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A B S T R A C T

We introduce a new scalable model for dynamic conditional correlation matrices based on a
recursion of dynamic bivariate partial correlation models. By exploiting the model’s recursive
structure and the theory of perturbed stochastic recurrence equations, we establish stationarity,
ergodicity, and filter invertibility in the multivariate setting using conditions for bivariate
slices of the data only. From this, we establish consistency and asymptotic normality of the
maximum likelihood estimator for the model’s static parameters. The new model outperforms
benchmarks like the 𝑡-cDCC and the multivariate 𝑡-GAS, both in simulations and in an in-sample
and out-of-sample asset pricing application to US stock returns.

1. Introduction

Modeling multivariate covariance and correlation structures is a well-established research topic in the econometric literature; see
for instance the overviews of Bauwens et al. (2012) and Francq and Zakoian (2019). Since Engle (2002) and Tse and Tsui (2002),
the typical way to empirically model the time-variation in conditional covariance matrices is via its decomposition into a variance
and a correlation related component; see, e.g., the standard benchmark DCC model of Engle (2002). The DCC first accounts for
time-variation in the variances of the individual time series, and then investigates whether there is any time-variation left in the
correlations. The second step of this approach requires a model for the dynamics of the conditional correlation matrix.

Modeling the dynamics of conditional correlation matrices is challenging given the joint restrictions that should hold for such
matrices: they (i) need to be positive (semi)-definite and (ii) have ones on the diagonal. The DCC of Engle (2002) ensures this by an
algorithmically simple, but theoretically hard, non-linear matrix-transformation. The drawback of this approach is that it becomes
hard to formulate conditions for stationarity, ergodicity, and filter invertibility. Establishing such stochastic properties is crucial for
dynamic models: it opens the door to a rigorous econometric analysis of the asymptotic statistical properties of such models. For
example, due to the complexity of the non-linear matrix transformation in the DCC, the asymptotic properties of the quasi maximum
likelihood estimator for the DCC are as yet still unknown; see also the related (heuristic) discussion in Aielli (2013).

Alternative parameterizations of correlation matrices have been proposed in the literature. These include the hypersphere
parameterization of the Cholesky decomposition of a correlation matrix as in Rapisarda et al. (2007), Creal et al. (2011), and Buccheri
et al. (2021), or the log correlation matrix transformation of Archakov and Hansen (2021) as also used by Hafner and Wang
(2021). These parameterizations result automatically in positive (semi) definite matrices with ones on the diagonal. For all these
parameterizations, however, formulating conditions for filter invertibility remains hard. In addition, all these models are cast in

∗ Correspondence to: Department of Economics, Università di Bologna, Piazza Antonio Scaravilli, 2, 40126 Bologna, Italy.
E-mail address: enzo.dinnocenzo2@unibo.it (E. D’Innocenzo).
304-4076/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jeconom.2024.105747
Received 27 September 2022; Received in revised form 23 November 2023; Accepted 12 April 2024

https://www.elsevier.com/locate/jeconom
https://www.elsevier.com/locate/jeconom
mailto:enzo.dinnocenzo2@unibo.it
https://doi.org/10.1016/j.jeconom.2024.105747
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2024.105747&domain=pdf
https://doi.org/10.1016/j.jeconom.2024.105747
http://creativecommons.org/licenses/by/4.0/


Journal of Econometrics 241 (2024) 105747E. D’Innocenzo and A. Lucas

m
R

o
e
a
(
m
r
s
n
c

i
p

2

2

matrix format, which means that contraction conditions like that of Bougerol (1993) can become increasingly strict in higher
dimensions due to the use of matrix norms.1

In this paper, we contribute to the literature by introducing a novel class of non-linear, heavy-tailed time-series models for
dynamic conditional correlation matrices. The new model avoids most of the drawbacks mentioned earlier. In particular, instead of
considering a full multivariate model for the entire dynamic conditional correlation matrix at once, we define univariate nonlinear
filters for conditional partial correlation coefficients based on bivariate slices of the data only. This also allows us to easily impose
zero restrictions on particular partial correlations in case this is theoretically or empirically desirable. By stacking the different
bivariate models and relying on Anderson (1958) and Joe (2006), we can recursively reconstruct the full multivariate dynamic
correlation matrix. The matrix constructed in this way automatically has ones on the diagonal and satisfies the restrictions of
positive-definiteness. The idea has also been used in for instance (Barthel et al., 2020) to model realized covariance matrices and
forecast the individual Fisher transforms of the realized partial correlations using HAR and ARFIMA models. In our setting, we do
not observe realized correlations or variances, but only the daily return data. Our model therefore uses a non-linear time series
set-up based on a similar vine structure to model the correlation dynamics of the observed returns directly. In addition, we are also
able to provide a full asymptotic analysis of the model and its maximum likelihood estimator.

We endow the models for the bivariate data slices with score-driven dynamics for the univariate partial correlation parameter.
We assume the multivariate data have a Student’s 𝑡 distribution, such that the bivariate data slices have a conditional Student’s 𝑡
distribution with parameters known from the multivariate distribution. These pairwise distributions give rise directly to the score-
driven dynamics. In this way we obtain a robust filter for the entire correlation matrix; see Creal et al. (2013) and Harvey (2013)
for an introduction to score-driven dynamics. As the full model is a cascade of bivariate models, each of these bivariate models can
in principle use its own parameters to govern the dynamics of that pair-specific filtering equation. This flexibility can be empirically
relevant as shown in our application to US stock returns in Section 4. We stress that the flexibility of all these pairwise model does
not jeopardize the positive definiteness of the implied multivariate conditional Pearson correlation matrix for the entire system.

Splitting the modeling approach from a multivariate problem into a recursion of conditional models for bivariate slices of the data
not only provides benefits from a computational or model design perspective. We show that the approach also leads to advantages
for a rigorous theoretical analysis of the model’s asymptotic properties; compare (Blasques et al., 2022). We consider an asymptotic
setting where the sample size 𝑇 goes to infinity for a fixed dimension 𝑁 of the time series, and leave a setting with both 𝑁
and 𝑇 going to infinity to a future paper. By using the theory on perturbed stochastic recurrence equations of Straumann and
Mikosch (2006), we are able to provide clear conditions for stationarity, ergodicity, and filter invertibility, as well as conditions
for consistency and asymptotic normality of the maximum likelihood estimator. All these conditions only make use of univariate
contraction requirements based on bivariate data slices, even if the dimension of the entire data vector is substantially larger than
two. An important advantage of this approach is that the restrictions can be more relaxed than dealing with the entire multivariate
system at once; see also Footnote 1. In essence, we prove that the conditions for bivariate models like (Blasques et al., 2018b)
continue to hold in slightly modified form for the fully multivariate setting. Similar rigorous results for these non-linear correlation
models were not available before. We also mention that due to the use of a robust filtering method, we only require a limited (2+ 𝛿
for some small 𝛿 > 0) number of moments for the observations in order for the model and filter to behave well. This stands in
sharp contrast with the asymptotic theory developed for MGARCH models, like in the BEKK-GARCH models where at least 6-order

oments of the observations may be required; see Comte and Lieberman (2003), Hafner and Preminger (2009), and Pedersen and
ahbek (2014).

The new model performs well in a controlled simulation setting, where it outperforms typical strong benchmarks like the cDCC
f Engle (2002) and Aielli (2013) based on the Student’s 𝑡 distribution, the 𝑡-GAS model with hypersphere parameterization of Creal
t al. (2011) and Buccheri et al. (2021), and the recursive SCC model of Palandri (2009). We also apply the model both in-sample
nd out-of-sample to study its asset pricing implications for time-series of US stock returns over the period 1980–2021 as in Engle
2016), Boudt et al. (2017) and Darolles et al. (2018). The empirical application considers time-varying betas in a risk attribution
odel with a market (MKT - RF), size (SMB), and value (HML) risk factor and assesses performance in terms of tracking errors

ather than statistical measures of fit only. We consider the risk factors jointly with an industry return series in a four-dimensional
ystem (for 12 industries), as well as a 23-dimensional setting with 20 stocks and the three risk factors. The results reveal that the
ew model outperforms its benchmarks both in-sample and out of sample. The dynamic partial correlation model enters the model
onfidence set (MCS) of Hansen et al. (2011) most often compared to the other benchmarks.

The rest of this paper is organized as follows. Section 2 introduces the model. The asymptotic properties of the model are derived
n Section 3. Section 4 provides the empirical application. Section 5 concludes. All proofs and other supplementary materials are
rovided in the online Appendix.

. The model

.1. Approaches to modeling correlation matrices

Consider a real-valued 𝑁-dimensional time series {𝒚𝑡}𝑡∈Z and a sequence of corresponding information sets 𝑡−1 = {𝒚𝑡−1, 𝒚𝑡−2,…}.
We focus on modeling the dynamics of the conditional Pearson correlation matrix 𝑹𝑡 of 𝒚𝑡 given 𝑡−1. More specifically, we consider

1 For instance, for the Frobenius norm of a matrix 𝐴 we have ‖𝐴‖ =
√

∑

𝑖,𝑗
|

|

|

𝐴𝑖,𝑗
|

|

|

2
. If this norm has to be bounded in a (Bougerol, 1993) type condition, this

becomes increasingly restrictive if the dimension of 𝐴 grows.
2
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𝒚𝑡|𝑡−1 ∼ 𝑡
(

𝟎𝑁 ,
(

1 − 2𝜈−1
)

⋅𝑹𝑡, 𝜈
)

, 𝜈 > 2, (1)

where 𝑡(𝜇,𝛺, 𝜈) denotes an 𝑁-dimensional Student’s 𝑡 distribution with location 𝜇, scale matrix 𝛺, and 𝜈 > 2 degrees of freedom.2
We assume 𝑹𝑡 is a measurable function of 𝑡−1, such that the model is observation-driven. The model can easily be extended to
allow for a non-zero location and for non-unit variances as well as for other distributions. In addition, with a slight extension, our
model can be extended into a dynamic Student’s 𝑡 copula framework. For expositional purposes, however, we focus on the current
more constrained set-up in (1) to better highlight what is new in our approach.

As mentioned in the introduction, one of the challenges in models such as (1) is the parameterization of the dynamic conditional
correlation matrix 𝑹𝑡. The matrix 𝑹𝑡 not only has to be positive definite, but also needs to have unit entries on the diagonal.
So far, three main approaches to tackle this issue have been put forward in the literature. The first approach is that of Engle
(2002). It models the covariance matrix directly and standardizes it by pre- and post-multiplying by the square root inverse of
its diagonal to ensure the correlation matrix structure with unit entries on the diagonal. A second approach casts the correlation
matrix entries into hypersphere coordinates and models the dynamic behavior of these spherical coordinates rather than of the
original correlations themselves; see Rapisarda et al. (2007), Creal et al. (2011), and Buccheri et al. (2021). Finally, Archakov and
Hansen (2021) introduce the possibility of modeling the strictly lower-half of the log-correlation matrix. Separate models can be
used for each of these unconstrained entries. Putting the individual entries back into a matrix and taking the matrix exponential,
one automatically recovers a proper correlation matrix. This approach is extended to a dynamic setting by Hafner and Wang (2021)
using score-driven dynamics. These non-linear re-parameterizations used to obtain proper correlation matrices complicate a rigorous
analysis of the asymptotic properties of these models.

In this paper, we do not consider the Pearson correlations themselves, but instead consider the dynamics of pairwise partial
correlations using the work of Anderson (1958) and Joe (2006). As a result, we need not worry about positive definiteness of the
implied full correlation matrix: pairwise partial correlation coefficients can be modeled freely and independently with the only
restriction being that the partial correlations lie in the interval (−1, 1). As long as all pairwise partial correlations (as defined further
below) lie in this interval, the implied full Pearson correlation matrix is always a proper correlation matrix. As we see later, this has
important advantages, both in terms of the flexibility of the model construction, the model’s computational and stability aspects,
its theoretical statistical properties, and its empirical performance.

2.2. From partial correlations to correlation matrices

A conditional partial correlation 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 for a set of indices 𝐿𝑖𝑗 with 𝑖, 𝑗 ∉ 𝐿𝑖𝑗 is defined as the correlation between 𝒚𝑖,𝑡 and 𝒚𝑗,𝑡,
conditional on 𝑡−1 and on 𝒚𝐿𝑖𝑗 ,𝑡, where 𝒚𝐿𝑖𝑗 ,𝑡 is a vector containing the values of 𝒚𝑘,𝑡 for 𝑘 ∈ 𝐿𝑖𝑗 . In this paper we follow Joe (2006)
and use 𝑖 < 𝑘 < 𝑗, with 𝐿𝑖𝑗 = ∅ for 𝑗 = 𝑖 + 1 and the conditional partial correlation collapsing to the standard conditional Pearson
correlation coefficient.3 Joe (2006) notes that every 𝑁 ×𝑁 correlation matrix can be parameterized in terms of 𝑁(𝑁 − 1)∕2 partial
correlation parameters. The first 𝑁 − 1 parameters are standard pairwise Pearson conditional correlations 𝜌𝑖,𝑖+1;𝑡 for 𝑖 = 1,… , 𝑁 − 1
and 𝐿𝑖𝑗 = ∅. The remaining (𝑁 − 2)(𝑁 − 1)∕2 parameters are the conditional partial correlations 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 for 𝐿𝑖𝑗 = {𝑖 + 1,… , 𝑗 − 1}
for 𝑖 = 1,… , 𝑁 −1 and 𝑗 = 𝑖+1,… , 𝑁 , i.e., the conditional partial correlations between 𝒚𝑖,𝑡 and 𝒚𝑗,𝑡 conditioning on all intermediate
coordinates 𝑘 between 𝑖 and 𝑗 for 𝑖 < 𝑘 < 𝑗.

Define 𝑽 𝑖,𝑗 ; 𝑡 = 𝜌𝑖,𝑗 ; 𝑡 −𝑹𝑖,𝐿𝑖𝑗 ;𝑡𝑹
−1
𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡

𝑹𝐿𝑖𝑗 ,𝑗;𝑡. Then the link between pairwise and partial correlations is obtained from Anderson
(1958) and Joe (2006) via the recursive formula

𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 =
𝜌𝑖,𝑗 ; 𝑡 −𝑹𝑖,𝐿𝑖𝑗 ;𝑡𝑹

−1
𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡

𝑹𝐿𝑖𝑗 ,𝑗;𝑡
√

(

1 −𝑹𝑖,𝐿𝑖𝑗 ;𝑡𝑹
−1
𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡

𝑹𝐿𝑖𝑗 ,𝑖;𝑡

)

⋅
(

1 −𝑹𝑗,𝐿𝑖𝑗 ;𝑡𝑹
−1
𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡

𝑹𝐿𝑖𝑗 ,𝑗;𝑡

)

=
𝑽 𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

√

𝑽 𝑖,𝑖|𝐿𝑖𝑗 ; 𝑡 ⋅ 𝑽 𝑗,𝑗|𝐿𝑖𝑗 ; 𝑡

, (2)

or 𝑖 = 1,… , 𝑁 − 1, 𝑗 = 𝑖 + 1,… , 𝑁 , and 𝐿𝑖𝑗 = {𝑖 + 1,… , 𝑗 − 1}, where

corr(𝒚𝑖∶𝑗 ; 𝑡) =
⎡

⎢

⎢

⎢

⎣

1 𝑹𝑖,𝐿𝑖𝑗 ;𝑡 𝜌𝑖,𝑗 ; 𝑡
𝑹𝐿𝑖𝑗 ,𝑖;𝑡 𝑹𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡 𝑹𝐿𝑖𝑗 ,𝑗;𝑡
𝜌𝑖,𝑗 ; 𝑡 𝑹𝑗,𝐿𝑖𝑗 ;𝑡 1

⎤

⎥

⎥

⎥

⎦

, (3)

nd 𝒚𝑖∶𝑗 ; 𝑡 = (𝒚𝑖,𝑡,… , 𝒚𝑗,𝑡)⊤. Inverting (2), we easily obtain the Pearson correlation 𝜌𝑖,𝑗 ; 𝑡 as a function of the partial correlation 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡,
nd the Pearson correlations in 𝑹𝑖,𝐿𝑖𝑗 ;𝑡, 𝑹𝑗,𝐿𝑖𝑗 ;𝑡, and 𝑹𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡:

𝜌𝑖,𝑗 ; 𝑡 = 𝑹𝑖,𝐿𝑖𝑗 ;𝑡𝑹
−1
𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡

𝑹𝐿𝑖𝑗 ,𝑗;𝑡 + 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

√

𝑽 𝑖,𝑖|𝐿𝑖𝑗 ; 𝑡 ⋅ 𝑽 𝑗,𝑗|𝐿𝑖𝑗 ; 𝑡. (4)

2 Alternatively, we could use 𝑹𝑡 as a scaling matrix and relax subsequent moment conditions even further. The current parameterization with 𝜈 > 2, however,
allows us to interpret 𝑹𝑡 directly as a real Pearson correlation matrix.

3 There are many different ways to construct the full correlation matrix from a sequence of pairs. In the main text, we adhere to the original proposal of Joe
3

(2006) to simplify the notation. All results remain valid, however, for alternative vine structures to decompose the multivariate process.
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Interestingly, as Joe (2006) points out, the 𝑁 − 1 pairwise correlations and the (𝑁 − 2)(𝑁 − 1)∕2 partial correlations can vary
ndependently in the interval (−1, 1). The implied Pearson correlation matrix will always be positive definite by construction. Thus,
y modeling the dynamics of the partial correlations, we can use (4) to obtain a dynamic positive definite conditional correlation
atrix 𝑹𝑡 for all 𝑡.

A major advantage of parameterizing a correlation matrix in terms of its partial correlations is that we only have to consider
ivariate relationships. The full multivariate nature of the problem can be deferred until we have to evaluate the full likelihood
unction, if so desired. In addition, parameter restrictions on the dynamic partial correlations take a much simpler form than when
ealing with the entire matrix 𝑹𝑡 in one step. Finally, estimating a sequence of bivariate models can lead to computational gains
ompared to a fully-fledged likelihood optimization of the multivariate model, if only to obtain good starting values for the latter.
e return to this recursive way of estimating the multivariate model by a cascade of bivariate estimations in Section 2.5.

.3. Dynamic specification of the partial correlations

As a tool to describe the dynamics of the correlation matrix 𝑹𝑡 via its partial correlations, we use score-driven dynamics as
ntroduced by Creal et al. (2013) and Harvey (2013). For a hypersphere and a log correlation matrix parameterization this was
one (Creal et al., 2011) and (Hafner and Wang, 2021), respectively. In our setting, however, we do not require the matrix-valued
ull 𝑹𝑡, but only work with bivariate partial correlations instead.

The key step in making our approach feasible and scalable is obtained by observing that for 𝑗 > 𝑖 the conditional distribution of
(𝒚𝑖,𝑡, 𝒚𝑗,𝑡)⊤ in (1) conditional on 𝑡−1 and 𝒚𝐿𝑖𝑗 ,𝑡 = {𝒚𝑘,𝑡}𝑘∈𝐿𝑖𝑗

, i.e., on all intermediate coordinates, is Student’s 𝑡
(

𝒚𝑖,𝑡
𝒚𝑗,𝑡

)

∣ 𝑡−1, 𝒚𝐿𝑖𝑗 ,𝑡 ∼ 𝑡
(

𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 , 𝑫1∕2
𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

𝑹𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 𝑫
1∕2
𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

, 𝜈𝑖,𝑗|𝐿𝑖𝑗

)

, (5)

here 𝑹𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 is the conditional partial (bivariate) correlation matrix

𝑹𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 =

[

1 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡
𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 1

]

,

𝑖,𝑗|𝐿𝑖𝑗
= 𝜈 + 𝑗 − 𝑖 − 1 is the degrees of freedom parameter,

𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 =

(

𝑹𝑖,𝐿𝑖𝑗 ;𝑡
𝑹𝑗,𝐿𝑖𝑗 ;𝑡

)

𝑹−1
𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡

𝒚𝐿𝑖𝑗 ,𝑡, (6)

s the location parameter, and

𝑫𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 =
𝜈 − 2 + 𝒚⊤𝐿𝑖𝑗 ,𝑡

𝑹−1
𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡

𝒚𝐿𝑖𝑗 ,𝑡

𝜈𝑖,𝑗|𝐿𝑖𝑗

(

𝑽 𝑖,𝑖|𝐿𝑖𝑗 ; 𝑡 0
0 𝑽 𝑗,𝑗|𝐿𝑖𝑗 ; 𝑡

)

(7)

a diagonal matrix holding the coordinate wise scale parameters; see Roth (2013) or Ding (2016). Note that for 𝑗 = 𝑖 + 1, 𝐿𝑖𝑗 is
the empty set as there are no intermediate coordinates between 𝑖 and 𝑖 + 1, such that for 𝑗 = 𝑖 + 1 the location 𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 parameter
ollapses to zero, 𝜈𝑖,𝑗|𝐿𝑖𝑗

= 𝜈, and 𝑫1∕2
𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

𝑹𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 𝑫
1∕2
𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

collapses to (1 − 2𝜈−1) times the pairwise Pearson correlation matrix for
(𝒚𝑖,𝑡, 𝒚𝑗,𝑡)⊤; compare Eq. (1).

We can use (5) to recursively build the dynamic correlation matrix via univariate transition equations for the partial correlations
𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 using the bivariate data slice for pair (𝑖, 𝑗). To see this, consider a trivariate example. In a first step, we use (5) to
model (𝒚1,𝑡, 𝒚2,𝑡)⊤. This gives a filter for the dynamics of 𝜌1,2,𝑡. We choose scaled Fisher transform of a correlation parameter
𝜌1,2,𝑡 = 𝜖 ⋅ tanh(𝑓1,2,𝑡) for 0 < 𝜖 < 1 to ensure that the (partial) correlation always lies in the interval (−1, 1) for any 𝑓1,2,𝑡 ∈ R.4
Next, we repeat this procedure for (𝒚2,𝑡, 𝒚3,𝑡)⊤, obtaining a model for the dynamics of 𝜌2,3,𝑡. Finally, we consider (5) for (𝒚1,𝑡, 𝒚3,𝑡)⊤
conditional on 𝒚2,𝑡, obtaining the dynamics for (a possibly re-parameterized version of) 𝜌1,3|2 ; 𝑡. To recover the Pearson correlation
𝜌1,3,𝑡 and thus the entire correlation matrix, we use 𝜌1,3|2 ; 𝑡 and the correlations 𝜌1,2,𝑡 and 𝜌2,3,𝑡 obtained in the previous steps together
with the inverse mapping from 𝜌1,3|2 ; 𝑡 to 𝜌1,3,𝑡 in Eq. (4).

Because we only have to work with the bivariate conditional distributions in (5), all transition equations for the (partial)
correlation parameters 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 take a similar form. In particular, we have the following result.

Proposition 1 (Score Recursions). Define 𝒚𝑖,𝑗 ; 𝑡 = (𝒚𝑖,𝑡, 𝒚𝑗,𝑡)⊤ for 𝑗 > 𝑖 and moreover, let 𝑝(𝒚𝑖,𝑗 ; 𝑡 ∣ 𝒚𝐿𝑖𝑗 ,𝑡,𝑡−1) be the Student’s 𝑡 pdf
corresponding to (5). Using the scaled Fisher transform 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 = 𝜖 ⋅ tanh(𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡) for 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 ∈ R and 0 < 𝜖 < 1, the score expression
for the score-driven dynamics of Creal et al. (2013) is given by

𝑠𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 =
𝜕 log 𝑝(𝒚𝑖,𝑗 ; 𝑡 ∣ 𝒚𝐿𝑖𝑗 ,𝑡,𝑡−1)

𝜕𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

4 Alternative choices for the mapping from 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 to 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 result in a different model with possibly different dynamic properties, i.e., stationarity and
rgodicity and invertibility properties, similar to a GARCH context where conditions for stationarity and invertibility are quite different between for instance
ARCH, log-GARCH, and EGARCH models. The current Fisher transform is not only intuitive and well-known, but also allows us to formulate sharp and easy
4

o verify contraction condition which ensure stationarity and ergodicity properties; see Section 3.1.



Journal of Econometrics 241 (2024) 105747E. D’Innocenzo and A. Lucas

f

w

p
v
s
p
i

f
W

m
c

N

= 1
2
𝑮⊤

𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

(

𝑹−1
𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

⊗𝑹−1
𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

)

×

vec
(

𝑤𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 ⋅𝑫
−1∕2
𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

(

𝒚𝑖,𝑗 ; 𝑡 − 𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

)(

𝒚𝑖,𝑗 ; 𝑡 − 𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

)⊤
𝑫−1∕2

𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡
−𝑹𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

)

, (8)

or 𝑖 = 1,… , 𝑁 − 1, 𝑗 = 𝑖 + 1,… , 𝑁 , and 𝐿𝑖𝑗 = {𝑖 + 1,… , 𝑗 − 1}, with

𝑤𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 =
𝜈𝑖,𝑗|𝐿𝑖𝑗

+ 2

𝜈𝑖,𝑗|𝐿𝑖𝑗
+ (𝒚𝑖,𝑗 ; 𝑡 − 𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡)

⊤𝑫−1∕2
𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

𝑹−1
𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

𝑫−1∕2
𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

(𝒚𝑖,𝑗 ; 𝑡 − 𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡)
,

𝑮𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 = 𝜕 vec(𝑹𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡)∕𝜕𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 = 𝜖 ⋅
(

1 − tanh(𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡)
2
)

⋅
(

0 1 1 0
)⊤ .

This leads to the score transition equation

𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡+1 = 𝜔𝑖,𝑗|𝐿𝑖𝑗
+ 𝛽𝑖,𝑗|𝐿𝑖𝑗

𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 + 𝛼𝑖,𝑗|𝐿𝑖𝑗
𝑠𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡, (9)

here we use unit score scaling in the sense of Creal et al. (2013).5

The score equation in (8) makes intuitive sense: it reacts to the outer product of the bivariate observations to drive the correlation
arameter, which includes the cross-product of 𝒚𝑖,𝑡 and 𝒚𝑗,𝑡. Unlike the score equation of Creal et al. (2011) for the multivariate
olatility model, however, the score in (8) reacts to the observations minus their conditional mean, and divided by their conditional
tandard deviations, where the conditioning is on all observations 𝒚𝑘,𝑡 for intermediate coordinates 𝑖 < 𝑘 < 𝑗, i.e., 𝑘 ∈ 𝐿𝑖𝑗 . The
artial correlation dynamics are thus driven by the squares and cross products of 𝒚𝑖,𝑡 and 𝒚𝑗,𝑡 after correcting for the values of the
ntermediate variables. This makes perfect intuitive sense for the dynamics of a partial rather than a standard correlation coefficient.

The result in Proposition 1 has a number of key differences with earlier score-driven dynamic correlation models. We mention
ive of them. First, unlike the matrix equations in for instance (Creal et al., 2011; Opschoor et al., 2018, 2021), and Hafner and

ang (2021), the recursions in (9) are all univariate for 𝑖 = 1,… , 𝑁−1, 𝑗 = 𝑖+1,… , 𝑁 , and 𝐿𝑖𝑗 = {𝑖+1,… , 𝑗−1}. Second, as a result
of this, the parameters in (9) can be estimated recursively for a given value of 𝜈, starting with the pairs (𝑖, 𝑖+ 1) for 𝑖 = 1,… , 𝑁 − 1,
followed by the pairs (𝑖, 𝑖+2) for 𝑖 = 1,… , 𝑁−2, and so on, up to the last pair (1, 𝑁). We discuss this approach further in Section 2.5.
Third, the dynamic parameters 𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡, 𝑫𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡, and 𝑹𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 for 𝑖 < 𝑗 all depend on the data and on dynamic correlations 𝜌𝑘1 ,𝑘2 ,;𝑡
for 𝑖 ≤ 𝑘1 < 𝑘2 ≤ 𝑗 and (𝑘1, 𝑘2) ≠ (𝑖, 𝑗) obtained in an earlier step of the vine cascade. The system of equations is therefore recursive
rather than simultaneous, which has the potential to substantially simplify the estimation; see Section 2.5. Still, the dynamics for the
full correlation matrix are multivariate rather than bivariate, as the bivariate filtering equations are locked together (non-linearly)
via the expressions for 𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡, 𝑫𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡, and 𝑹𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡. Fourth, because of its bivariate nature, the current set-up of designing a
dynamic correlation matrix is perfectly scalable to higher dimensions: there is no worry about the final correlation matrix 𝑹𝑡 not
being positive definite, as we have modeled the partial correlations rather than their Pearson correlation counterparts. Fifth, the
approach based on partial correlations allows us to easily impose zero (or sign) restrictions on some of the partial correlations if
this is desirable from a theoretical perspective. Imposing such restrictions on partial correlations when modeling a dynamic Pearson
correlation matrix directly, by contrast, is much harder.

2.4. Maximum likelihood estimation

As our model is observation-driven, the likelihood is known in closed form as

�̂�𝑇 (𝜽) =
𝑇
∑

𝑡=1
𝓁𝑡(𝜽), (10)

𝓁𝑡(𝜽) =
{

log𝛤
(

𝜈 +𝑁
2

)

− log𝛤
(

𝜈
2

)

− 𝑁
2

log ((𝜈 − 2)𝜋) − 1
2
log |�̂�𝑡(𝜽)| −

𝜈 +𝑁
2

log
(

1 +
𝒚⊤𝑡 �̂�𝑡(𝜽)−1𝒚𝑡

𝜈 − 2

) }

,

where 𝜽 contains 𝜈, 𝜔𝑖,𝑗|𝐿𝑖𝑗
, 𝛼𝑖,𝑗|𝐿𝑖𝑗

, 𝛽𝑖,𝑗|𝐿𝑖𝑗
, for 𝑖 = 1,… , 𝑁 − 1 and 𝑗 = 𝑖 + 1,… , 𝑁 , and {�̂�𝑡(𝜽)}𝑇𝑡=1 contains the filtered correlation

atrices using the score driven recursions from Proposition 1, initialized at some �̂�1. In our empirical application, we set �̂�1 to the
orrelation matrix of the first 100 observations, but other choices are possible as well.

The likelihood in (10) can be optimized numerically using standard software to yield the maximum likelihood estimator (MLE)

�̂�𝑇 = arg max
𝜽∈𝜣

�̂�𝑇 (𝜽). (11)

ote that the optimization could make use of the sequential estimation approach of Section 2.5 to obtain good starting values of 𝜽.

5 We have also experimented with alternative forms of scaling, such as scaling the score by an additional factor (1 − 𝜌2𝑖,𝑗|𝐿𝑖𝑗
) to mitigate score step sizes

near the edges of the domain. This results in somewhat smoother paths of the empirical correlations in Section 4 and modest changes in the stationarity and
5

invertibility conditions.
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2.5. Sequential estimation strategy

The full maximum likelihood approach of Section 2.4 does not exploit the recursive structure of the model set-up in any way.
s the cross-sectional dimension 𝑁 of the data increases, this standard approach may become more and more computer intensive.

n this section we propose an alternative estimation strategy that uses the recursive set-up of the model and that can be solved
y a sequence of small-scale estimation problems rather than one full multivariate estimation procedure. In essence, we follow an
quation-by-equation ML (EbE-ML) approach. A similar procedure was also considered by Francq and Zakoïan (2016), where the
uthors also developed the corresponding asymptotic theory with an application to multivariate GARCH models such as the BEKK
nd DCC model. Also Darolles et al. (2018) use the EbE-ML for the Cholesky GARCH model. Within the context of our partial
ynamic correlation model, this alternative strategy can be used on its own, or as a tool to obtain good starting values for the full
L approach.

The core element of the EbE-ML estimator (EbE-MLE) in the context of the dynamic partial correlation model is the bivariate
onditional distribution in (5) for each data slice (𝒚𝑖,𝑡, 𝒚𝑗,𝑡)⊤ for 𝑖 < 𝑗. To start off the EbE-ML estimator, we first consider all pairs
(𝑖, 𝑗) for 𝑗 = 𝑖 + 1 and 𝑖 = 1,… , 𝑁 − 1. For these pairs, we have 𝐿𝑖𝑗 = ∅, such that the conditional bivariate Student 𝑡 density in (5)
nly conditions on 𝑡−1, and not on 𝒚𝐿𝑖𝑗

. For each pair (𝑖, 𝑖+1), we optimize the bivariate log-likelihood for that particular data slice
ith respect to the static parameters 𝜈𝑖,𝑗|𝐿𝑖𝑗

, 𝜔𝑖,𝑗|𝐿𝑖𝑗
, 𝛼𝑖,𝑗|𝐿𝑖𝑗

, and 𝛽𝑖,𝑗|𝐿𝑖𝑗
, for 𝑗 = 𝑖 + 1. This is feasible, because for each of these data

lices (𝑖, 𝑖 + 1) the likelihood only depends on the single dynamic partial conditional correlation coefficient 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 = 𝑔
(

𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

)

,
nd on none of the others. The optimizations can therefore even be parallelized for 𝑖 = 1,… , 𝑁 − 1 to speed up computations.

Given estimates of the parameters 𝜈𝑖,𝑗|𝐿𝑖𝑗
, 𝜔𝑖,𝑗|𝐿𝑖𝑗

, 𝛼𝑖,𝑗|𝐿𝑖𝑗
, and 𝛽𝑖,𝑗|𝐿𝑖𝑗

for 𝑗 = 𝑖 + 1, and the resulting filtered dynamic partial
orrelations 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 for this first set of pairs (𝑖, 𝑖 + 1), we can use Eqs. (5)–(7) to compute the conditional means for the next set of
airs (𝑖, 𝑗) for 𝑗 = 𝑖 + 2, conditional on the intermediate data series 𝐿𝑖𝑗 = {𝑖 + 1}. This gives rise to a new set of 𝑁 − 2 small-scale
ivariate conditional log-likelihood optimizations with respect to the new parameters 𝜈𝑖,𝑗|𝐿𝑖𝑗

, 𝜔𝑖,𝑗|𝐿𝑖𝑗
, 𝛼𝑖,𝑗|𝐿𝑖𝑗

, and 𝛽𝑖,𝑗|𝐿𝑖𝑗
for 𝑗 = 𝑖 + 2

nd 𝐿𝑖𝑗 = {𝑖 + 1}. This set of optimizations can again be parallelized. The procedure is repeated for all pairs (𝑖, 𝑗 = 𝑖 + 𝑘) for
= 1,… , 𝑁 − 1 and 𝐿𝑖𝑗 = {𝑖 + 1,… , 𝑖 + 𝑘 − 1}. The algorithm is summarized in Fig. 1.

Finally, the different estimates �̂�𝑖,𝑗|𝐿𝑖𝑗
of 𝜈𝑖,𝑗|𝐿𝑖𝑗

= 𝜈 + 𝑗 − 𝑖 − 1 can be combined into a single estimate of 𝜈 by a simple moments
stimator, such as for instance �̂� = 2(𝑁(𝑁 − 1))−1

∑

𝑖<𝑗 𝜈𝑖,𝑗|𝐿𝑖𝑗
+ 𝑖 + 1 − 𝑗. As mentioned earlier, the estimates resulting from this

equential algorithm can be considered on their own, or used as starting values for the full ML approach from Section 2.4.

. Asymptotic properties

In this section, we study the asymptotic properties of the model. We first study the stationarity properties of the model as a
GP in Section 3.1, followed by filter invertibility in Section 3.2. Finally, we study the consistency and asymptotic normality of

he maximum likelihood estimator for the static parameters of the model in Section 3.3. The recursive structure of the partial
orrelation model will prove extremely useful here: the exponentially fast almost sure convergence of the filtered time-varying
arameters 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 for 𝑗 = 𝑖 + 𝑘 allows us to use them as a plug-in estimators in subsequent recursions for 𝑗 = 𝑖 + 𝑘 + 1 without
oosing filter invertibility. As a result, we can obtain consistency and asymptotic normality of the maximum likelihood estimator of
he static parameters 𝜽.

.1. Stationarity and ergodicity of the model

To establish stationarity and ergodicity of 𝒚𝑡, we first consider the model as a DGP. Using (1), we can rewrite (9) in the stochastic
ecurrence equation (SRE) representation defined by Bougerol (1993) and Straumann and Mikosch (2006). In this subsection and
he next, we are somewhat more meticulous regarding notation. We write �̂�𝑡 as the true sequence of bivariate correlation matrices,
nitialized at a fixed �̂�1. We write 𝑹𝑡 without a hat to indicate its uninitialized stationary and ergodic limit sequence, if it exists.
imilar notation is used for the partial correlations 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 and their transformations 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡. Based on the SRE representation, we
ormulate conditions for the convergence of the random sequences {𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡}𝑡∈N initialized at fixed values 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 1 to unique strictly
tationary and ergodic sequences {𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡}𝑡∈Z. We make the following three assumptions.

ssumption 1. The partial correlation coefficients are defined via the scaled Fisher transformation 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 = 𝜖 ⋅ tanh(𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡) for
= 1,… , 𝑁 − 1, and 𝑗 = 𝑖 + 1,… , 𝑁 and some constant 0 < 𝜖 < 1.

ssumption 2. The degrees of freedom parameter 𝜈 of the Student’s 𝑡 density satisfies 2 + 𝛿 < 𝜈 < ∞ for some 𝛿 > 0.

ssumption 3. For 𝑖 = 1,… , 𝑁 − 1 and 𝑗 = 𝑖 + 1,… , 𝑁 , let

E

[

log sup
|𝜌|<𝜖

|

|

|

|

𝛽𝑖,𝑗|𝐿𝑖𝑗
+ 𝛼𝑖,𝑗|𝐿𝑖𝑗

⋅
(

̃̇ℎ(𝜌) ⋅
(

𝑒1 − 𝜌 𝑒2
)

− ℎ̃(𝜌) ⋅ 𝜖 ⋅
(

1 − 𝜌2∕𝜖2
)

⋅ 𝑒2

)

|

|

|

|

]

< 0, (13)

or ℎ̃(𝜌) = 𝜖 ⋅ (1 − 𝜌2∕𝜖2)∕(1 − 𝜌2), and ̃̇ℎ(𝜌) = 2(𝜖2 − 1)𝜌(1 − 𝜌2∕𝜖2)∕(1 − 𝜌2)2, where 𝑒1 = (𝜈𝑖,𝑗|𝐿𝑖𝑗
+ 2)𝜼1,𝑡𝜼2,𝑡∕(𝜈𝑖,𝑗|𝐿𝑖𝑗

+ 𝜼⊤𝑡 𝜼𝑡) and
= 1 (𝜈 + 2)𝜼⊤𝜼 ∕(𝜈 + 𝜼⊤𝜼 ) − 1 for a standard Student 𝑡(𝜈 ) distributed bivariate random variable 𝜼 .
6

2 2 𝑖,𝑗|𝐿𝑖𝑗 𝑡 𝑡 𝑖,𝑗|𝐿𝑖𝑗 𝑡 𝑡 𝑖,𝑗|𝐿𝑖𝑗 𝑡
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Fig. 1. Sequential estimation algorithm (Equation-by-Equation).

Assumption 1 is common in the literature on dynamic conditional correlation models. It can be found in for instance Harvey
2013), or Blasques et al. (2018b). In our case, it ensures that the partial correlations are never equal to ±1, such that the correlation

matrix 𝑹𝑡 implied by the partial correlations is always (strictly) positive definite. Assumption 2 is a standard moment condition
that is needed for second moments (and thus the correlation matrix) to exist. If we choose to model a scaling matrix instead, this
assumption can be further relaxed to the existence of an arbitrarily small moment. Assumption 3 formulates a sufficient condition
for ensuring that the recursions for 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 are contracting on average. This in turn allows us to apply Theorem 3.1 of Bougerol
1993) and conclude stationarity and ergodicity properties of the model as a DGP. The restrictions on the parameter space imposed
y Eq. (13) can easily be checked numerically for specific values of 𝛼𝑖,𝑗|𝐿𝑖𝑗

, 𝛽𝑖,𝑗|𝐿𝑖𝑗
, and 𝜈𝑖,𝑗|𝐿𝑖𝑗

.
To visualize the restrictions imposed on the parameter space by the contraction condition in Eq. (13) of Assumption 3, Fig. 2

lots the boundary for the stationarity and ergodicity region for different values of 𝜈𝑖,𝑗|𝐿𝑖𝑗
. Combinations of 𝛼𝑖,𝑗|𝐿𝑖𝑗

> 0 and 𝛽𝑖,𝑗|𝐿𝑖𝑗
> 0

elow the boundary curve satisfy Assumption 3. The region has an irregular space due to the heavy non-linearity of the recursive
iltering equations.6

Using the above assumptions, we can now prove the following proposition.

roposition 2 (Strict Stationarity and Ergodicity). Let Assumptions 1–3 hold true. Let �̂�1 denote a fixed initial correlation matrix with
mplied partial correlations �̂�𝑖,𝑗|𝐿𝑖𝑗 ; 1 and their transforms 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 1. Then, the solutions 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 of model (5)–(9) for 𝑡 ∈ N, initialized at
�̂�,𝑗|𝐿𝑖𝑗 ; 1 for 𝑖 = 1,… , 𝑁 − 1, 𝑗 = 𝑖 + 1,… , 𝑁 , converge e.a.s. to unique strictly stationary and ergodic solutions {𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡}𝑡∈Z. In addition,

6 The region can even be further enlarged if we consider higher order iterates of the transition equation for 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡; see for instance Bougerol (1993)
7

or D’Innocenzo et al. (2023). Computational details for Fig. 2 can be found at the end of the proof of Proposition 2.
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Fig. 2. Stationarity and ergodicity boundary.

the (initialized) partial correlations �̂�𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 = 𝜖 ⋅ tanh(𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡) and the Pearson correlations �̂�𝑖,𝑗 ; 𝑡 converge e.a.s. to their unique stationary
and ergodic limits {𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡}𝑡∈Z = {𝜖 ⋅ tanh(𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡)}𝑡∈Z and {𝜌𝑖,𝑗 ; 𝑡}𝑡∈Z.

Proposition 2 establishes that the model has a stationary solution. Irrespective of any fixed initialization 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 1, the model’s
olution converges to this same stationary limit. We can even allow the initial condition 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 1 to be random, as long as a
ogarithmic moment exists of |𝜔𝑖,𝑗|𝐿𝑖𝑗

+ 𝛽𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 1 +𝛼𝑠𝑖,𝑗|𝐿𝑖𝑗 ; 1|. In the next section, we extend the result of Proposition 2 to the model
sed as a filter rather than a DGP, and formulate conditions under which the asymptotic solution of the filter does not depend on
ts initialization.

.2. Filter invertibility

Naturally, the true time-varying partial correlation processes {𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡}𝑡∈Z are unobserved. However, due to the observation-
riven nature of the model, we can easily replace every unobserved 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 by its initialized (at 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 1) filtered counterpart

�̂�𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) = 𝜖 ⋅ tanh(𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽)) for 𝑡 = 1,… , 𝑇 , where we add the argument 𝜽 to the notation to indicate that the filter is evaluated
t an arbitrary 𝜽 ∈ 𝜣. These filtered partial correlations map into the filtered Pearson correlation matrices via Eq. (4).

To study the asymptotic properties of the MLE �̂�𝑇 , we first need to study the stochastic limit properties of the filtered processes
𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽)}

𝑇
𝑡=1, since the likelihood function depends on both the data and these filtered processes. The appropriate convergence

esult for the filter is known in the literature as filter invertibility; see Straumann and Mikosch (2006), Wintenberger (2013),
nd Blasques et al. (2018a). A complication in our setting is that all partial correlations are needed to construct the full correlation
atrix. This is important, as unlike Wintenberger (2013) or Blasques et al. (2018a, 2022) which also deal with non-linear filtering
ethods for time-varying parameters, we cannot rely on standard contraction theorems such as the Bougerol’s Theorem 3.1. The
ovelty in the result below lies in the fact that we show that the multivariate convergence follows easily from the individual
nivariate convergence results for the pairwise partial correlation filters based on bivariate data slices. This provides a substantial
implification of the proof. To accomplish this, we lean on the theory for perturbed stochastic recurrence equations (SREs)
f Straumann and Mikosch (2006, Theorem 2.10) using a sequence of cascading SREs.

To formulate the result, we recall that the demeaned and standardized bivariate observation vectors 𝒚⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡
(𝜽) for a general

∈ 𝜣 are defined as

𝒚⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡
(𝜽) = 𝑫𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽)

−1∕2
(

𝒚𝑖,𝑗 ; 𝑡 − 𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽)
)

, (14)

ith 𝝁𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) and 𝑫𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) as defined in Eqs. (6) and (7), respectively. These standardized observations make up the main
nput of the bivariate conditional Student’s 𝑡 distributions in (5). Note that 𝒚⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

(𝜽) not only depends on 𝒚𝑖,𝑡 and 𝒚𝑗,𝑡, but also on
he pairwise correlations as gathered in 𝑹𝑖,𝐿𝑖𝑗 ;𝑡(𝜽) and 𝑹𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡(𝜽), i.e., the pairwise correlations for all coordinates strictly between
and 𝑗. These correlations have been estimated in a previous step of the cascade; see also the algorithm in Section 2.5. We therefore
lso introduce the perturbed counterpart �̂�⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

(𝜽) of 𝒚⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡
(𝜽), where we replace the elements of the uninitialized stationary

nd ergodic 𝑹𝑖,𝐿𝑖𝑗 ;𝑡(𝜽) and 𝑹𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡(𝜽) in (14) by those of the initialized (non-stationary) �̂�𝑖,𝐿𝑖𝑗 ;𝑡(𝜽) and �̂�𝐿𝑖𝑗 ,𝐿𝑖𝑗 ;𝑡(𝜽), respectively. We
lso distinguish three different filtered sequences: (i) the filter sequence 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽), initialized at 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 1 an taking �̂�⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

(𝜽) as

nputs; (ii) the filter sequence ̂̂𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽), initialized at the same 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 1 but taking the stationary and ergodic 𝒚⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡
(𝜽) as inputs;

nd (iii) the sequence 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽), denoting the uninitialized stationary and ergodic limiting filter that takes 𝒚⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡
(𝜽) as inputs.

he first of these three is the one that is actually computed in empirical applications via the MLE procedure and is available to the
8

ser.
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To formulate our proposition, we make the following assumption.7

ssumption 4. The set 𝜣 ⊂ R𝑑 is a compact parameter space satisfying 𝜈 ≥ 2 + 𝛿 for some 𝛿 > 0 and 𝛼𝑖,𝑗|𝐿𝑖𝑗
≠ 0 for 𝑖 = 1,… , 𝑁 − 1

nd 𝑗 = 𝑖 + 1,… , 𝑁 , with

E
⎡

⎢

⎢

⎢

⎣

log sup
𝜽∈𝜣

sup
𝑓

|

|

|

|

|

|

|

𝛽𝑖,𝑗|𝐿𝑖𝑗
+ 𝛼𝑖,𝑗|𝐿𝑖𝑗

⋅
𝜕𝑠𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

(

𝑓, 𝒚⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡
(𝜽);𝜽

)

𝜕𝑓

|

|

|

|

|

|

|

⎤

⎥

⎥

⎥

⎦

< 0. (15)

As in GARCH models, the requirement that 𝛼𝑖,𝑗|𝐿𝑖𝑗
≠ 0 in Assumption 4 is necessary in order to avoid the potential lack of

dentification. If 𝛼𝑖,𝑗|𝐿𝑖𝑗
= 0 and 0 ≤ 𝛽𝑖,𝑗|𝐿𝑖𝑗

< 1, then 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡 → 𝜔𝑖,𝑗|𝐿𝑖𝑗
∕(1 − 𝛽𝑖,𝑗|𝐿𝑖𝑗

), such that these parameters cannot be identified
eparately; see also Darolles et al. (2018) for a similar discussion. We also point out that, thought the condition in (15) looks
ivariate in nature, the full multivariate structure of the model is retained as 𝒚⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

(𝜽) depends on all data and parameters for the
ntermediate coordinates between 𝑖 < 𝑗.

Assumption 4 ensures that the initialized filter is contracting on average when taking the unperturbed 𝒚⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡
(𝜽) as inputs,

.e., ̂̂𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽)
𝑒.𝑎.𝑠.
←←←←←←←←←←←←←←←←←←←→ 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽). An approach based on ̂̂𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) is, however, infeasible: the MLE procedure can only use the

erturbed �̂�⋆(𝜽) based on all previously filtered pairs of (initialized) correlation estimates. Therefore, the empirical procedure
roduces 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) rather than ̂̂𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽). Only for 𝑗− 𝑖 = 1 we observe 𝒚⋆(𝜽) directly because 𝝁𝑖,𝑖+1|𝐿𝑖𝑗 ; 𝑡(𝜽) = 0 and 𝑫𝑖,𝑖+1|𝐿𝑖𝑗 ; 𝑡(𝜽) =
1 − 2𝜈−1)𝐈2. For 𝑗 − 𝑖 = 𝑘 > 1, however, the score recursions for the filter also use the initialized sequence 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) for
− 𝑖 = 1,… , 𝑘 − 1. The latter are not stationary and ergodic, which prevents us from applying (Bougerol, 1993) as this theorem

equires stationary and ergodic inputs.
The way out of this challenge is as follows. If the filters 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) for 𝑗 − 𝑖 < 𝑘 converge exponentially fast and almost surely to

heir stationary and ergodic limits 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽), then we can use the results on perturbed SREs from Straumann and Mikosch (2006).
n particular, under condition (15) the desired filter invertibility for 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) can then still be established for 𝑗−𝑖 = 1,… , 𝑁−1. The
omposite procedure boils down to the following. Starting from 𝑗 − 𝑖 = 1, we recursively obtain invertibility for 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) for all
− 𝑖 = 𝑘 = 1,… , 𝑁 − 1. Finally, by standard continuity arguments, we conclude that filter invertibility holds for the pairwise

onditional correlation coefficients 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) and the Pearson correlation matrices �̂�𝑡(𝜽). We summarize this in the following
roposition.

roposition 3 (Filter Invertibility). Let Assumptions 1–4 hold true. Then, the filter processes {𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽)}𝑡∈N initialized at fixed values
�̂�,𝑗|𝐿𝑖𝑗 ; 1 converge exponentially fast almost surely to the unique stationary and ergodic sequences {𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽)}𝑡∈Z uniformly over the
arameter space 𝜣, that is

sup
𝜽∈𝜣

|

|

|

𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) − 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽)
|

|

|

𝑒.𝑎.𝑠.
←←←←←←←←←←←←←←←←←←←→ 0,

sup
𝜽∈𝜣

|

|

|

�̂�𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) − 𝜌𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽)
|

|

|

𝑒.𝑎.𝑠.
←←←←←←←←←←←←←←←←←←←→ 0,

sup
𝜽∈𝜣

|

|

|

�̂�𝑖,𝑗 ; 𝑡(𝜽) − 𝜌𝑖,𝑗 ; 𝑡(𝜽)
|

|

|

𝑒.𝑎.𝑠.
←←←←←←←←←←←←←←←←←←←→ 0,

s 𝑡 → ∞.

As a result of Proposition 3, the impact of starting values for the filters becomes negligible asymptotically. In Appendix B we
how that this result extends to the derivative processes of 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) with respect to 𝜽. These derivative processes play a crucial
ole for proving the asymptotic normality of the MLE. Filter invertibility in the multivariate model thus simplifies for the setting at
and to a sequence of univariate invertibility conditions, which are much easier to handle.

.3. Consistency and asymptotic normality of the MLE

Our approach to establish strong consistency and asymptotic normality of the MLE for our dynamic partial correlation model
elies on similar arguments as discussed in Straumann and Mikosch (2006) and Blasques et al. (2022). The idea consists in first
howing that the nonstationary average log-likelihood function 𝑇 −1 �̂�𝑇 (𝜽) in (10) converges to its stationary counterpart 𝑇 −1 𝐿𝑇 (𝜽),
hich uses 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽) rather than 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡(𝜽). We can then apply the uniform strong law of large numbers for stationary and ergodic
rocesses of Rao (1962) to show that 𝑇 −1 𝐿𝑇 (𝜽) → E[𝓁𝑡(𝜽)] almost surely and uniformly over 𝜽 ∈ 𝜣. The strong consistency of �̂�𝑇
hen follows by checking standard identifiability arguments. The result is stated in the following theorem.

heorem 1. Under Assumptions 1–4, �̂�𝑇
𝑎.𝑠.
←←←←←←←←←←←←←→ 𝜽0 for every fixed set of starting values 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 1 ∈ R for the filter for 𝑖 = 1,… , 𝑁 − 1 and

= 𝑖 + 1… , 𝑁 .

7 In fact, Assumption 4 may be further relaxed by replacing the supremum over 𝜽 in (15) by a supremum over (𝜔𝑖,𝑗|𝐿𝑖𝑗
, 𝛼𝑖,𝑗|𝐿𝑖𝑗

, 𝛽𝑖,𝑗|𝐿𝑖𝑗
, 𝜈) only. In order not to
9

overburden the (already heavy) notation further, we opt for the current simpler, though somewhat more restrictive formulation.
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To establish the asymptotic normality of the MLE, the following two additional assumptions are needed, which are rather standard
n the literature.

ssumption 5. 𝜽0 ∈ interior(𝜣), i.e., the true parameter vector 𝜽0 lies in the interior of the (compact) parameter space 𝜣.

ssumption 6. For some 𝛿 > 0, it holds that

E
⎡

⎢

⎢

⎢

⎣

sup
𝜽∈𝜣

sup
𝑓

|

|

|

|

|

|

|

𝛽𝑖,𝑗|𝐿𝑖𝑗
+ 𝛼𝑖,𝑗|𝐿𝑖𝑗

⋅
𝜕𝑠𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

(

𝑓, 𝒚⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡
(𝜽);𝜽

)

𝜕𝑓

|

|

|

|

|

|

|

2+𝛿
⎤

⎥

⎥

⎥

⎦

< 1. (16)

Assumption 5 excludes situations where the true parameter lies on the boundary of the parameter space. Assumption 6 in addition
equires that the score-driven filters and their derivative processes have second moments. This allows us to appeal to an appropriate
entral limiting result. Combining these assumptions, we obtain the following theorem, which is proved in Appendix A.

heorem 2. Under Assumptions 1–6, and for every fixed set of starting values for the filter, 𝑓𝑖,𝑗|𝐿𝑖𝑗 ; 1 ∈ R for 𝑖 = 1,… , 𝑁 − 1 and
𝑗 = 𝑖+1… , 𝑁 , we have

√

𝑇 (�̂�𝑇 −𝜽0) ⇒ N(𝟎,−1(𝜽0)), where (𝜽0) is the Fisher information matrix evaluated at the true parameter vector
0.

The results obtained in Theorems 1 and 2 are for the full ML estimator. In Fig. 1 in Section 2.5 we also introduced a sequential
stimation approach. The approach used for proving Theorems 1 and 2 carries over directly to this sequential estimation strategy,
esulting in a consistency and asymptotic normality result for the sequential estimator. For the first step in the vine structure, i.e., the
airs (𝑖, 𝑖 + 1), this is self-evident as no auxiliary (partial) correlations have to be estimated that relate to other coordinate pairs.
or the remaining vine layers, consistency and asymptotic normality follows entirely along the same lines as in the proofs of the
heorems above, building on the exponentially fast almost sure convergence of the (conditionally) demeaned and standardized data
̂⋆𝑖,𝑗|𝐿𝑖𝑗 ; 𝑡

. Efficiency of the sequential estimator, however, cannot be guaranteed and is likely to be lost. In the empirical application
n Section 4 we investigate the performance of both the full ML and the sequential estimator and show that the full ML estimator
esults in the best performance, with the sequential estimator being a good runner-up.

. Empirical application

.1. Data and benchmark models

In this section we provide two examples. In Section 4.3 we consider 4-dimensional applications to US industry returns with
hree Fama–French risk factors. In Section 4.4, we consider a 23-dimensional application of 20 individual blue-chip stocks with
hree Fama–French risk factors. We take daily return data from January 3, 1980 to December 31, 2021. The data are obtained from
en French’s website and CRSP.8 We assess model adequacy in economic terms from an asset pricing perspective as in Boudt et al.
2017). The three risk factors are the excess market factor Mkt-RF, the size factor SMB (Small Minus Big), and the value factor HML
High Minus Low). Plots and descriptive statistics of some of the series can be found in Appendix C. The series display the familiar
tylized facts of high kurtosis and clear volatility clustering. The fat-tailedness motivates the use of the Student’s 𝑡 distribution for
he analysis.

We label the new dynamic partial correlation model as PCorr in the subsequent discussion. The model’s performance is
enchmarked against three proven models from the literature: (i) the multivariate GAS(1, 1) model of Creal et al. (2011) (labeled
-GAS), where the correlation matrix is modeled using the hypersphere parameterization, (ii) the cDCC model of Engle (2002)
nd Aielli (2013) endowed with a Student’s 𝑡 distribution and labeled 𝑡-cDCC, and (iii) the SCC model of Palandri (2009), which
lso uses a recursive set-up of the model. For the 𝑡-cDCC model, we use the standard targeting approach to estimate the (matrix-
alued) intercept parameter of the correlation transition equation. For the partial correlation model and the matrix 𝑡-GAS model
uch a targeting approach is not available, and we estimate the intercept terms as part of the static parameter vector using standard
umerical optimization.

We also note that the new PCorr model has pair-specific parameters 𝛼𝑖,𝑗|𝐿𝑖𝑗
and 𝛽𝑖,𝑗|𝐿𝑖𝑗

, unlike the standard versions of the 𝑡-cDCC
nd matrix 𝑡-GAS. The latter typically only use a common scalar 𝛼 and 𝛽. To put the different models on a more equal footing, we
ntroduce the same number of pair-specific 𝛼𝑖,𝑗 and 𝛽𝑖,𝑗 into the 𝑡-GAS model. This can be done without further complications due
o the hypersphere parameterization in the 𝑡-GAS. For the 𝑡-cDCC, we impose a BEKK type specification with diagonal 𝐴 and 𝐵
atrices holding 𝑁 parameters 𝛼𝑖,𝑖 and 𝛽𝑖,𝑖, respectively. This ensures positive definiteness of the correlation matrix at all times.9

To fully concentrate on the differences in modeling correlations, we first de-volatilize all return series in the same way for every
orrelation model using the score-driven volatility models of Creal et al. (2011) and Creal et al. (2013) based on the Student’s 𝑡
istribution, also known as the Beta-𝑡-GARCH(1,1) model of Harvey (2013). The de-volatilized series are then used as inputs for the
orrelation-based models. As all correlation models now work with the same input series, any differences can no longer be attributed
o differences in univariate volatility filters. Of course, alternative ways to filter the volatility can also be implemented, including
he use of realized volatilities or other volatility models than the univariate 𝑡-GAS.

8 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
9 In particular, we use 𝑄⋆ = 𝛺 + 𝐵1∕2𝑄⋆ 𝐵1∕2 + 𝐴1∕2𝒚 𝒚⊤ 𝐴1∕2, where 𝐴 and 𝐵 are diagonal matrices with parameters 𝛼 and 𝛽 , respectively.
10

𝑡 𝑡−1 𝑡−1 𝑡−1 𝑖,𝑖 𝑖,𝑖

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 1
MSE and MAE simulation results.

PCorr 𝑡-GAS 𝑡-DCC SCC PCorr 𝑡-GAS 𝑡-DCC SCC

Gaussian Student 𝑡7
Single rolling window empirical correlation path

𝑀𝑆𝐸 𝟎.𝟎𝟏𝟕𝟒 0.0248 0.0270 0.0318 𝟎.𝟎𝟏𝟗𝟐 0.0247 0.0349 0.0292
𝑀𝐴𝐸 𝟎.𝟏𝟏𝟎𝟔 0.1140 0.1223 0.1338 𝟎.𝟏𝟏𝟎𝟔 0.1123 0.1370 0.1246

Block-bootstrapped rolling window empirical correlation paths

𝑀𝑆𝐸 0.0427 0.0448 0.0463 0.0480 0.0420 0.0459 0.0463 0.0472
𝑀𝐴𝐸 0.1700 0.1769 0.1754 0.1772 0.1680 0.1734 0.1756 0.1792

Note: the labels PCorr, 𝑡-GAS and 𝑡-DCC indicate the new score-driven partial correlation model discussed in Section 2, the
Student’s 𝑡 GAS model of Creal et al. (2011) with hypersphere parameterization, and the 𝑡-cDCC model of Engle (2002) with
a multivariate Student’s 𝑡 log-likelihood, respectively. Results are based on 300 Monte Carlo (top panel) or bootstrap (bottom
panel) experiments with sample size 𝑇 = 1000 and 𝑁 = 4. The true correlation path used in the data generating process for the
top panel is given by the 100-day rolling window estimates of empirical correlation matrices of the series (HML, SMB, Mkt-RF,
BusEq). For the bottom panel, the 100-day rolling window estimate is block-bootstrapped in every replication (block length 50) to
get a new correlation path in every simulation. Results are averaged over time, replications, and across pairs (𝑖, 𝑗), 1 ≤ 𝑖 < 𝑗 ≤ 4.
Further results for the individual pairs are found in Tables C.2 and C.3 in Appendix C and confirm the results in the table.

.2. Simulation results

Before turning to the empirical applications, we first investigate the performance of the new model in a controlled simulation
etting. To generate time series with empirically relevant correlation dynamics, we use a 100-day rolling window to estimate time-
arying empirical correlation matrices for the four series (HML, SMB, Mkt-RF, BusEq), where BusEq (business equipment) holds the
eturns on one of the sector portfolios from Section 4.3. These rolling window estimates produce paths for 4(4 − 1)∕2 = 6 different
airwise correlations. We fix these paths and then generate 300 realizations of the returns 𝒚𝑡 for 𝑇 = 1000, using either a Gaussian
r a Student’s 𝑡 (𝜈 = 7) distribution, where the latter is close to the empirical estimate. For each of the simulated return series, we
stimate the new time-varying partial correlation model as well as the benchmark models.

To compare the different models, we consider the mean squared error (MSE) and the mean absolute error (MAE), where

𝑀𝑆𝐸𝑖,𝑗 =
1
𝑇

𝑇
∑

𝑡=1

(

�̂�𝑖,𝑗 ; 𝑡 − 𝜌𝑖,𝑗 ; 𝑡
)2 , 𝑀𝐴𝐸𝑖,𝑗 =

1
𝑇

𝑇
∑

𝑡=1

|

|

|

�̂�𝑖,𝑗 ; 𝑡 − 𝜌𝑖,𝑗 ; 𝑡
|

|

|

,

𝑀𝑆𝐸 and 𝑀𝐴𝐸 are the averages of 𝑀𝑆𝐸𝑖,𝑗 and 𝑀𝐴𝐸𝑖,𝑗 across all pairs 𝑖 < 𝑗, respectively, and �̂�𝑖,𝑗 ; 𝑡 denotes the filtered path of
the conditional (Pearson) correlation coefficient. As all measures consider the performance of the correlation models in terms of
pairwise Pearson correlations rather than partial correlations, the benchmark models (which all operate on the Pearson correlations
directly) are put at an advantage compared to our new model (which operates on the partial correlations).

The results in Table 1 present a clear outcome: in both the Gaussian and Student’s 𝑡 case and both performance measures, the new
partial correlation model outperforms the three benchmarks. The extended results per pair (𝑖, 𝑗) in Table C.2 in Appendix C show
that the conclusion is uniform across all pairwise correlation paths. For the empirically more relevant Student’s 𝑡 case, the average
MAE and MSE are in the same ballpark for the different models. This seems realistic: we expect all three models to do reasonably
well for typical stock return series. This is confirmed by the filtered correlation paths in Fig. 3. The black pattern gives the true path
of the (six) correlations used in the simulations. Most of the time, the different correlation models follow each other quite closely.
However, there are also marked differences such as for 𝜌2,3,𝑡. The differences in filtered correlations between models also shows up in
terms of the improvement in MAE in Table 1. The MAE improves by around 2/11/20 percent for the new partial correlation model
vis-à-vis the 𝑡-GAS/SCC/𝑡-cDCC model. For the MSE, differences are even larger with 22/35/55 percent improvements compared to
these three models, respectively. Differences are much smaller if instead we compare the filtered correlations between models with
different distributions, such as the Gaussian versus Student’s 𝑡 distribution for the PCorr model; see Figure C.2 in Appendix C.

The results do not depend on the particular correlation path. In the bottom panel of Table 1 we provide averages of MSE and
MAE for a second simulation experiment. Here we take the correlation pattern from the first experiment, but block-bootstrap it to
obtain new, empirically relevant correlation patterns. For each bootstrapped path, we generate return data, estimate the 8 different
models, and compute the MAE and MSE. A summary of the results across different correlation paths is given in the bottom panel in
Table 1. It confirms our earlier findings: across all performance measures, the PCorr model outperforms the other models. Table C.3
and Figure C.4 in Appendix C for each individual pair (𝑖, 𝑗) again show that the conclusion is robust for all individual elements of
the correlation matrix. The partial correlation model thus appears to do a better job in cases where it produces different correlations
than its competitors. We continue to investigate this for the empirical data in the remainder of this section.

4.3. Application to US industry returns

4.3.1. In-sample analysis
In our first application, we consider a four-dimensional system of US stock returns based on the three Fama–French risk factor

portfolios and one industry portfolio. We first compare the different models in-sample over the period 1980–2009. Next, we consider
11

an out-of-sample analysis over the period 2010–2021.
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Fig. 3. Comparison of the mean of the Monte Carlo simulation of the filtered conditional correlation coefficients with Student’s t DGP with 𝜈 = 7.

Table 2 holds the differences in log-likelihood values between the different models for each of the industries. In all cases we take
the PCorr model as the benchmark, such that positive values in the log-likelihood column signal that the new model outperforms
the benchmark. The results clearly show that the PCorr model always outperforms the 𝑡-cDCC for each of the 12 industries. In
comparison with the 𝑡-GAS, the new model also fits better in 8 out of the 12 industries, performs less well in only 2 cases, and at
par in 2 others. Most gains are in the range of 20–50 likelihood points for PCorr versus 𝑡-GAS. Improvements are even higher at
60–110 likelihood points when comparing the PCorr versus the 𝑡-cDCC model. Note that these results hold despite the fact that we
made the 𝑡-GAS and 𝑡-cDCC models more flexible by endowing them with different 𝛼𝑖,𝑗 and 𝛽𝑖,𝑗 parameters for different return pairs
as compared to their standard scalar form from the literature.

Besides evaluating the models in terms of likelihood fit, we also compare the models in terms of their asset pricing implications
as in Hansen et al. (2014), Boudt et al. (2017), and Darolles et al. (2018).10 For this, we consider the tracking errors

𝑒𝑡 = 𝑟𝑖,𝑡 − 𝛾𝑀𝑘𝑡,𝑡(𝑟𝑀𝑘𝑡
𝑡 − 𝑟𝐹𝑡 ) − 𝛾𝑆𝑀𝐵,𝑡𝑆𝑀𝐵𝑡 − 𝛾𝐻𝑀𝐿,𝑡𝐻𝑀𝐿𝑡, (17)

where 𝑟𝑖,𝑡 denotes the industry portfolio return for 𝑖 = 1,… , 12, and

⎛

⎜

⎜

⎝

𝛾𝑀𝑘𝑡,𝑡
𝛾𝑆𝑀𝐵,𝑡
𝛾𝐻𝑀𝐿,𝑡

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝜌𝑀𝑘𝑡,𝑀𝑘𝑡,𝑡 𝜌𝑀𝑘𝑡,𝑆𝑀𝐵,𝑡 𝜌𝑀𝑘𝑡,𝐻𝑀𝐿,𝑡
𝜌𝑆𝑀𝐵,𝑀𝑘𝑡,𝑡 𝜌𝑆𝑀𝐵,𝑆𝑀𝐵,𝑡 𝜌𝑆𝑀𝐵,𝐻𝑀𝐿,𝑡
𝜌𝐻𝑀𝐿,𝑀𝑘𝑡,𝑡 𝜌𝐻𝑀𝐿,𝑆𝑀𝐵,𝑡 𝜌𝐻𝑀𝐿,𝐻𝑀𝐿,𝑡
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−1
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𝜌𝑀𝑘𝑡,𝑖,𝑡
𝜌𝑆𝑀𝐵,𝑖,𝑡
𝜌𝐻𝑀𝐿,𝑖,𝑡

⎞

⎟

⎟

⎠

. (18)

As all models considered are observation-driven, the 𝜌𝑖,𝑗 ; 𝑡 and thus also the 𝛾𝑖,𝑗 ; 𝑡 are known at time 𝑡 − 1. Remember that all
returns enter the tracking error equation after being de-volatilized in order to fully concentrate on the differences due to correlation
modeling.

Table 2 displays the tracking-error-based MSE and MAE comparisons. Significance is assessed using the Diebold–Mariano 𝑡-
test. Negative values in the MSE or MAE column indicate that the PCorr model outperforms the benchmark. The results confirm
the earlier log-likelihood analysis. Also in terms of its asset pricing implications, the PCorr model outperforms the other models.
Interestingly, for a few industries the statistical log-likelihood criterion and the economic performance criteria based on tracking
error MSE and MAE point to a different model ranking. Based on the economic criteria, the overall conclusion seems even more
robust: the PCorr model outperforms the benchmarks in-sample. In terms of MAE, the outperformance is unanimous and strongly
statistically significant across all industries. For MSE, the results are similar, with a few exceptions.

10 As remarked by one of the referees, the comparisons could also be carried out by comparing the filtered correlations with realized correlations based
on intraday data. Though potentially interesting, we have not pursued this in this paper and leave this for future research. Instead, we concentrate on the
comparisons in terms of model fit (likelihood) and in terms of economic implications (asset pricing errors).
12
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Table 2
In sample performance of the four correlation models.

PCorr versus 𝑡-GAS PCorr versus 𝑡-cDCC PCorr versus SCC MCS

log-Lik DM𝑀𝑆𝐸 DM𝑀𝐴𝐸 log-Lik DM𝑀𝑆𝐸 DM𝑀𝐴𝐸 DM𝑀𝑆𝐸 DM𝑀𝐴𝐸 PCorr 𝑡-GAS 𝑡-cDCC SCC

NoDur 21.8* −6.88*** −7.69*** 91.7*** −6.05*** −7.78*** −5.60*** −6.62*** ✓

Durl 31.9** −9.21*** −10.20*** 84.6*** −7.85* −8.71*** −24.23*** −31.11*** ✓

Manuf 21.9* −9.70*** −11.44*** 64.2*** −7.85*** −10.26*** −5.20*** −8.32*** ✓

Enrgy −1.0* −4.47*** −4.84*** 88.4*** −4.45*** −4.08*** −7.33*** −8.02*** ✓

Chems 40.6* −6.68* −7.01*** 94.1*** −6.15*** −7.15*** −6.40*** −7.79*** ✓

BusEq −46.7*** −3.62*** −5.84*** 64.1*** −2.47*** −5.91*** −7.68*** −7.79*** ✓ ✓ ✓

Telcm 32.5*** −7.28*** −7.94*** 110.9*** −7.81*** −7.10*** 7.31*** −12.32*** ✓

Utils 0.1 −1.41 −2.87*** 87.0*** −1.08 −2.92*** −3.94*** −8.39*** ✓ ✓ ✓

Shops 28.8** −7.21*** −9.00*** 83.6*** −7.03*** −8.37*** −4.07*** −5.21*** ✓

Health 23.7* −5.90*** −6.23*** 91.7*** −5.31*** −6.68*** −5.77*** −8.43*** ✓

Money −30.4* −5.66*** −8.51*** 76.5*** −5.73*** −9.99*** −10.41*** −15.14*** ✓

Other 50.3*** −8.61*** −10.01*** 89.6*** −7.36*** −8.02*** −3.54*** −4.69*** ✓

Note: the PCorr, 𝑡-GAS, and 𝑡-cDCC models are estimated over the sample 03 January 1980 to 31 December 2009. The log-Lik indicates the differences in
log-likelihood value at the optimum. Diebold–Mariano 𝑡 statistics are reported based on the MSE and MAE criterion, related to the differences in mean squared
and mean absolute pricing errors, 𝑒𝑡 = 𝑟𝑖,𝑡 − �̂�𝑀𝑘𝑡,𝑡(𝑟𝑀𝑘𝑡

𝑡 − 𝑟𝐹𝑡 ) − �̂�𝑆𝑀𝐵,𝑡𝑆𝑀𝐵𝑡 − �̂�𝐻𝑀𝐿,𝑡𝐻𝑀𝐿𝑡, where all return series are volatility filtered, and �̂�𝑀𝑘𝑡∕𝑆𝑀𝐵∕𝐻𝑀𝐿,𝑡
is obtained as in (18). The symbols ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and 1 percent level, respectively. The MCS columns indicate
whether the model is selected for the 95% model confidence set based on MSE. For the MAE criterion, the GAS and DCC model are only selected for Utils.
The PCorr, 𝑡-GAS, 𝑡-cDCC, and SCC have 19, 19, 19, and 40 parameters, respectively, and take on average 218, 250, 100, and 46 s to estimate for the current
four-dimensional setting.

To account for the cross-sectional correlation of the different tests and the possibly inflated type I error due to multiple pairwise
tests, we also compute the model confidence set (MCS) of Hansen et al. (2011) based on the MSE criterion. We see that the PCorr
model is always in the 95% MCS. The 𝑡-GAS and 𝑡-cDCC models, by contrast, only enter the MCS for two industries, and even then
at lower 𝑝-values. The SCC model never enters the MCS for any of the industries. For the MCS based on the MAE (not shown) the
pattern is similar: whereas the PCorr model is in the model confidence set for each of the 12 industries, the 𝑡-GAS and 𝑡-cDCC model
enter only for one industry (Utils), and the SCC does not enter at all.

As we have 4 models with at least 19 parameters each, estimated across 12 industries, we have estimated almost 700 parameters
in total and their standard errors. In Figure C.3, we visually present part of these estimates. Three main findings emerge. First,
the estimates of 𝜈 are relatively stable between 6 and 7.5 across industries and models, indicating a realistic, moderate degree
of fat-tailedness. Second, the (partial) correlations in all models have a high degree of persistence: all 𝛽𝑃𝐶𝑜𝑟𝑟

𝑖,𝑗|𝐿𝑖𝑗
, 𝛽𝐷𝐶𝐶

𝑖,𝑖 , and 𝛽𝐺𝐴𝑆
𝑖,𝑗

arameters are close to one across all industries and models. Third, the adjustment speeds (𝛼𝑖,𝑗) for the 𝑡-GAS and 𝑡-cDCC appear
uch more homogeneous than those of the PCorr model. In particular the adjustment speed of the partial correlation of SMB with

he market return (MKT) is much higher in the PCorr model. The partial correlation between the industry returns and SMB given
he market return (𝐼𝑁𝐷,𝑆𝑀𝐵 ∣ 𝑀𝐾𝑇 ), as well as that between the industry return and HML given SMB and the market return
𝐼𝑁𝐷,𝐻𝑀𝐿 ∣ 𝑀𝐾𝑇 ,𝑆𝑀𝐵) are both substantially lower. Such heterogeneity can easily be allowed for in the PCorr model. This is
ore complicated in 𝑡-GAS model, which scrambles this linkage between 𝛼𝑖,𝑗 and 𝜌𝑖,𝑗 via the hypersphere re-parameterization. As a

esult, the heterogeneity in 𝛼𝑖,𝑗 is more blurred for the 𝑡-GAS model.
We now proceed to investigate whether the in-sample outperformance of the benchmark models by the PCorr model in an asset

ricing context also persists in an out-of-sample forecasting setting.

.3.2. Out-of-sample analysis
In our out-of-sample analysis, we fully focus on the tracking errors defined in (17), similar to Hansen et al. (2014), Boudt et al.

2017), and Darolles et al. (2018). We perform a recursive out-of-sample analysis. First, we estimate all models on the in-sample
eriod 1980–2009. We then fix the static parameter estimates and run the filter up to 2010 to obtain the one year out-of-sample
odel-implied correlation matrices 𝑹𝑡 as well as the implied coefficients 𝛾𝑀𝑘𝑡,𝑡, 𝛾𝑆𝑀𝐵,𝑡, and 𝛾𝐻𝑀𝐿,𝑡 from Eqs. (17)–(18). These result

n predicted returns (conditional on the risk factors) and the corresponding tracking errors. After obtaining the tracking errors for
010, we then add 2010 to the sample, and re-estimate the model over 1980–2010 to obtain tracking errors for 2011. We repeat
his process up till the last year in the sample, giving us 2978 tracking errors.

Table 3 presents the results. The first three columns provide the pairwise out-of-sample predictive log likelihood comparisons
sing the Diebold–Mariano test. It is clear that the PCorr model also significantly outperforms the benchmarks out-of-sample across
ll industries. This is confirmed by the model confidence sets (MCS) based on the predictive log-likelihood (PLL) as well as on
he tracking error MSE criterion. The PCorr model is always in the MCS, whereas other models enter only sporadically. Also the
incer–Zarnowitz tests confirm this result. For the PCorr model, the test only rejects in three industries, whereas the 𝑡-GAS rejects

n five, followed by the 𝑡-cDCC and SCC models, which reject in 10 of the 12 industries.
Summarizing, also in the out-of-sample analysis the results clearly point towards the PCorr model. We attribute this to the

lexibility of the PCorr model to adapt itself to each (partial) correlation separately, with a robust propagation system due to the
se of the Student’s 𝑡 distribution and the score-driven dynamics. From both our in-sample and out-of-sample analysis, it appears
hat both properties are useful for typical empirical data. The 𝑡-GAS shares the robust score-driven propagation of the PCorr model,
ut lacks the direct link to each (partial) correlation due to the use of the complex hypersphere transformation, which may explain
13
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Table 3
Out-of-sample results.

PCorr vs. PCorr vs. PCorr vs. MCS-PLL MCS-MSE Mincer–Zarnowitz

𝑡-GAS 𝑡-cDCC SCC PCorr 𝑡-GAS 𝑡-cDCC SCC PCorr 𝑡-GAS 𝑡-cDCC SCC PCorr 𝑡-GAS 𝑡-cDCC SCC

NoDur 49.98*** 24.52*** 27.72*** ✓ ✓ ✗✗✗ ✗✗

Durbl 37.98*** 26.11*** 24.54*** ✓ ✓ ✗✗ ✗✗✗

Manuf 25.29*** 28.69*** 25.38*** ✓ ✓ ✗✗✗

Enrgy 0.59 30.52*** 25.49*** ✓ ✓ ✓ ✗✗ ✗✗✗ ✗✗✗

Chems 32.29*** 28.45*** 23.85*** ✓ ✓ ✗✗✗ ✗✗✗

BusEq 50.93*** 32.90*** 28.38*** ✓ ✓ ✗✗✗ ✗✗✗ ✗✗✗ ✗✗✗

Telcm 30.85*** 26.75*** 28.86*** ✓ ✓ ✗✗✗ ✗✗✗

Utils 51.03*** 25.81*** 28.47*** ✓ ✓ ✓ ✗✗

Shops 37.75*** 25.47*** 25.83*** ✓ ✓ ✗✗✗ ✗

Health 43.75*** 25.44*** 29.14*** ✓ ✓ ✗ ✗✗✗ ✗

Money 38.58*** 32.74*** 26.92*** ✓ ✓ ✓ ✗ ✗✗ ✗✗✗ ✗✗✗

Other 41.00*** 30.79*** 23.17*** ✓ ✓ ✗ ✗✗✗

This table contains Diebold–Mariano 𝑡 statistics are reported based on the predictive log-likelihood criterion, related to the differences in predicted log-likelihood.
The symbols ∗, ∗∗, and ∗∗∗ denote statistical significance at the 10, 5, and 1 percent level, respectively. The MCS columns indicate whether the model is selected
or the 95% model confidence of Hansen et al. (2011) based on predictive log-likelihood (PLL) or the tracking error MSE. Results are similar for the 99% MCS.
he final columns give the results for the Mincer–Zarnowitz regressions 𝑟𝑖,𝑡 = 𝑎0 + 𝑎1 �̂�𝑖,𝑡 + 𝑢𝑖,𝑡, where �̂�𝑖,𝑡 = 𝑟𝑖,𝑡 − 𝑒𝑖,𝑡 is the (recursive) return forecast using one of
he models using Eqs. (17)–(18), and 𝑒𝑖,𝑡 evaluated at the least-squares estimates. The symbols ✗, ✗✗, and ✗✗✗ indicate rejection of 𝐻0 ∶ 𝑎0 = 0, 𝑎1 = 1, at the

10%, 5%, and 1% significance level, respectively, using the suitable heteroskedasticity and autocorrelation consistent (HAC) estimator for the covariance matrix
of the regression parameters as suggested by for instance White (1980) and MacKinnon and White (1985).

Table 4
In-sample performance in the 23-dimensional application.

PCorr-Full PCorr-EbE 𝑡-cDCC SCC

log-Lik AIC 𝛥log-Lik 𝛥AIC 𝛥log-Lik 𝛥AIC 𝛥log-Lik 𝛥AIC

ALL −130750.99 263021.99 −200.45 400.91 −358.70 708.30 −363.39 1740.13

In-sample log-likelihood and AIC for the PCorr model as values and increments for the dynamic partial correlations model (PCorr)
estimated by full maximum likelihood (PCorr-Full) or by the sequential equation-by-equation approach of Section 2.5 (PCorr-EbE),
the 𝑡-cDCC model of Creal et al. (2011), or the SCC model of Palandri (2009). Values of log-likelihood and AIC are presented
for the benchmark (PCorr-Full), and changes compared to the benchmark for the other methods.

hy it performs less well. The 𝑡-cDCC, on the other hand, retains the direct link to the pairwise correlations, but lacks the robust
propagation mechanism. Finally, the SCC model also uses a recursive set-up like the PCorr model does, but does so in a very different
way and also lacks the robust propagation mechanism of the PCorr model.

Fig. 4 shows the different 𝛾𝑗,𝑡 parameters for 𝑗 = 𝑀𝐾𝑇 ,𝑆𝑀𝐵,𝐻𝑀𝐿. The figure shows that though the secular movements of
the models align, there can also be episodes where the time-varying parameters differ substantially between models. The 𝛾s in this
industry for the PCorr model also appear somewhat smoother than for the benchmark models. As argued in Francq and Zakoian
(2019), this may increase the applicability of the model if one believes the 𝛾s to be more stable over time and not change erratically
from one day to another.

4.4. Application to 20 US stocks and 3 risk factors

In our second empirical application, we consider a larger number of assets. We use 20 individual US stocks form the Dow Jones
index for which we have complete time series available over the period 1992–2022. The stocks are given in Table 5. Next to the
20 stocks, we also again consider the three Fama–French risk factors, making up a 23-dimensional setting in total. We compare the
PCorr, the 𝑡-DCC and the SCC model, but leave out the 𝑡-GAS model in the current comparison. The 𝑡-GAS uses a matrix to scale
the score, which has 0.5 ⋅ 23(23 − 1) rows and columns, so over 64k elements at each time point. Handling the 𝑡-GAS in this setting
therefore becomes computationally cumbersome, particularly when searching over the current high-dimensional parameter space.

To lever on the recursive structure of the PCorr model, we estimate its parameters in this second application using both the
sequential estimation approach (PCorr-EbE) explained in Section 2.5 and a full ML optimization (PCorr-Full) starting from the
sequential estimates. The sequential estimation gives a similar computation time as for the SCC model; see the note to Table 5.
Computing the full MLE, obviously, is computationally much more cumbersome as there are 1

2 ⋅ 23 ⋅ 22 = 253 dynamic correlations,
each with their own 𝜔𝑖,𝑗|𝐿𝑖𝑗

, 𝛼𝑖,𝑗|𝐿𝑖𝑗
, and 𝛽𝑖,𝑗|𝐿𝑖𝑗

parameters. Together with the degrees of freedom parameter, this gives 760 parameters
o be estimated via a non-linear numerical optimization. Still, the estimator converges when started from the sequential estimates.

We perform an in-sample analysis over the entire data range 1992–2022, as well as an out-of-sample analysis. The initial sample
or the latter consists of the years 1992–2009. Next, we recursively use the model to forecast one-period-ahead for a one year period,
fter which we update the sample by that year and re-estimate all models. The in-sample results can found in Table 4 and in Table
14

.5 in the online appendix. The results for the out-of-sample analysis are presented in Table 5.



Journal of Econometrics 241 (2024) 105747E. D’Innocenzo and A. Lucas
Fig. 4. Recursive one-step-ahead forecasts of the conditional risk loadings 𝛾𝑀𝑘𝑡,𝑡, 𝛾𝑆𝑀𝐵,𝑡, 𝛾𝐻𝑀𝐿,𝑡 from (17)–(18), for the NoDur industry (model re-estimated
annually).

In-sample, Table 4 shows that the PCorr model estimated by full-maximum likelihood has the best log-likelihood value. The
changes with respect to this benchmark are all negative for the log-likelihood, and positive for the AIC. As shown in Table C.5,
these results are statistically significant using both a Diebold–Mariano test or a Model Confidence Set.

In Table 5 we present the out-of-sample results for the full 23-dimensional system. The top part of the table shows that when
comparing the predictive log-likelihood values, the PCorr model again outperforms its competitors also in this higher dimensional
out-of-sample setting. Both the Diebold–Mariano tests and the MCS point in the same direction: the PCorr estimated by full maximum
likelihood performs best, followed by the PCorr estimated by the sequential estimation strategy. Both are in the model confidence
set. Also when looking at the asset pricing implications of the models for the individual assets, we see that the PCorr model estimated
by full maximum likelihood mostly outperforms the other models and is most often in the MCS. For 19 out of the 20 stocks, the
PCorr estimated using the full ML estimator enters the MCS, accompanied by the PCorr estimated with the sequential approach
for 6 stocks. Only for 1 out of the 20 stocks, the PCorr with the full ML is not in the MCS, whereas the PCorr with the sequential
estimation approach is together with the other two models. In the end, there are only 2 stocks for which the 𝑡-cDCC and the SCC
are in the MCS.

The results for the in-sample analysis in Table C.5 in the appendix are even more supportive of the PCorr model: the model is
always in the in-sample MCS for the full ML estimator (20 out of 20 stocks), and for 15 out of 20 stocks also the PCorr with the
sequential estimation approach is in the MCS. Only for 4 stocks, the SCC is also in the MCS, whereas the 𝑡-cDCC only enters the
MCS once. We conclude that the current higher dimensional application confirms our earlier empirical results: also in these higher
dimensional settings, and using the sequential estimation strategy from Section 2.5, the PCorr model provides good correlation
dynamics in a flexible and robust way. The model can therefore be a good benchmark in other empirical analyses.

5. Conclusions

In this paper we introduced a recursive model for correlation matrix dynamics based on partial correlations and score-driven
dynamics. The model’s structure provided flexibility and interpretability, without loosing computational tractability. We provided
two estimation strategies for the model’s static parameters: a full multivariate maximum likelihood optimization, or a cascade of
small-scale maximum likelihood estimations based on bivariate data slices.

The recursive structure of our model ensured stationarity and ergodicity as well as filter invertibility for any fixed dimension. The
required conditions remained of similar complexity as in the univariate time-varying correlation setting and are based on bivariate
data slices only. The proof relied on the theory of perturbed stochastic recurrence equations and could be applied to a cascade
15



Journal of Econometrics 241 (2024) 105747E. D’Innocenzo and A. Lucas
Table 5
Out-of-sample performance in 23-dimensional application.

PCorr-Full vs. PCorr-Full vs. PCorr-Full vs. MCS

PCorr-EbE 𝑡-cDCC SCC PCorr-Full PCorr-EbE 𝑡-cDCC SCC

DM𝑃𝐿𝐿 DM𝑃𝐿𝐿 DM𝑃𝐿𝐿

ALL 107.71*** 197.42*** 149.97*** ✓ ✓

DM𝑀𝑆𝐸 DM𝑀𝐴𝐸 DM𝑀𝑆𝐸 DM𝑀𝐴𝐸 DM𝑀𝑆𝐸 DM𝑀𝐴𝐸

APPL 1.58 0.45 −3.55*** −6.75*** −7.75*** −7.73*** ✓ ✓

AXP −1.55 −2.99*** −4.67*** −8.31*** −5.17*** −7.15*** ✓

BA −2.68*** −2.72*** −10.07*** −11.89*** −4.80*** −6.83*** ✓

CAT −2.26*** −0.75 −6.08*** −9.35*** −6.14*** −8.05*** ✓

CSCO −0.36 −1.41 −5.30*** −8.38*** −7.59*** −10.76*** ✓ ✓

DOW 4.00*** 3.79*** 1.95** 0.21 1.10 −0.00 ✓ ✓ ✓

HD −2.57*** −2.52*** −5.45*** −8.67*** −5.30*** −8.11*** ✓

IBM 0.12 −0.72 −8.10*** −9.92*** −7.83*** −10.37*** ✓ ✓

INTC 0.74 0.17 −7.21*** −11.63*** −6.70*** −8.71*** ✓ ✓

JNJ −2.49*** −2.28*** −7.44*** −10.51*** −7.09*** −8.25*** ✓

JPM −8.81*** −8.74*** −5.62*** −10.34*** −4.63*** −6.26*** ✓

KO −6.83*** −7.56*** −3.86*** −8.56*** −5.90*** −9.10*** ✓

MCD −2.14*** −3.50*** −4.56*** −7.78*** −3.25*** −5.31*** ✓

MMM −4.32*** −5.50*** −5.33*** −8.17*** −5.28*** −7.47*** ✓

MRK −2.43*** −2.43*** −5.36*** −7.91*** −7.28*** −8.35*** ✓

PFE −4.10*** −4.55*** −4.45*** −8.79*** −3.62*** −7.30*** ✓

PG −4.14*** −3.37*** −4.72*** −6.89*** −5.66*** −6.68*** ✓

UTX −0.65 −2.09*** −6.33*** −10.15*** −6.15*** −8.40*** ✓

V −6.80*** −7.96*** −2.09*** −2.47*** −5.27*** −6.39*** ✓

WMT 4.59*** 3.55*** 1.55 −1.21 0.20 −2.33*** ✓ ✓ ✓ ✓

In the top-part of the table, we report the Diebold–Mariano statistics and MCS based on the predictive log-likelihood for the full 23-variate system. In the
bottom part of the table, we report the asset pricing implications for each of the individual stocks based on the tracking errors. Here, the Diebold–Mariano 𝑡
statistics are reported based on the tracking error MSE and MAE from Eqs. (17)–(18). The MCS columns indicate whether the model is selected for the 95%
model confidence set based on MSE. The PCorr, 𝑡-cDCC, and SCC model contain 760/47/1265 parameters, respectively, and take 2116/1019/2309 s to estimate.
The initial in-sample estimation period is from 1992–2009. The models are used for a one-year period to generate one-step-ahead forecasts. Then the sample is
updated and all models are re-estimated. The entire out-of-sample period is from 2010–2022.

of bivariate (conditional) models. Using the stationarity and invertibility properties of the model and its filter, we were also able
to prove consistency and asymptotic normality of the maximum likelihood estimator. Both in simulations and in in-sample and
out-of-sample applications to US stock returns, the new model outperformed benchmarks such as the Student’s 𝑡 based cDCC and
multivariate volatility GAS models, as well as the SCC model.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2024.105747.
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