto [55] Ca; Heavy atoms disc. rMI; no. contacts Plain
(T = 303.15 K,
323.15 K)

Yes No Optimal,
Suboptimal (DK)

– DPCN –

Chen [56] Ca disc. no. contacts Plain No – – GN dCNA dCNA, Bio3D
Ouedraogo [57] Heavy atoms disc. no. contacts Plain Yes No – GN + network

modularity
dCNA dCNA, igraph,

Bio3d
Pegram [58] Heavy atoms disc. no. contacts Plain (T = 285 K,

300 K, 315 K,
330 K)

No – – – dCNA dCNA,
MDAnalysis

Souffrant [59] Heavy atoms disc. no. contacts Plain No – – GN + network
modularity

dCNA dCNA, igraph,
Bio3d

Yu [60] Ca, P disc. no. contacts Plain No – – GN dCNA MDTraj
Kelly [61] Ca; side chain

heavy atoms
disc. c; no. contacts Plain Yes No Optimal (DK),

Suboptimal (DK),
BC

– – NetworkX

Crean [62] Heavy atoms disc. c HREX Yes* No Suboptimal
(WISP)

– – MDTraj,
pycontact, Bio3D

Srivastava [63] Ca, P cont. LMI Plain No – – – – –

Jani [64] Heavy atoms disc. rMI Plain Yes No BC – – Bio3D
Bassetto Jr [65] Side chain COM,

Ca
cont. MI Plain No – Optimal (DK), BC – – NetworkX

Costa [66] Side chain COM,
Ca

cont. MI Plain Yes Yes Optimal (DK), BC – – NetworkX
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6 New Concepts in Drug Discovery (2024)
enhanced sampling approaches, when needed [23e25,
34,40,41,43,53,62].

Network refinements and extensions
Herein, we briefly summarize noteworthy modifications
or additions that have been introduced over the years at
different levels of the above-reported general scheme on
network construction and analysis:

Refinements/extensions in network construction:

� The contact map defined via the distance and sta-
tistical time-percentage cutoffs results in a sparse
network, where each node is not necessarily connec-
ted with all the other ones. In an effort to improve the
robustness of the contact map, and in turn of the
whole network topology, continuous alternatives,
leveraging different smoothing functions, have been
proposed [70,71,74] and used [20,21,46,49e51,63,65,
66].

� In most cases, the correlation metric is applied to the
displacement of Cartesian coordinates. Nevertheless,

different features can be effectively employed, such
as dihedral angles or electrostatic energies between
residue pairs. Interestingly, calculation of all these
features is implemented in the recent MDiGest
package [75].

� Nodes typically represent residues of the biomolecule.
Recently, ligands or structural ions have also been
included explicitly in the network as nodes
[21,22,27,29,36,43,45,49e51,66,70]. This can be
convenient to inspect pathways of communication
associated with ligand binding, but the standard

approach may be preferred to compare straightfor-
wardly ligand-bound and unbound ensembles [67]. In
the specific case of membrane systems, such as GPCRs
or ion channels and transporters, lipids are emerging as
important players of allosteric modulation. When they
are mapped as nodes of the network, permutation
invariance must be taken into account to cope with
their possible exchange during the simulation [70].
Refinements/extensions in the analysis of the networks:

� Alternative methods have recently emerged for the
identification of critical nodes. Eigenvector centrality
based on mutual information, achieved through diag-
onalization of the adjacency matrix, measures how
well connected a node is to other well-connected

nodes [27,28,55,76]. Notably, this analysis is typi-
cally based on a distance-damped version of the rMI in
order to modulate locality in the communication
transfer. Differently, information flow (or current flow
betweenness) [70,71,74], based on the network
Laplacian, allows taking all pathways between source
and target into account to highlight nodes carrying
effective pathways [21,22,49e51].
Current Opinion in Structural Biology 2024, 86:102820
� A novel Signal-to-Noise Ratio (SNR) was recently
introduced to estimate the efficiency of communica-
tion between selected regions of the biomolecules
[38,39]. Based on optimal and suboptimal pathways, it
quantifies how communication pathways between
predefined distant sites (the signal) are favorable over
the remaining pathways (the noise) in the network.

Several pieces of software are available to assist in the
different stages of network construction and analysis,

and they are briefly summarized in Box 1.
Multi-ensemble networks
Methods based on networks built leveraging multiple
conformational ensembles have recently appeared.

Here, the communication within the considered
biomolecule is first estimated separately through MD
simulations performed under different conditions, like
the unbound (apo) and ligand-bound (holo) states. The
information gathered from the two conformational en-
sembles is then integrated into a single, multi-ensemble
network, with the purpose of capturing alterations
associated with the varying condition (or perturbation).
Being the allosteric mechanism precisely defined in
terms of a transition between ensembles, it has been
argued that the analysis of such a multi-ensemble
network should be better suited for understanding the

functional process, especially for systems undergoing
significant conformational changes [77].

Examples are the Dynamical Perturbation Contact
Network (DPCN) [78] and difference Contact Network
Analysis (dCNA) [79] methods, which have found recent
application [26,32e36,54e60]. Both schemes are based
on the evaluation of the amount of inter-residue contacts
in the separate ensembles. Such information is then
conveyed into a network with edges weighted via the
difference in contacts between the two ensembles. Suit-

able thresholds can be then applied to straightforwardly
visualize the communication perturbation induced by the
changing condition (e.g. effector binding) [78]. Alterna-
tively, standard network analyses, including optimal/sub-
optimal pathways [36] and node centrality [36], can be
used to identify key residues potentially engaged in allo-
steric processes. An approach for clustering edges while
preserving spatial proximity in the network was recently
introduced in the context of DPCN, but could be of
general use as extendable to any weighted graph [54].
Differently, the consensual framework of dCNA allows a

consistent community partition across ensembles, facili-
tating the interpretation of the allosteric mechanism [79].

We note that both DPCN and dCNA approaches leverage
calculation of the number of contacts between residue
pairs, rather than correlation via other more commonly
used metrics (Table 1). However, the idea is in principle
applicable to correlation-based networks too [74], and
differences of the whole correlation matrices or node
www.sciencedirect.com
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Box 1. Software used by the references reported in the present review.

1. General-purpose resources to analyze trajectories from MD simulations. This group also includes tools to compute different types of corre-
lations in MD trajectories, not necessarily to study allosteric mechanisms.

2. General-purpose resources devised to construct and analyze networks, not necessarily using MD trajectory data.
3. Tools devised specifically to construct/analyze networks built from MD trajectory data and aimed at investigating allosteric mechanisms.
4. Tools that cover the whole pipeline of investigating allostery from MD simulations using network analysis. Their utilities range from computing

correlations to constructing and analyzing the networks.

In the schematic, different colors indicate the programming language on which they are based.
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eigenvector centralities were already employed to
compare systems under different conditions [20,28,30,
55,63].
Conclusion and future outlook
The identification of communication pathways and
critical hotspots for signal transduction in biomolecular
systems is of paramount importance to unveil the
mechanistic signatures of allostery. This is fundamental
to allow the rational design of novel therapeutic strate-
gies. The exploitation of the allosteric modulation in
drug discovery already gave tangible achievements, with

a number of drugs already on the market and others
under clinical evaluation [8,80]. This involves historical
targets such as kinases, ion channels and GPCRs, and
holds great potential for emerging targets such as nu-
clear receptors and membrane transporters, for which
www.sciencedirect.com
the rich pattern of allosteric mechanisms is gradually
being recognized and characterized. Computational ap-
proaches can be game-changers here, as the atomistic
details of allosteric communication are difficult to assess
experimentally. MD simulations allow investigating
functional mechanisms with atomistic resolution. In
principle, they can be exploited to study the full allo-

steric transitions. However, using plain (i.e. unbiased)
MD, possibly coupled to Markov State Models analysis
methods, can result in an overwhelming computational
burden, which does not comply with the efficiency re-
quirements of computational drug discovery. On the
contrary, enhanced sampling simulations can drive the
allosteric transition at a lower computational cost, pro-
vided sufficient mechanistic knowledge is available.
This can be particularly beneficial when orthogonal
degrees of freedom contribute to the complexity of the
Current Opinion in Structural Biology 2024, 86:102820
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8 New Concepts in Drug Discovery (2024)
process, such as lipid dynamics affecting the function-
ality of membrane proteins. In this respect, AI-based
detection of features relevant for the process can be
extraordinarily valuable in overcoming sampling limita-
tions and improving the characterization of the transi-
tion. In this review, we focused on methods that allow
investigating allosteric communication by studying the
distinct conformational dynamics at the endpoints, such

as the ligand-bound and unbound states. These ap-
proaches combine network analysis with MD simula-
tions, and are gradually becoming of routine use. Our
survey to assemble this review highlighted the modular
nature of these methods in analyzing allostery,
comprising different metrics, distinct choices of pa-
rameters for network construction, and diverse possi-
bilities for the analyses of the produced networks. Most
remarkably, all these options can be integrated into
different combinations. This is reflected by the wealth
of data presented in Table 1, which should, however,

only be taken as a guide, as it cannot exhaustively cap-
ture the granularity of each individual contribution.
While we consider this versatile picture highly exciting,
our desire would be an effort towards standardization of
the procedures. Converging to a common framework for
a unified description of the essential steps undertaken
in network construction/analysis and details on critical
parameters could be extremely valuable to make prac-
tices easier to reproduce, evaluate, and, possibly,
compare. In this respect, we believe the recent surge of
dedicated resources that are openly available, including

the DyNetAn [69], Allopath [70], and MDiGest [75]
packages, is extremely valuable in fostering reproduc-
ibility and accessibility in the wider scientific commu-
nity. Finally, integrating the emerging AI methods,
which allow improving the conformational sampling, the
analysis of trajectories, and the network analysis itself,
can disclose exciting scenarios toward actionable allo-
steric drug discovery.
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