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Abstract: The present study presents a computational investigation into the thermal mixing along
with entropy generation throughout the natural convection flow within an arbitrarily eccentric
annulus. Salt water is filled inside the eccentric annulus, in which the outer and inner cylinders have
Tc and Th constant temperatures. The Boussinesq approximation is used to develop the governing
equations for the natural convection flow, which are then solved on a structured quadrilateral mesh
using the OpenFOAM software package (FOAM-Extend 4.0). The computational simulations are
performed for Rayleigh numbers (Ra = 103–105), eccentricity (ϵ = 0, 0.4, 0.8), angular positions
(φ = 0◦, 45◦, 90◦), and Prandtl number (Pr = 10, salt water). The computational results are visualized
in terms of streamlines, isotherms, and entropy generation caused by fluid friction and heat transfer.
Additionally, a thorough examination of the variations in the average and local Nusselt numbers,
circulation intensity with eccentricities, and angular positions is provided. The optimal state of heat
transfer is shown to be influenced by the eccentricity, angular positions, uniform temperature sources,
and Boussinesq state. Moreover, the rate of thermal mixing and the production of total entropy
increase as Ra increases. It is found that, compared to a concentric annulus, an eccentric annulus has
a higher rate of thermal mixing and entropy generation. The findings show which configurations
and types of eccentric annulus are ideal and could be used in any thermal processing activity where a
salt fluid (Pr = 10) is involved.

Keywords: natural convection; OpenFOAM simulations; eccentric annulus; isotherms; streamlines;
entropy generation

MSC: 80A20; 74S10; 76A02; 76E06; 76Rxx

1. Introduction

In fluid mechanics, a natural convection flow is a type of heat transfer whereby
fluid movement arises from the density differences within a fluid due to temperature
variations. A fluid rises when heated because it expands and loses density. Conversely,
when it is cooled, it contracts and becomes denser, leading it to sink. This spontaneous
fluid movement caused by buoyancy forces brought about by density gradients produces a
natural flow pattern known as natural convection. Notably, there are no external mechanical
devices driving the fluid motion in such flows. Owing to the considerable number of
applications in diverse industries and scientific domains, studies on natural convection
heat transport in circular and eccentric enclosures, like pipes, tubes, or cylinders, have
garnered significant attention from both academia and industry. Some notable applications
include the design and analysis of wellbores and pipelines, the oil and gas industry, cooling
systems, underground electric cables, solar water heaters, nuclear reactor cooling, food
processing, geothermal energy systems, chemical reactors, and many more [1–7]. For
instance, in drilling operations, wellbores are often drilled through geological formations
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to extract oil or gas. During this process, the wellbore may not always be perfectly centered
within the surrounding casing or formation, leading to an eccentric annulus. The above-
mentioned applications highlight the importance of understanding and utilizing natural
convection within annular enclosures in various engineering and scientific contexts.

In 1931, Beckmann [8] introduced the first experimental study of horizontal annular en-
closures. For the first time, in 1961, Crawford and Lemlich [9] introduced two-dimensional
computational simulations to solve steady-state laminar natural convection flows inside
horizontal concentric cylinders utilizing finite difference schemes. In their study, numerical
simulations were visualized through streamlines and isotherm contours for Pr = 0.714.
In 1964, Abbott [10] presented the numerical results for a narrow, horizontally aligned
concentric cylindrical annulus by solving the conservation laws for laminar natural con-
vection flows at steady state with flow parameters Gr = 1010 and Ra = 103. Later, Mack
and Bishop [11] investigated two-dimensional natural convection at steady state within
horizontal concentric cylinders for low Rayleigh numbers (Ra = 300, 3000) with varing
Prandtl numbers (0.02 ≤ Pr ≤ 0.70). They illustrated the numerical results through
the isotherms and streamlines and found that Pr had a higher-order effect on the total
heat transport; it only arose for the fourth and higher powers of Ra. Moukalled and
Acharya [12] demonstrated numerical solutions for natural convection thermal mixing
in a heated horizontal cylinder positioned concentrically within a square enclosure with
Pr = 0.71, 103 ≤ Ra ≤ 107 and different aspect ratios.

Extensive research has been carried out the natural convection thermal mixing in
a horizontally aligned cylindrical annulus, spurred by the previously described inves-
tigations. Powe et al. [13] studied the natural convection within horizontal cylindrical
annuli for Pr = 0.71. Kuehn and Goldstein [14] carried out both numerical and experi-
mental studies on the natural convection thermal mixing inside a horizontal annulus to
expand the understanding of the velocity and temperature distributions as well as the
local heat transfer coefficients. For a wide range of Ra, from conduction to the steady
flow phase dominated by convection, Kumar [15] numerically investigated the natural
convection thermal mixing of fluids in horizontally aligned annulus enclosures. The
findings predicted that the heat transfer rate would increase with an enlargement in Ra
based on the same temperature differential for the inner cylinder with a constant heat
flux. Labonia and Guj [16] conducted an experimental study of the transition from a
steady laminar to a chaotic flow in a horizontal annulus between concentric cylinders for
0.90 × 105 ≤ Ra ≤ 3.37 × 105. Later, Dyko et al. [17] reported an investigation into the
natural convection flows inside a horizontal cylindrical annulus at Ra approaching and
above the critical values using both numerical and experimental methods. Shahrani and
Zeitoun [18] performed a numerical analysis of the natural convection thermal mixing
between two horizontal concentric cylinders with two fins attached to the inner cylin-
der using the finite element method. They demonstrated that the thermal resistance
declined as the fin length increased. Subsequently, Teertstra et al. [19] created an ana-
lytical model to analyze the natural convection thermal mixing in concentric spherical
enclosures. The convective component of this model was determined by combining the
two limiting situations of laminar boundary layer convection and transition flow con-
vection, which involved the linear superposition of conduction and convection solutions.
Sankar et al. [20] quantitatively examined the natural convection of an electrically conduct-
ing fluid in the presence of an axial or radial magnetic field in a vertical cylindrical annulus
with a low Prandtl number (Pr = 0.054). The findings demonstrate that in shallow cavities,
an axial magnetic field effectively controls the flow and heat transmission, whereas, in tall
cavities, a radial magnetic field accomplishes this. Recently, Alsabery et al. [21] illustrated
finite-element-based numerical simulations of the natural convection thermal mixing of
a blood-filled horizontally aligned concentric annulus. According to this study, a low
power-law index enhances the heat transfer rate and fluid flow. Rana et al. [22] reported
OpenFOAM-based steady-state numerical simulations to investigate the natural convection
thermal mixing inside a horizontally aligned concentric annulus at constant temperatures.



Axioms 2024, 13, 233 3 of 23

In contrast to the concentric cylindrical annulus, there is comparatively less research
on the natural convection between two eccentric cylinders. Generally, these studies have
been focused on the annuli between two eccentric cylinders that are either vertically or
horizontally oriented. Trombetta [23] investigated the energy equation solutions that met
specific fundamental boundary requirements for laminar forced convection thermal mixing
flows in eccentric annuli. Later, Kuehn and Goldstein [24] conducted an experimental
study to determine the impacts of the eccentricity, rotation angle, and Rayleigh number
(2.2 × 102 ≤ Ra ≤ 7.7 × 107) on the natural convection thermal mixing in concentric and
eccentric horizontal cylindrical annuli. Chakrabarti et al. [25] determined the geometrical
arrangements of the air-filled, horizontal eccentric annuli that offered the highest level of
thermal insulation in accordance with different temperature constraints. In an annulus
between two eccentric horizontal isothermal tubes, Badr [26] investigated numerically the
laminar free convective thermal mixing for various diameter ratios and 0 ≤ Ra ≤ 104.
This work demonstrates that, for smaller-diameter annuli, eccentricity still has a significant
impact on the total thermal mixing coefficient throughout a larger range of Ra. Prusa
and Yao [27] studied numerically the laminar natural convection thermal mixing in both
vertically and horizontally aligned eccentric cylinders. The findings show that while the
buoyancy increases with the Grashof number, eccentricity still has a major impact on
the thermal mixing and flow fields in eccentric cylinders. Moreover, buoyancy boosts
the average heat transfer. For a steady-state, laminar natural convection flow, Guj and
co-authors [28,29] carried out both experimental and numerical studies on the thermal
mixing and heat transfer in a two-dimensional horizontally eccentric annulus. The findings
show that the inner cylinder’s horizontal eccentricity significantly changes the thermal
field and plume shape, while also providing, contrary to established numerical conclusions,
a non-zero azimuthal flow rate in the channel between the two cylinders. Following
this, Shu et al. [30] conducted a systematic examination of the impact of the eccentricity
and angular position on the flow and thermal fields by numerically studying the natural
convective thermal mixing in a horizontal eccentric annulus. In an annulus formed between
two horizontal eccentric circular cylinders, Mahfouz [31] predicted numerically the natural
convection thermal mixing. In their study of free convection in horizontal concentric annuli
with varied inner shapes (cylindrical, elliptical, square, or triangular), Yuan et al. [32]
demonstrated the flow and thermal fields using streamlines and isotherms. In a recent
study, Talukdar and Tsubokura [33] presented numerical results regarding how the aspect
ratio of a cooled square outer enclosure and the cylinder’s position at high Ra affected the
natural convection thermal mixing characteristics of a stationary 2D horizontal cylinder.
Shahsavar et al. [34] examined the hydrothermal features based on the first and second
laws of thermodynamics in a naturally cooled eccentric horizontal annulus filled with a
non-Newtonian nanofluid. Al-Sumaily et al. [35] presented a numerical analysis of the
effects of the sphere diameter and porosity on the natural convection thermal mixing inside
an eccentric annulus packed with stationary spheres.

Most of the eccentric annulus applications described above are closely related to
energy consumption. The goal when constructing any thermal system is to use valuable
resources as efficiently as possible. Therefore, it is necessary to analyze natural convection
in an energy-efficient manner in order to potentially optimize the energy inside a system.
Despite the availability of numerous advanced optimization techniques, entropy generation
minimization (EGM) [36] is a rather practical method for the analysis and maximization
of energy systems in engineering applications. The effectiveness of the EGM method
stems from its ability to provide a clear understanding of the irreversibilities that control
a system’s efficiency by adding concepts from fluid mechanics and thermal mixing to
the second law of thermodynamics. As a result, EGM is of significant interest in thermal
mixing and receives a lot of attention from researchers. The extensive range of applications
makes the research of entropy generation resulting from natural convection thermal mixing
in concentric and eccentric annulus particularly significant. Mahmud and Fraser [37]
examined the features of the fluid flow and heat mixing inside a cylindrical annulus using
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entropy generation based on the first and second laws (of thermodynamics). According
to their research, if the inner cylinder rotated more than the outer, the entropy generation
rate would exhibit asymptotic behavior close to the outer cylinder. In the entry region of
a concentric cylindrical annulus, Haddad et al. [38] examined the entropy generated by
laminar forced convection thermal mixing and discovered that thermal entropy generation
was comparatively more prominent than viscous entropy generation. Yari [39] focused on
improving the thermal mixing efficiency along with the fluid flows within a microannulus,
and they discovered that as the Knudsen number increased, the entropy generation was
reduced. For natural convection inside a vertically concentric annulus, Chen et al. [40]
methodically examined the impacts of Ra, the annulus’s curvature, and Pr on the flow
pattern, temperature distribution, and entropy generation. Nevertheless, to the best of the
authors’ knowledge, no prior attempt has been made to investigate the thermal mixing and
entropy generation that occurs during the natural convection flows within an arbitrarily
eccentric annulus. Therefore, efforts must be made to improve the knowledge of the
irreversibilities of the fluid flow and thermal mixing during natural convection flows inside
arbitrarily eccentric annuli.

The primary aim of the present research is to investigate the entropy generation caused
by heat transfer and fluid friction, and the fluid flow and thermal mixing, in the natural
convection process inside an arbitrary eccentric annulus filled with an incompressible
fluid subject to the thermal uniform boundary condition. The aim is also to investigate
and evaluate the roles that the inner cylinder eccentricity and angular position play in
enhancing the thermal mixing and reducing entropy formation. For this purpose, Open-
FOAM, an open-source computational fluid dynamics software tool, is utilized to solve
the highly nonlinear Navier–Stokes equations related to the flow fields, thermal mixing,
and mechanism of entropy generation. Numerical simulations are conducted for various
parameters: the Prandtl number (Pr = 10, salt water), Rayleigh numbers (103 ≤ Ra ≤ 105),
inner cylinder eccentricities (ϵ = 0, 0.4, 0.8), and angular positions (φ = 0◦, 45◦, 90◦). Salt
water is typically used in heat and mass transfer processes due to its unique properties,
such as its higher thermal conductivity and ability to absorb or release large amounts of
heat. The contours of the isotherms, streamlines, entropy generation from heat transfer,
and fluid friction are used to describe the numerical simulation findings. Additionally,
the implications of the eccentricity, angular location, and Rayleigh number on the entropy
generation as a result of fluid and thermal irreversibilities are discussed. As part of the
natural convection process, an analysis was also performed to evaluate the average and
local Nusselt values.

2. Mathematical Formulation
2.1. Problem Setup

In this study, we investigate the laminar natural convection flow in two dimensions
at steady state in an incompressible Newtonian fluid embedded in an arbitrary eccentric
cylindrical annulus. A schematic diagram of the natural convection thermal mixing problem
in an annulus formed within two long horizontal eccentric cylinders and the mesh point
distribution is illustrated in Figure 1. In this diagram, Ro and Ri are the radii of the outer
and inner cylinders, respectively. The geometric relationship between the outer and inner
cylinders may be delineated by the eccentricity (ϵ ≤ L, where L = Ro − Ri) and angular
positions (0◦ ≤ φ ≤ 90◦). In this study, the outer and inner cylinders have uniform
temperatures of To = 288 K and Ti = 298 K, respectively, with the condition Ti > To. In this
arrangement, the outer cylinder can be regarded as the cold wall and the inner cylinder
as the hot wall. We assume that the salt fluid fills the eccentric annulus in this case. For
the numerical simulations, we set L/Ri = 1.6. Additionally, the gravitational force g is
configured in the negative y-direction. The presence of a temperature gradient leads to
the thermal expansion of the fluid in the domain. This leads to a buoyancy-induced flow,
which in turn causes natural convection.
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Figure 1. Schematic representation of the physical system in (a) three dimensions and (b) two
dimensions. (c) Structured quadrilateral mesh.

2.2. Governing Equations

In this study, two-dimensional numerical simulations are conducted by solving the
mass, momentum under Boussinesq approximation, and energy equations for the steady-
state natural convection flow within an arbitrary eccentric annulus. These equations can be
written as follows:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2

)
, (2)

u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂y

+ ν

(
∂2v
∂x2 +

∂2v
∂y2

)
+ gβ(T − Tc), (3)

u
∂T
∂x

+ v
∂T
∂y

= α

(
∂2T
∂x2 +

∂2T
∂y2

)
. (4)

The corresponding boundary conditions are given below:

u = 0, v = 0, T = Tc at r = Ro,

u = 0, v = 0, T = Th at r = Ri,
(5)

where (x, y) are the rectangular Cartesian coordinates; (u, v) are the corresponding ve-
locity components; T denotes the temperature; ν and α are the kinematic viscosity and
thermal conductivity, respectively; p is the pressure; ρ is the density; and Th and Tc are the
temperature in the hot inner cylinder and cold outer cylinder, respectively.
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Using the following change of variables,

X =
x
L

, y =
y
L

, U =
uL
α

, V =
vL
α

, θ =
T − Tc

Th − Tc
,

P =
pL2

ρα2 , Pr =
ν

α
, Ra =

gβ(Th − Tc)L3Pr
ν2

(6)

the governing Equations (1)–(5) are reduced to a non-dimensional form,

∂U
∂X

+
∂V
∂Y

= 0, (7)

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+ Pr
(

∂2U
∂X2 +

∂2U
∂Y2

)
, (8)

U
∂V
∂X

+ V
∂V
∂Y

= − ∂P
∂Y

+ Pr
(

∂2V
∂X2 +

∂2V
∂Y2

)
+ Ra Pr θ, (9)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2 +
∂2θ

∂Y2 . (10)

with the boundary conditions

U = 0, V = 0, θ = 0 at r = Ro,

U = 0, V = 0, θ = 1 at r = Ri.
(11)

In the above-mentioned equations, (U, V) are the dimensionless velocity components in the
dimensionless rectangular Cartesian coordinates (X, Y); θ is the dimensionless temperature;
P is the dimensionless pressure; Ra and Pr represent the Rayleigh and Prandtl numbers,
respectively; β denotes the thermal expansion coefficient; and L represents the characteristic
length chosen as the gap within an eccentric cylindrical annulus, i.e., L = Ro − Ri.

2.3. Heat Transfer Parameters
2.3.1. Streamfunction

The streamfunction (ψ), which is derived from the velocity components (U, V), is
used to depict the fluid motion. For two-dimensional flows, the relationships between the
streamfunction and velocity components are

U =
∂ψ

∂Y
and V = − ∂ψ

∂X
, (12)

which produce a solitary equation:

∂2ψ

∂X2 +
∂2ψ

∂Y2 =
∂U
∂Y

− ∂V
∂X

. (13)

According to the definition of the streamfunction given above, the positive sign of ψ
indicates circulation that is moving counter-clockwise, and the negative sign of ψ indicates
circulation that is moving clockwise.

2.3.2. Nusselt Numbers

After the distributions of the streamfunction and isotherms are generated, the char-
acteristics of flow and heat transport may be readily determined. The streamfunction
distribution facilitates the plotting of the flowfield in terms of streamlines and the determi-
nation of the flow velocity, while the isotherm distribution helps to locate the heat transfer
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findings in terms of local and mean Nusselt numbers. At the inner and outer cylinders, the
local Nusselt number is defined as

Nuin
lo = −

(
∂T
∂Sn

)
i

Di
(Ti − To)

,

Nuou
lo = −

(
∂T
∂Sn

)
o

Do

(Ti − To)
,

(14)

where Do and Di denote the diameters of the outer and inner cylinders, respectively. Sn is
the heat flux normal to the wall in the local direction. For the inner and outer cylinders, the
average (mean) Nusselt numbers are given by

Nuin
av =

1
2π

∫ 2π

0
Nuin

lo dPin,

Nuou
av =

1
2π

∫ 2π

0
Nuou

lo dPou,
(15)

where Pin and Pou are the perimeters of the inner and outer cylinders, respectively.

2.3.3. Entropy Generation

The associated irreversibilities in natural convection systems are caused by fluid fric-
tion and heat transfer [36]. The dimensionless local entropy generation for two-dimensional
heat and fluid movement in Cartesian coordinates (X, Y) in explicit form is as follows from
the local thermodynamic equilibrium based on the hypothesis of linear transport:

Sθ,l =

[(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2
]

, (16)

and

Sψ,l = ϕ

{
2

[(
∂U
∂X

)2
+

(
∂U
∂Y

)2
]
+

(
∂U
∂X

+
∂V
∂X

)2
}

, (17)

where the local entropy production resulting from heat transfer and fluid friction, re-
spectively, is denoted by Sθ,l and Sψ,l . The term ϕ in the equation above refers to the
irreversibility distribution ratio, which is defined as

ϕ =
µT0

κ

(
U0

∆T

)2
, (18)

For the sake of this study, ϕ is 10−3. A comparable outcome would also be obtained from
an order of magnitude study. At 298 K, for instance, the order of magnitude of water
is µ ∼ O(10−3) and κ ∼ O(10−1). In a representative situation, T0/∆T2 ∼ O(10), and
O(10−3) is found for ϕ. The bulk temperature, T0, is calculated as (Th + Tc)/2 in this study.

3. Numerical Implementation, Mesh Independence, and Validation Studies
3.1. Numerical Implementation

In this study, the modified ’buoyantBoussinesqSimpleFoam’ solver, which is a com-
ponent of the open-source C++ libraries of OpenFOAM (Open Field Operation and Ma-
nipulation) [41], is utilized to carry out the numerical simulations. OpenFOAM is a free
and open-source computational fluid dynamics (CFD) software program that provides a
comprehensive range of CFD solvers and utilities for the simulation of fluid flows, heat
transfer, chemical reactions, and other related phenomena. The software is extensively used
in academia, research, and industry to simulate and analyze complex fluid flow problems.
This solver uses a finite volume approach to solve a general system of partial differential
equations. It is an excellent and well-known open-source CFD tool that has several benefits,
including no license fees, easy code customization, a meshing tool, and mesh processing
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routines that are fully equipped for MPI parallelization, as well as the ability to link with
external codes. Due to these features, we choose OpenFOAM over other CFD programs for
the present study. Numerical solutions are interpolated onto the uniform meshes for flow
field visualization, and graphic methods like Tecplot 360 are utilized for this purpose.

3.2. Mesh Independence Study

Based on a thorough examination of four distinct uniform quadrilateral meshes, ‘Mesh
1–Mesh 4’, the mesh independence of the numerical findings is demonstrated for the case
of Pr = 10, Ra = 104, ϵ = 0, and φ = 0◦. Table 1 provides pertinent information about the
total elements, total nodes, and maximum skewness for the considered meshes. It can be
obtained from the table that when the mesh size is above ‘Mesh 3’, the computed average
Nussult numbers for inner and outer cylinders (Nuin

av, Nuou
av) and circulation intensity

(|ψ|max) remain unchanged. Thus, all numerical simulations are carried out using “Mesh
3”, which offers an acceptable compromise between high accuracy and computational
efficiency, in light of the previously indicated discussion.

Table 1. Mesh independence study for Pr = 10, Ra = 104, ϵ = 0, and φ = 0◦.

Mesh
Type

Total
Elements

Total
Nodes

Max
Skewness Nuin

av Nuou
av |ψ|max

Mesh 1 2352 2400 0.16447 3.3555 1.30274 13.21
Mesh 2 4802 4900 0.08069 3.3635 1.30115 12.89
Mesh 3 9702 9900 0.03990 3.3659 1.30972 12.26
Mesh 4 12,152 24,552 0.03181 3.3659 1.30972 12.26

3.3. Validation Study

To verify the reliability and accuracy of the employed OpenFOAM solver, two benchmark
test cases are considered. As a first test case, the OpenFOAM results are compared with the
experimental work of Guj and Stella [29] and the numerical results of Shu et al. [30], in which
the eccentric annulus was filled with air (Pr = 0.71). The aforementioned experimental and
numerical works were performed for ϵ = 0.5, Ra = 5.3 × 103, L/Di = 0.8. Figure 2 illustrates
the contour comparisons of the streamlines and isotherms between the experimental study
of Guj and Stella [29], the numerical works of Shu et al. [30], and OpenFOAM. The present
results reveal similar patterns for the streamline and isotherm generation observed in the
previous experiments and the numerical results. Thus, the OpenFOAM results demonstrate
strong qualitative agreement with the numerical and experimental findings.

In the second benchmark test scenario, a square enclosure is simulated for the parame-
ters Pr = 0.71 and Ra = 103. In order to replicate the situation described by Singh et al. [42],
this validation research was conducted for a differentially heated square cavity with a hot
left wall and cool right wall in the presence of adiabatic top and bottom walls. In the study
of Singh et al. [42], by maintaining the adjacent grid nodes at their respective wall tem-
peratures and defining the average temperature of the two walls at the hot–cold junction
points, the problem was overcome. In their investigation, a Gaussian quadrature-based
finite element method was employed. The obtained contours of local entropy generation
due to heat transfer Sθ and fluid friction Sψ are compared here with the numerical results
of Singh et al. [42], as illustrated in Figure 3. This figure shows that the entropy generation
findings agree satisfactorily with the earlier work [42].
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Experimental (1995) Numerical (2002) Present

(a) Streamlines

(b) Isotherms

Figure 2. Validation study: comparison of (a) streamlines and (b) isotherm contours between the
experimental work of Guj and Stella [29], the numerical works of Shu et al. [30] and the present
OpenFOAM results for an eccentric annulus at Pr = 0.71, ϵ = 0.5, and Ra = 5.3 × 103.
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Figure 3. Validation study: comparison of local entropy generation due to heat transfer Sθ and fluid
friction Sψ between FEM simulation [42] and present OpenFOAM results for a square enclosure with
the parameters Pr = 0.71, and Ra = 103.



Axioms 2024, 13, 233 10 of 23

4. Numerical Results and Discussion

This section provides a detailed analysis of the heat mixing and entropy generation
during natural convection flows within an arbitrarily eccentric annulus. The considered
eccentric annulus is filled with salt water (Pr = 10) For the numerical simulations, the
following parameters are taken into account: eccentricity (ϵ = 0, 0.4, 0.8), Rayleigh number
(103 ≤ Ra ≤ 105), and angular position (φ = 0◦, 45◦, 90◦).

This section is divided into four parts: the impacts of the Ra numbers on thermal
mixing and entropy generation in a concentric annulus are discussed in the first part.
Subsequently, the effects of the φ and Ra numbers on entropy generation and heat transfer
in an eccentric annulus at ϵ = 0.4 are explored in the second part. Then, the impacts of the
φ and Ra numbers on the thermal mixing and entropy generation in an eccentric annulus
at ϵ = 0.8 are investigated in the third part. Finally, the associated heat transfer parameters,
including the local and average Nusselt numbers, and the circulation intensity are analyzed
in the fourth part.

4.1. Case 1: Concentric Annulus with ϵ = 0 and φ = 0◦

Figure 4 illustrates the contours of the isotherms (θ), the local entropy generation
caused by thermal mixing (Sθ,l), the streamlines (ψ), and the local entropy generation
caused by fluid friction (Sψ,l) of the concentric annulus for φ = 0◦, ϵ = 0, Pr = 10 and
Ra = 103–105. It is seen that the isotherms (θ) deviate from their circular curved shape,
which indicates increasing heat convection and decreasing heat conduction, when Ra is
increased for the concentric annulus scenario. In particular, at a smaller Ra (Ra = 103),
conduction dominates the heat transfer in the annulus and the natural convection is very
weak, which causes the isotherms to move up and alters their shapes. The hot fluid rises
and generates plumes in the annulus when the Ra is raised to Ra = 104. Between the hot
inner cylinder and the cold outer cylinder, the plume starts, and between these is a layer of
cold fluid. Interestingly, both the width of the plume and the thickness of the cold layer
decrease with the increase in Ra from 104 to 105. Consequently, the formed plume of cold
fluid, which begins from the top of the cold outer cylinder and moves to the hot inner
cylinder, is formed. This phenomenon is similar to Rayleigh–Benard convection. In light of
this, the maximum local entropy generation (Sθ,l,max) resulting from heat transfer is located
close to the top and bottom portions of the outer and inner cylinders, with Sθ,l,max = 5.57
for Ra = 103, Sθ,l,max = 22.83 for Ra = 104, and Sθ,l,max = 60.38 for Ra = 105.

Conversely, the magnitude of the streamfunction (ψ) allows one to observe the fluid
flow inside the concentric annulus. It is observed that the natural convection flow is quite
weak at a low Ra (Ra = 103) and that conduction is the main source of heat transfer. Thus,
two symmetric vertices caused by natural convection can be observed. As expected, due to
the cold outer walls, the fluids rise up from the middle portion of the inner wall and flow
down along the outer walls, forming two symmetric rolls with clockwise and anti-clockwise
rotations inside the concentric annulus. Moreover, the magnitude of the streamfunction is
very low, i.e., |ψ|max = 2.2. As Ra increases, the location of the configuration cell moves up.
In addition, the magnitudes of the streamfunctions increase and are found to be |ψ|max = 12
and 31 for Ra = 104 and Ra = 105, respectively. Because of the huge velocity gradient in the
vicinity of the left and right sides of the inner and outer cylinders, wherein the circulation
cells come into contact with the annulus, the entropy production resulting from the fluid
friction is likewise very poor for Ra = 103. It is determined that, for Ra = 103, 104, and
104, respectively, the highest values of Sψ,l are 1.035, 52.88, and 1410.59 (see Figure 4). The
distribution of Sψ,l in these places is indicated by the compact contours of Sψ nearby the
center part of the left and right sides of the inner and outer cylinders. Because there is
a smaller velocity gradient here, some trivial Sψ values are observed in the center of the
concentric annulus for all Ra values.
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(a) Ra = 103 (b) Ra = 104 (c) Ra = 105

θ

ψ

Sθ

Sψ

Figure 4. Contours of isotherms (θ), local entropy generation caused by heat transfer (Sθ,l), stream-
function (ψ), and local entropy generation caused by fluid friction (Sψ,l) of the concentric annulus
(φ = 0 and ϵ = 0) for Ra = 103–105.

4.2. Case 2: Eccentric Annulus with ϵ = 0.4 and φ = 0◦, 45◦, 90◦

Figures 5 and 6 illustrate the contours of the isotherms (θ), the local entropy generation
caused by thermal mixing (Sθ,l), the streamlines (ψ), and the local entropy generation
caused by fluid friction (Sψ,l) of the eccentric annulus for Pr = 10, ϵ = 0.4, Ra = 103–105

with different angular positions φ = 0◦, 45◦, 90◦. For the case of a vertically eccentric
annulus (φ = 0◦), with an isothermally hot inner cylinder and cold outer cylinder, the fluid
rises against gravity from the center of the inner cylinder due to buoyancy and rolls down
the cold outer cylinder to generate two symmetric rolls inside the eccentric annulus cavity
that rotate clockwise and counterclockwise. Regarding the eccentric annulus with certain
angular positions (φ ̸= 0◦), the effect of both the tangential and normal components of the
buoyancy force relative to the hot inner cylinder plays a critical role in both the flow and
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thermal characteristics. As the angular position increases, the buoyancy force along the
hot inner cylinder gradually increases, leading to stronger anticlockwise fluid circulation.
This is also due to an increase in the tangential component of the buoyancy force, which is
zero in the case of the vertically eccentric annulus (φ = 0◦). Notably, the inner cylinder is
always surrounded by a thermal boundary layer, while the presence of a boundary layer
on the outer cylinder depends on the inner cylinder’s position. When the inner cylinder is
moved near the top with eccentricity, there is no boundary layer on the bottom portion of
the outer cylinder. The results indicate that the fluid circulation, isotherms, and entropy
generation are strongly dependent on the angular position (φ) as well as the eccentricity
(ϵ) of the eccentric annulus.

φ = 0o

θ

ψ

Sθ,l

Sψ,l

φ = 45o φ = 90o

Figure 5. Contours of isotherms (θ), local entropy generation caused by thermal mixing (Sθ,l),
streamfunction (ψ), and local entropy generation caused by fluid friction (Sψ,l) of an eccentric annulus
for ϵ = 0.4, Ra = 103 with different angular positions φ = 0◦, 45◦, 90◦.
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φ = 0o

θ

ψ

Sθ,l

Sψ,l

φ = 45o φ = 90o

Figure 6. Contours of isotherms (θ), local entropy generation caused by thermal mixing (Sθ,l),
streamfunction (ψ), and local entropy generation caused by fluid friction (Sψ,l) of an eccentric annulus
for ϵ = 0.4, Ra = 105 with different angular positions φ = 0◦, 45◦, 90◦.

Figure 5 displays the contours of the isotherms, the streamlines, and the entropy
generation quantities of an eccentric annulus for Pr = 10, ϵ = 0.4, Ra = 103 with angular
positions φ = 0◦, 45◦, 90◦. Because of the influence of the eccentric annulus’s angular
position, the isotherms and associated plume formation have a slightly curved characteristic
at low Ra. All angular points of the isotherms exhibit compression at the top of the outer
cold cylinder and the bottom part of the heated inner cylinder. As a result, the top part of
the outer cylinder and the bottom portion of the inner cylinder both have the same amount
of maximal entropy formation as a result of heat transmission for φ = 0◦ (Sθ,l,max = 5.46),
φ = 45◦ (Sθ,l,max = 5.57), and φ = 90◦ (Sθ,l,max = 5.57). The low-magnitude streamfunction
illustrates the feeble fluid flow inside the eccentric annulus. At low Ra (Ra = 103), with
an increasing angular position, the fluid flow’s intensity rises as |ψ|max = 2.2, 3.63, 4.7 for
φ = 0◦, 45◦, 90◦, respectively. Because of the significant velocity gradient in the vicinity of
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the inner and outer cylinders, where the circulation cells come into contact with the eccentric
annulus’s cylinders, there is also relatively little entropy formation from fluid friction. For
φ = 0◦, 45◦, and 90◦, respectively, the highest value of Sψ,l (Sψ,l,max) is determined to be
0.79, 1.29, and 1.73. The local distribution of Sψ,l in these places is indicated by the dense
contours of Sψ,l associated with the inner and outer cylinders. Because of the lower velocity
gradient, an insignificant Sψ,l is discovered at the eccentric annulus’s core for all angular
positions (φ = 0◦, 45◦, and 90◦). The left portion of the eccentric annulus experiences the
gradual distortion of the isotherms and plume production as Ra rises to 104 at Pr = 10
and ϵ = 0.4. The commencement of convection also causes an increase in the fluid flow
intensity. As seen in Figure 6, the 104 convection gradually begins, and the 105 convection
patterns are intensified.

Convection takes over inside the eccentric annulus when the Ra rises to 105, caused
by an increase in buoyancy-driven forces. Due to the heightened convection at high Ra
(105), independent of φ, the isotherms and concomitant plume formation are significantly
deformed in the right portion of the eccentric annulus, as shown in Figure 6. Additionally,
it is noted that, by comparison with the previous case at Ra = 105, the generated plumes
are compressed at the upper portions of the hot inner cylinder (0.8 ≤ θ ≤ 0.95 for φ = 0◦,
0.75 ≤ θ ≤ 0.95 for φ = 45◦, 0.7 ≤ θ ≤ 0.95 for φ = 90◦) and the upper portion of the cold
outer cylinder (0.05 ≤ θ ≤ 0.50 for φ = 0◦, 0.05 ≤ θ ≤ 0.75 for φ = 45◦, 0.05 ≤ θ ≤ 0.7
for φ = 90◦). The extremely compressed parts of the temperature distribution at all
angular points are the active zones of local entropy formation caused by heat transport.
It is observed that near the lower portion of inner cylinder, due to the high temperature
gradients in these regions, the highest value of heat-related entropy generation (Sθ,l , max)
is 71.26 for φ = 0◦, 68.49 for φ = 45◦, and 63.91 for φ = 90◦ (Figure 6). The remaining parts
of the eccentric annulus show negligible Sθ,l values because there are fewer temperature
gradients, regardless of φ. The streamline structure is discovered to be asymmetrical
in terms of the angular positions, akin to the preceding case (Ra = 103). However, the
significance of the streamfunction is greater than in the preceding situation (Ra = 103)
because of the increase in the fluid flow intensity inside the eccentric annulus, as shown
by Sψ,l,max = 22 for φ = 0◦, Sψ,l,max = 25 for φ = 45◦, and | Sψ,l,max = 31 for φ = 90◦ (see
Figure 6). It should be noted that, in comparison to Ra = 103, there is a larger amount of
local entropy production due to fluid friction as Sψ,l,max = 1263.75, 1383.75, and 1527.92
occur for φ = 0◦, 45◦, and 90◦, respectively, at Ra = 105. In contrast, Sψ,l,max = 0.79, 1.29,
and 1.73 are found for φ = 0◦, 45◦, and 90◦, respectively, at Ra = 103, as illustrated in
Figures 5 and 6. Due to the friction between the eccentric annulus and circulation cells,
the dense outlines of Sψ,l appear in all upper regions of the annulus, showing the local
distribution of Sψ,l .

4.3. Case 3: Eccentric Annulus with ϵ = 0.8 and φ = 0◦, 45◦, 90◦

Figure 7 depicts the contours of the isotherms, the streamlines, and the entropy
generation quantities of an eccentric annulus for Pr = 10, ϵ = 0.8, Ra = 103 with angular
positions φ = 0◦, 45◦, 90◦. When the eccentricity is increased from ϵ = 0.4 to ϵ = 0.8, the
thermal boundary layer becomes thick and the plume region does not appear inside the
annulus. Furthermore, zones with strong temperature gradients are associated with high
eccentricity values. The temperature gradient, for example, is substantially larger at ϵ = 0.8
than it is at ϵ = 0.4 (see Figures 5 and 7). The isotherms in the same angular position and
in eccentric cylinders are denser than those in concentric cylinders (see Figures 4 and 7).
Furthermore, at a low Ra, the isotherms are smooth and monotonic, which illustrates that
the heat transfer is primarily due to conduction. Consequently, the maximum local entropy
generation due to heat transfer (Sθ,l , max) is observed near the inner hot cylinder with
the same extent for φ = 0◦ (Sθ,l,max = 31.66), φ = 45◦ (Sθ,l,max = 32.10) and φ = 90◦

(Sθ,l,max = 32.06). The low-magnitude streamfunction illustrates the feeble fluid flow
inside the eccentric annulus. The strength of the thermal mixing as well as the fluid flow
increases with the angular position as |ψ|max = 2.2, 4.7, and 6.24 for φ = 0◦, 45◦, and 90◦,



Axioms 2024, 13, 233 15 of 23

respectively, at Ra = 103. Because of the significant velocity gradient in the vicinity of the
inner and outer cylinders, where the circulation cells come into contact with the eccentric
annulus’s cylinders, there is also relatively little entropy generation from fluid friction. The
maximum value of Sψ,l (Sψ,l,max) is observed to be 29.83, 1.38, and 2.16 for φ = 0◦, 45◦, and
90◦, respectively

As Ra increases to 105, buoyancy forces dominate over viscous forces, leading to
enhanced convection in the cavity, and the intensity of the circulation cells is further
increased, as seen by the large magnitudes of the streamfunction. For angular positions
φ = 0◦, 45◦, 90◦, Figure 8 depicts the isotherms, streamlines, heatlines, entropy production
due to heat transport, and entropy generation owing to fluid friction for ϵ = 0.8, Ra = 105.
It can be observed that, at a high Ra, the density of the isotherms near the cylinders
increases, and the temperature gradients at the surfaces of the cylinders increase. As a
result, the heat-related entropy generation magnitudes likewise rise. It is noteworthy that
as the angular position grows, Sθ,l,max decreases. According to Figure 8, the maximum
values of Sθ,l,max are determined to be 69.81, 62.32, and 58.32 for φ = 0◦, 45◦, and 90◦,
respectively. The middle part of the eccentric annulus has very low values of Sθ,l because
there are fewer temperature gradients at all angular positions. It is also noted that the
strength of the net circulation surrounding the inner cylinder increases as the Ra rises. For
all angular positions, the streamfunction intensity is determined to be higher than Ra = 103.
It should be noted that at Ra = 105, |ψ|max = 16.3, 23, and 30 for φ = 0◦, 45◦, and 90◦,
respectively. Since the strength of the fluid flow within the eccentric annulus rises with ϵ
and Ra, the magnitude of Sψ,l also increases. For φ = 0◦, 45◦, and 90◦, the largest amount
of entropy generation resulting from fluid friction inside the annulus is Sψ,l,max = 462,625,
1896.47, and 1470.51, respectively. Additionally visible at the walls of the inner and outer
cylinders are the active zones of entropy formation caused by fluid friction.

4.4. Quantitative Analysis of Heat Transfer Parameters

Figure 9 shows the variation in the local Nusselt number along the inner and outer
cylinders of a concentric annulus with varying Ra (Ra = 103–105) at ϵ = 0 and φ = 0◦. In
the case of the inner cylinder, the local Nusselt number at the inner wall (Nuin

lo ) increases
upon increasing the Ra number, i.e., the local heat transfer rate is enhanced. This increase
in heat transfer is entirely predictable because of the increased buoyancy force obtained
from the temperature difference. It is found that the maximum (Nuin

lo ) occurs at θ = 180◦,
which means that the natural convection thermal mixing is more intense in the bottom half
of the inner wall. On the other hand, the local Nusselt number at the outer wall (Nuou

lo ) is
reduced upon increasing the Ra, while the maximum value of (Nuou

lo ) is observed at the
bottom half of the outer wall. Notably, the minimum value of (Nuou

lo ) is found at the ends
of the walls, i.e., θ = 0◦ and θ = 360◦. Figures 10 and 11 display the variation in the local
Nusselt number along the inner and outer walls of an eccentric annulus with varying Ra
(Ra = 103–105) and angular positions φ = 0◦, 45◦, 90◦ at two eccentricities ϵ = 0.4 and 0.8,
respectively.

Figure 12 shows the variations in the average Nusselt numbers ((Nuin
av), Nuou

av)) at the
inner and outer cylinders of an eccentric annulus at ϵ = 0.4 and ϵ = 0.8 for varying angular
positions φ = 0◦, 45◦, 90◦. It can be observed that in both eccentricity scenarios, the Nuin

av at
the inner wall increases as the angular positions increase, but the Nuou

av at the outer wall
decreases as the angular positions increase. This indicates that when the angle orientations
increase, the heat transfer at the inner wall increases. In contrast to ϵ = 0.4, the value of
Nuin

av is found to be lower in ϵ = 0.8. Similar physics also holds for the Nuou
av situation.
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φ = 0o
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Figure 7. Contours of isotherms (θ), local entropy generation caused by thermal mixing (Sθ,l),
streamfunction (ψ), and local entropy generation caused by fluid friction (Sψ,l) of an eccentric annulus
for ϵ = 0.8, Ra = 103 with different angular positions φ = 0◦, 45◦, 90◦.



Axioms 2024, 13, 233 17 of 23

φ = 0o
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Sθ,l

Sψ,l

φ = 45o φ = 90o

Figure 8. Contours of isotherms (θ), local entropy generation caused by thermal mixing (Sθ,l),
streamfunction (ψ), and local entropy generation caused by fluid friction (Sψ,l) of an eccentric annulus
for ϵ = 0.8, Ra = 105 with different angular positions φ = 0◦, 45◦, 90◦.
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(a) (b)

Figure 9. Variation in local Nusselt number at (a) inner and (b) outer cylinders of a concentric annulus
for varying Ra at ϵ = 0, φ = 0◦.

(a) Inner cylinder (b) Outer cylinder

Ra = 103

Ra = 104

Ra = 105

Figure 10. Variation in local Nusselt number at (a) inner and (b) outer cylinders of an eccentric
annulus for varying Ra and angular positions at ϵ = 0.4.
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(a) Inner cylinder (b) Outer cylinder

Ra = 103

Ra = 104

Ra = 105

Figure 11. Variation in local Nusselt number at (a) inner and (b) outer cylinders of an eccentric
annulus for varying Ra and angular positions at ϵ = 0.8.

Figure 13 illustrates the variation in the circulation intensity (|ψ|max) vs. the Ra
number of an eccentric annulus at ϵ = 0.4 and ϵ = 0.8 for varying angular positions
(φ = 0◦, 45◦, 90◦). The figure shows that the circulation intensity increases as the angular
position increases in both eccentricity cases. It can be seen that the |ψ|max value decreases
as the ϵ value increases (also see Figures 5–8).
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(a) Eccentricity (ε) = 0.4 

Inner Outer 

(b) Eccentricity (ε) = 0.8 

Figure 12. Variations in average Nusselt numbers at inner and outer cylinders of an eccentric annulus
at (a) ϵ = 0.4, and (b) ϵ = 0.8 for varying angular positions (φ = 0◦, 45◦, 90◦).

(b)(a)

Figure 13. Variation in circulation intensity (|ψ|max) vs. Ra number of an eccentric annulus at
(a) ϵ = 0.4, and (b) ϵ = 0.8 for varying angular positions (φ = 0◦, 45◦, 90◦).

5. Concluding Remarks and Outlook

The present work provides a computational investigation into the thermal mixing
along with the entropy generation throughout the natural convection flow inside an arbi-
trarily eccentric annulus. The annulus inner wall is heated and maintained at a constant
temperature, while the outer wall is cooled and maintained at a constant temperature
that is lower than that of the inner wall. The eccentric annulus is filled with salt water.
Governing equations are formulated by using the Boussinesq approximation, which are
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solved on a structured quadrilateral mesh by using the OpenFOAM software package. The
numerical simulations are carried out for Rayleigh number (Ra = 103–105), eccentricity
(ϵ = 0, 0.4, 0.8), angular position (φ = 0◦, 45◦, 90◦), and Prandtl number (Pr = 10).
The quantitative findings are showcased in relation to isotherms (θ), streamlines (ψ), and
the formation of local entropy resulting from the irreversibility of heat transfer (Sθ,l) and
fluid friction (Sψ,l). A more thorough examination of the variations in the average Nus-
selt numbers (Nuin

av, Nuou
av), local Nusselt numbers (Nuin

lo , Nuou
lo ), and circulation intensity

(|ψ|max) with varying eccentricities and angular positions within an eccentric annulus is
presented. It is found that the eccentricity, angular position, uniform temperature source,
and Boussinesq state affect the best state of heat transfer. In addition, the increasing Ra
causes an increase in the rate of heat transfer and total entropy generation. It is concluded
that an eccentric annulus has a higher rate of heat transfer and entropy generation than
a concentric annulus. The results indicate which arrangements and types of eccentric
annuli are optimum and may be applicable to all thermal processing operations involving
salt fluids.

Our investigation into the impact of eccentricity on thermal mixing may contribute
to the development of heat exchangers with higher heat transfer coefficients. This study
may be helpful for engineers in controlling the flow patterns and temperature gradients to
improve the overall efficiency of the heat exchange between fluids by purposefully creating
eccentric annuli within heat exchangers. This optimization can lead to energy savings
and improved performance in systems where temperature control is critical. Our findings
suggest that eccentric annuli can facilitate more effective cooling by taking advantage of
the natural convection processes. For instance, in cooling towers or electronic cooling
systems, optimizing the eccentricity and angular positions of components could lead to
more uniform temperature distributions and faster heat dissipation from hot surfaces to
the cooling medium. This approach may enhance the longevity of equipment and reduce
the risk of overheating. Our study also focuses on entropy generation alongside thermal
mixing, paying attention to the thermodynamic efficiency of thermal systems. By mini-
mizing entropy generation through optimal design, systems can operate closer to the ideal
thermodynamic conditions, reducing energy waste. This aspect is crucial for sustainability
goals, as improved efficiency directly translates into reduced energy consumption and
lower greenhouse gas emissions for industrial processes. Beyond traditional applications,
our study can provide a conceptual basis for the development of thermal devices, which
could enhance research on green energy.

The primary objective of this research work was to conduct an analysis of the ther-
mal mixing and entropy generation during natural convection flows within an arbitrary
eccentric annulus. The results of this study indicate that the heat and mass transfer in
non-Newtonian natural convection flows under different non-uniform thermal boundary
conditions is also significantly influenced by thermal mixing and entropy generation. In
this context, the present work may be extended to the numerical simulation of thermal
mixing and entropy generation in non-Newtonian natural convection flows under different
non-uniform thermal boundary conditions in the future.
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