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A B S T R A C T

This article presents a novel method for deterministic finite element model updating that is
based on an ‘‘inverse surrogate model’’. The latter is a regression model that uses structural
responses as independent variables and structural properties as dependent ones. Such regressor
is trained on structural responses using a finite element model having in input the structural
properties to be updated. The training set is obtained by executing multiple finite element model
instances where each instance is formed by assigning random, though realistic, values to the
structural properties. Experimentally measured structural responses can then be given as input
to the trained ‘‘inverse surrogate model’’, and the structural properties, which are used to update
the finite element model, are obtained as output. Random forest algorithm is identified as a
good candidate to perform this type of regression, and the performance offered by this method
is compared to that of the ‘‘standard’’ finite element model updating based on the particle swarm
optimization algorithm on both a numerical and an experimental case study where the structural
responses are represented by a set of modal parameters. The results show that the proposed
approach offers higher accuracy on the estimation of the structural properties, at the cost of a
slightly inferior matching of the modal parameters. This indicates that the ‘‘inverse surrogate
model’’ is less susceptible to the ill-conditioning issue that plagues optimization-based finite
element model updating, where similar structural responses can arise from various combinations
of structural properties. The results also show a good repeatability and that the computational
costs are similar or better than those of the particle swarm optimization algorithm.

. Introduction

The aging of civil structures and infrastructures has recently prompted significant interest in the design and operation of structural
ealth monitoring (SHM) systems [1–3]. This often involves the development of a finite element model (FEM) of the monitored
tructure that can be used to predict its response under damaged conditions. Building a numerical model that faithfully mimics
he actual structural behavior is a challenging task due to a number of factors such as uncertainties related to material properties
nd boundary conditions, deviations from original design drawings, or the actions of external agents such as fatigue, humidity, and
orrosion. For this reason, iterative procedures are typically employed to calibrate some of the parameters of the model in order
o minimize the differences between measured structural responses and the model’s outputs. This process is generally termed finite
lement model updating (FEMU) [4]. Natural frequencies and mode shapes are among the structural responses generally used for
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List of acronyms and symbols

BA Bees Algorithm
FEM Finite Element Model
FEMU FEM updating
FRF Frequency Response Function
GA Genetic Algorithm
𝐥𝑦 Lower bound vector of the structural parameters
𝑀 Number of target variables
MAC Modal Assurance Criterion
ML Machine Learning
𝑁 Number of features
NM Nelder–Mead Simplex
OMA Operational Modal Analysis
OOB Out of Bag data
𝑃 Number of features for sub-sampling phase
PSO Particle Swarm Optimization
RF Random Forest
SHM Structural Health Monitoring
SOMI Spectral Optimization-based Modal Identification
SQP Sequential Quadratic Programming
𝑆 Sample space size
𝐁 The bootstrap sample
𝐱 A sample of features
𝐲 A sample of target variables
�̂� An experimental sample of features
�̂� A sample of predicted target variables
𝐗 The matrix of sample features
𝐘 The matrix of sample target variables
𝐮𝑦 Upper bound vector of the structural parameters
𝑔 The actual model
�̂� The regression model
𝑛𝑙 Minimum number of samples in leaf
𝑛𝑡 Number of decision trees

FEMU procedures. These are obtained via eigenvalue analysis on the FEM, and can be estimated on the actual structure by collecting
vibration data and by then performing operational modal analysis (OMA) [5].

A vast number of different FEMU strategies are found in literature, virtually all of which can be classified either as deterministic
r stochastic approaches [6]. The former are setup as optimization problems in which the unknown parameters are treated as
nknown-but-fixed constants, and an objective function is defined in terms of residuals between numerical and experimental
atasets. Stochastic methods, instead, consider the unknown parameters as random variables and aim to quantify their uncertain
istribution [7]. These methods can be based either on frequentist or on Bayesian approaches. The former make use of optimization
echniques framed in a stochastic scenario, where the minimizing object is a set of frequentist properties such as mean and covariance
f the data [8]. In the Bayesian framework, instead, the prior distributions of the parameters to be calibrated are first hypothesized,
hen a likelihood function is derived from the observed experimental data, and this information is used to update the posterior
robability [9]. While stochastic approaches can yield superior results, they require a vast amount of experimental data and are
ypically computationally very intensive [6]. Therefore, deterministic methods are still widely used in practical applications. Also,
everal probabilistic model updating approaches incorporate deterministic methods into their algorithms. For these reasons, this
rticle focuses on deterministic approaches.

Some of the most significant works published in the field of FEMU via deterministic approaches in the last decade are summarized
n the following. In 2010, Moradi et al. [10] estimated the modal parameters of a piping system by performing a hammer test and
y extracting the frequency response function (FRF) of an accelerometer. They then developed a FEM of the structure and setup a
EMU procedure where the objective function was the weighted sum of the squared error between FEM and experimental modal
arameters. Finally, they compared the performance of different optimization algorithms, namely bees algorithm (BA) [11], genetic
lgorithm (GA) [12], particle swarm optimization (PSO) [13] and the inverse eigensensitivity method [14]. Their analysis showed
hat BA and PSO yield very similar results and outperform the other methods. In the same year, Marwala [15] compared GA and
2
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Fig. 1. Flowchart of the proposed FEMU procedure.

PSO for fault identification and model updating of simply supported beams, also concluding that PSO outperforms GA. They further
showed that a combination of Nelder–Mead Simplex (NM) method [16] and PSO is highly effective for fault detection, if PSO and NM
are used for global and local optimization, respectively. In 2016, Zhang et al. proposed a FEMU method for damage identification
based on a combination of multivariable wavelet FEM and PSO [17]. Additional examples of recent research on deterministic FEMU
involving a variety of optimization algorithms are given in [18–25].

One of the limitations of FEMU is that performing FEM dynamic analysis is a time-consuming process [26]. To address this
challenge, some researchers have proposed to replace FEMs with surrogate models in order to expedite the model updating
process. Surrogate models are mathematical functions used to express the relationships between the FEM response and the updating
parameters. These functions can take various forms, such as neural network regression models [27], Kriging models [26,28,29],
radial basis function [30], or adaptive Gaussian surrogate models [31]. Another limitation of FEMU approaches is that the
problem they are trying to solve is often ill-conditioned, i.e. there exist multiple combinations of the FEM updating parameters
that yield a similarly low value for the objective function. This has been investigated by Simoen et al. [32] on a reinforced
concrete beam. In their study, six different stiffness patterns along the beam yielded almost identical modal properties. They also
showed that minor alterations in measurements or model predictions could result in widely different model updating outcomes.
Regularization techniques [33] are often used to limit the ill-conditioning issue. The purpose of regularization in inverse analysis
is to emphasize particular regions within the parameter space where the solutions of the model are expected to be found [34].
However, regularization techniques often require manual hyper-parameters tuning, such as the regularization term, through methods
like cross-validation, which can be time-consuming, especially in complex problems. Furthermore, an improper choice of the
regularization strength can introduce bias, potentially leading to underfitting or overfitting issues, hence impacting the predictive
and generalization performance [35].

This work postulates that the ill-conditioning issue can be mitigated if the mutual relationships between the different natural
frequencies and mode shapes are also taken into account. This would restrict the space in which solutions to the optimization
3

problem are sought. In order to achieve this, a novel FEMU procedure based on the random forest (RF) algorithm [36] is proposed.
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As a first step, lower and upper bounds for the various geometric and mechanical parameters to be updated are defined. Then, the
FEM is solved several times by assigning values to the parameters that are picked at random within the respective boundaries. At each
run, modal frequencies and mode shapes are computed and stored in a database. Finally, RF is employed to generate a regression
model between the modal responses, considered as the independent variables, and the FEM updating parameters, considered as the
dependant variables. Once such regressive surrogate model is trained, when a new set of experimental modal responses is obtained,
that is given to the regression model as input in order to predict the FEM updated parameters that are expected to produce such
modal output. Such regression model is referred to as ‘‘inverse surrogate model’’ since it reverses the roles of inputs and outputs
when compared to the FEM, for which mechanical and geometrical parameters are the inputs and modal responses are the outputs.

The performance of the proposed procedure is compared to that offered by the ‘‘classic’’ deterministic FEMU based on PSO, which
s arguably the most commonly used optimization algorithm for FEMU [6], on a numerical and an experimental case studies. The
ormer is a two-dimensional (2D) FEM of a truss that was presented in [37], while the latter is the experimental structure discussed
n [38].

The remainder of the article is structured as follows. Section 2 presents the proposed inverse surrogate model based on RF for
EMU. Section 3 discusses the two case studies and compares the performance obtained via the proposed method to that of PSO,
oth in terms of accuracy and repeatability of the results. Finally, Section 4 concludes the article by summarizing the key findings.

. Methodology

.1. Proposed procedure for FEMU

The proposed FEMU procedure is summarized in Fig. 1, and it is described in the following:

1. A number 𝑀 of FEM ‘‘target’’ structural parameters to be updated are defined. These are typically some geometric and/or
mechanical properties of the elements composing the model.

2. For each target parameter, admissible lower and upper bounds are defined:

𝐥𝑦 = [𝑙1, 𝑙2,… , 𝑙𝑀 ]

𝐮𝑦 = [𝑢1, 𝑢2,… , 𝑢𝑀 ]
(1)

where 𝐥𝑦 ∈ R𝑀 and 𝐮𝑦 ∈ R𝑀 are vectors collecting all the lower and upper bounds, respectively.
3. The ‘‘sampling’’ phase of Fig. 1 is initiated. A number 𝑆 of 𝐲𝑠 ∈ R𝑀 vectors, each containing a set of values picked at random

within their respective boundaries and assigned to the target parameters, are generated as:

𝐲𝑠 = 𝐥𝑦 + (𝐮𝑦 − 𝐥𝑦) ⋅ 𝐫 (2)

where 𝑠 = [1 to 𝑆], and 𝐫 ∼ 𝑀 (𝟎, 𝟏) is a vector of 𝑀 random numbers with standard uniform distribution that is re-drawn
at each sample 𝑠.

4. For each sample 𝑠, the 𝐲𝑠 parameters are assigned to the FEM, and a number 𝑁 of structural responses are computed and
collected as:

𝐱𝑠 = [𝑥𝑠1, 𝑥𝑠2,… , 𝑥𝑠𝑁 ] (3)

Note that in this article only modal data, i.e. solely natural frequencies or natural frequencies and mode shapes, were
considered as structural responses.

5. All vectors 𝐱𝑠 and 𝐲𝑠 are collected to form a ‘‘feature’’ matrix 𝐗 = {𝐱𝑠}𝑆𝑠=1 (𝐗 ∈ R𝑆×𝑁 ) and a ‘‘target’’ matrix 𝐘 = {𝐲𝑠}𝑆𝑠=1
(𝐘 ∈ R𝑆×𝑀 ). Then, in the ‘‘training’’ phase of Fig. 1 a regression model (�̂�) is trained so that:

𝐘 ≃ �̂�(𝐗) (4)

6. Once the regression model is trained, the ‘‘model updating’’ phase of Fig. 1 can initiate. At this stage, when a new set of
experimental structural responses (OMA modal data in this work) �̂� ∈ R𝑁 is obtained, the FEM is updated by assigning to it
the set of updated target parameters �̂� obtained as:

�̂� = �̂�(�̂�) (5)

2.2. Regression via random forest algorithm

The term ‘‘regression’’ refers to statistical techniques used to model the relation between some target variables and some other
input features. In this work, the regression task is performed with the RF algorithm [36,39]. This is an ensemble machine learning
(ML) method [40] that constructs a multitude of decision trees [41] during its training phase and that averages their predictions
at testing time. In particular, given the full set of training data that includes 𝑆 samples for both input (𝐗 ∈ R𝑆×𝑁 ) and output
(𝐘 ∈ R𝑆×𝑀 ) variables, a procedure called ‘‘bootstrap aggregation’’ [42] is used to build each decision tree, for which only a subset
𝐿 ≤ 𝑆 of the available input samples are randomly selected and used. Note that in this procedure any given sample can be re-used
in multiple decision trees.
4
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Each tree is constructed starting with a ‘‘root node’’ that holds the corresponding bootstrap input sample 𝐁 ∈ R𝐿×𝑁 . The next step
s to split the root node in two child nodes and to define a ‘‘splitting criterion’’ used to assign all samples to either of them in such a
ay that the total ‘‘entropy’’ of the two nodes, as measured by the ‘‘Gini Index’’ [42], is minimized. Practically, the splitting criterion

s represented by a specific threshold set on a single feature chosen among a randomly selected subset 𝑃 of the 𝑁 total features,
based on a technique called ‘‘feature sub-sampling’’ [43]. In this work, 𝑃 is set to 𝑁∕3 as suggested in literature for regression
asks [40]. This procedure continues in recursive manner from each child node until a predefined ‘‘stopping criterion’’ is met [42],
t which point ‘‘leaf nodes’’ are formed, which represent the final predictions of the decision tree. A widely used stopping criterion
s to form a leaf node when its total number of samples are below a set value 𝑛𝑙. A recommended value for 𝑛𝑙 in regression tasks is
ive [40], hence this is adopted in this work.

The entire procedure is iteratively repeated until a set number 𝑛𝑡 of decision trees are constructed, at which point the random
orest training is complete. Then, at testing time, the new input sample is processed through all the decision trees in the random
orest, resulting in 𝑛𝑡 individual outputs. The final prediction is obtained by averaging all these individual tree predictions. To
ummarize the employed random forest regression described above, its pseudo-code implementation is presented in Algorithm 1.
Algorithm 1 Random forests for regression

1: Input: Dataset of size 𝑆, number of trees 𝑛𝑡, number of features 𝑁 , minimum samples in leaf 𝑛𝑙.

2: procedure RandomForests(𝑆, 𝑛𝑡, 𝑁, 𝑛𝑙)
3: for 𝑖 = 1 to 𝑛𝑡 do
4: Extract a bootstrap sample with size 𝐿 ≤ 𝑆.
5: Build decision tree 𝑇𝑖 using the bootstrap sample as follows:
6: 𝑇𝑖 ← BuildTree(node = 1, samples = bootstrap, 𝑁)
7: end for
8: return ensemble of trees {𝑇𝑖}

𝑛𝑡
𝑖=1.

9: end procedure

10: procedure BuildTree(node, samples, 𝑁)
11: if length(samples) < 𝑛𝑙 then
12: Make the node a leaf.
13: else
14: Select 𝑃 = 𝑁∕3 features at random from the 𝑁 features.
15: Select the best variable and its splitting threshold.
16: Split node into two child nodes (left and right).
17: left_child_samples ← samples satisfying splitting criterion.
18: right_child_samples ← samples not satisfying splitting criterion.
19: BuildTree(left_child_node, left_child_samples, 𝑁)
20: BuildTree(right_child_node, right_child_samples, 𝑁)
21: end if
22: end procedure

23: To make a prediction at a new point �̂�:
24: {𝑇𝑖}

𝑛𝑡
𝑖=1 ← RandomForests(𝑆, 𝑛𝑡, 𝑁, 𝑛𝑙)

25: �̂�(�̂�) ← 1
𝑛𝑡

∑𝑛𝑡
𝑖=1 𝑇𝑖(�̂�)

Notably, random forests do not require the explicit formation of a testing set to be used for an unbiased estimation of the
erformance on unseen data. In fact, this can be done on the so-called out-of-bag (OOB) data, i.e. the samples that were not utilized
n the construction of a particular decision tree as a result of bootstrapping. Therefore, for each decision tree the accuracy of
egression on the respective OOB samples is evaluated, and ultimately the mean squared error of the accuracies yield by all decision
rees are averaged to give an indication of the overall performance of the RF model. Furthermore, by plotting the OOB performance
gainst the number of trees one can define an ‘‘optimal’’ 𝑛𝑡 value by identifying a point at which further increasing the number of
rees does not lead to significant improvements [44].

Other advantages of RF over competitor ML regression algorithms are (1) its ability to automatically handle missing variables
n the input samples, (2) the fact that it does not require manual feature normalization, since all features are independently
onsidered for splitting decisions, and (3) its robustness to outliers, since the combination of multiple decision trees averages out
heir impact [40,42,43].

. Case studies

.1. Case study I: 2D FEM of a statically determinate truss

The 2D FEM of the statically determinate truss depicted in Fig. 2 and presented in Section 3.1 of a previous work by two of
5

he authors [37] is used as a first numerical case study in this work. The parameters of all truss elements are: Young’s modulus
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Fig. 2. 2D FEM truss presented in Section 3.1 of [37]. The truss is restrained at the base nodes with hinged supports.

Table 1
Lower bounds, upper bounds, and true values of the design variables for all
elements.
Parameter Lower bound True value Upper bound

𝐸 (GPa) 50.19 71.7 93.21
𝜌 (kg/m3) 1937.6 2768 3598.4
𝐴 (m2) 0.000007 0.00001 0.000013

𝐸 = 71.7 GPa, mass density 𝜌 = 2768 kg/m3, and cross-sectional area 𝐴 = 10−5 m2. The modal parameters, namely frequencies
nd mode shapes, obtained in [37] using the spectral optimization-based modal identification (SOMI) method are considered as
he experimental modal data. The twelve natural frequencies are 𝐟 = [7.31, 24.24, 41.95, 42.61, 81.6, 117.61, 120.01, 138.92, 146.49,
154.05, 167.97, 186.49] rad/s.

In this study, it is assumed that the values of 𝐸, 𝜌, and 𝐴 of all elements are unknown, and the goal is to perform a FEMU
procedure where they are adjusted in order to minimize the differences between the experimental modal parameters (i.e. those
estimated by SOMI on the original model) and those computed by the updating model. It is also assumed that the possible values
for the 36 target parameters denoted as 𝐸1, 𝐸2, …, 𝐸12, 𝜌1, 𝜌2, …, 𝜌12, and 𝐴1, 𝐴2, …, 𝐴12, where the indices correspond to element
numbers, are to be sought within a +/- 30% variation from their true values, as suggested in [5], and these ranges are listed in
Table 1. This task is performed both via a ‘‘classic’’ optimization-based FEMU using PSO, and with the proposed inverse surrogate
model based on RF, so that the results of the two methods can be compared. Furthermore, for both approaches two scenarios are
considered, one where only the modal frequencies are assumed available, and the other one where both modal frequencies and
mode shapes are taken into account.

Prior to model updating, sensitivity analyses are generally performed to find those structural parameters that have the highest
influences in the updating process [24]. In the present case, a sensitivity analysis regarding variations in 𝐸, 𝜌, and 𝐴 for all elements
is performed in order to understand whether all 36 target parameters can have a significant influence on the modal responses. The
normalized sensitivity (𝜅) of any modal frequency 𝜔 to a specific parameter 𝑝 is defined as:

𝜅 = 𝜕𝜔
𝜕𝑝

⋅
𝑝
𝜔

(6)

where 𝜕𝜔
𝜕𝑝 represents the partial derivative of 𝜔 with respect to 𝑝. For example, the sensitivity of the 𝑖th modal frequency component

o variations in the Young’s modulus of the 𝑗th element (𝐸𝑗) from its true value of 𝐸 = 71.7 GPa is obtained as:

𝜅(𝜔𝑖, 𝐸𝑗 ) =
𝜕𝜔𝑖
𝜕𝐸𝑗

⋅
𝐸𝑗

𝜔𝑖
(7)

here the partial derivative is computed via the following finite difference approximation:
𝜕𝜔𝑖 ≃

𝜔𝑖(𝐸𝑗 + 𝛥𝐸𝑗 ) − 𝜔𝑖(𝐸𝑗 ) (8)
6
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Fig. 3. Normalized sensitivity of modal frequencies to variations in 𝐸 (a), 𝜌 (b) and 𝐴 (c) of the truss elements.

with 𝛥𝐸𝑗 being a small positive change. All results are plotted in Fig. 3. The plots show that all parameters have a significant
influence on at least a single modal frequency, and, therefore, they are all considered for the FEMU procedures described in the
following.

3.1.1. Case study I: model updating using PSO
FEMU using PSO [13] is performed twice using the following two objective functions [45]:

𝑂1 =
𝑁
∑

𝑖=1

(

𝜔𝑖 − �̂�𝑖
�̂�𝑖

)2
(9)

𝑂2 =
𝑁
∑

𝑖=1

(

𝜔𝑖 − �̂�𝑖
�̂�𝑖

)2
+

𝑁
∑

𝑖=1

(

1 − MAC𝑖
)

(10)

where 𝜔𝑖 and �̂�𝑖 are the 𝑖th updating model and experimental frequencies, respectively, and MAC𝑖 is the modal assurance criterion
for the 𝑖th mode, often used to indicate similarity of two mode shapes, defined as:

MAC𝑖 =
|𝝓𝑇

𝑖 �̂�𝑖|
2

(𝝓𝑇
𝑖 𝝓𝑖)(�̂�

𝑇
𝑖 �̂�𝑖)

(11)

where 𝝓𝑖 and �̂�𝑖 are the 𝑖th normalized mode shape vectors from the updating model and the experiment, respectively. As the formula
implies, MAC𝑖 is a number between 0 and 1, where the two limits correspond to the two mode shape vectors being orthogonal or
identical to each other, respectively.

Table 2 summarizes the settings used to perform the PSO algorithm in MATLAB, while Fig. 4 plots the histories of the objective
functions until both iterations are stopped since improvements higher than the ‘‘function tolerance’’ value were not recorded over
the latest 20 iterations (as defined by the ‘‘maximum stall iterations’’ setting). While a more detailed analysis of the results of
both iterations is discussed in the following Section 3.1.3, Fig. 5 shows that the difference between experimental and updated
frequencies when objective function 𝑂2 is used is extremely small, therefore indicating that the PSO-based FEMU procedure has
been well-implemented.
7
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Fig. 4. Histories of the objective functions 𝑂1 (a) and 𝑂2 (b) during the iterations of the PSO algorithm.

Fig. 5. Absolute difference between experimental and updated frequencies when PSO is used on the objective function 𝑂2.

Table 2
Settings used to perform the PSO algorithm in MATLAB.
Parameter Value

Initial swarm span 2000
Maximum iterations 200 × 36
Maximum stall iterations 20
Minimum neighbors fraction 0.25
Self-adjustment weight 1.49
Social adjustment weight 1.49
Function tolerance 1.0000e−09
Swarm size min (100, 10 × 36)
Inertia range [0.1000, 1.1000]

3.1.2. Case study I: model updating using the proposed inverse surrogate model
Two inverse surrogate models termed 𝐠1 and 𝐠2 are generated using the parameters listed in Table 3. 𝐠1 only uses the 12 modal

requencies, while 𝐠2 considers both 12 modal frequencies and the components of the 12 × 12 mode shape matrix, which is formed
y normalizing each mode shape vector to its first component. The OOB error analysis computed for all 36 target variables for the
ase of 𝐠2, which is plotted in Fig. 6, shows that for all variables the error plateaus before 𝑛𝑡 = 100, hence there would not be any
enefit in increasing the chosen 𝑛𝑡 value. A similar behavior is obtained for the case of 𝐠1 (not shown for brevity). Once 𝐠1 and 𝐠2
re trained, the experimental frequencies and mode shapes are given as input to both models, and the predicted values for 𝐸, 𝜌,
nd 𝐴 obtained for all elements are discussed in the next section.

.1.3. Case study I: comparison of results
The results of the FEMU procedures performed using PSO and the inverse surrogate models based on RF are shown in Fig. 7. In

articular, the first three rows of plots refer to 𝐸, 𝜌, and 𝐴 of all elements, while the fourth row considers the modal frequencies.
he left column of plots compares the predicted values to the true ones, while the right column shows the absolute errors. In all
lots, blue and red colors are used for PSO when using the objective functions 𝑂1 and 𝑂2, respectively, yellow and purple represent
nverse surrogate models 𝐠1 and 𝐠2, respectively, and green is used for the true values. For clarity, all quantities plotted in Fig. 7
8

re also listed in Tables 4 to 7.



Mechanical Systems and Signal Processing 215 (2024) 111416S. Kamali et al.
Fig. 6. OOB normalized error vs. number of trees for all 36 target parameters for 𝐠2.

Table 3
Parameters used to generate the inverse surro-
gate models.
Parameter Value

Number of samples (𝑆) 100
Number of decision trees (𝑛𝑡) 100
Minimum leaf size (𝑛𝑙) 5

Table 4
Error (%) in the updated 𝐸 of all elements.
Element PSO (𝜔) PSO (𝜔 and 𝜙) RF (𝜔) RF (𝜔 and 𝜙)

1 6.42 14.77 2.51 1.06
2 6.44 22.03 7.58 3.17
3 19.57 5.03 9.29 1.11
4 13.94 7.96 9.04 0.54
5 6.10 21.53 6.96 6.15
6 9.49 3.54 2.53 0.22
7 23.77 2.24 2.92 1.66
8 20.00 3.93 2.55 0.82
9 6.15 29.92 1.35 2.84
10 26.86 7.09 6.67 1.57
11 8.59 20.89 14.05 6.10
12 23.41 0.10 8.91 2.34
Mean 14.23 11.59 6.20 2.30

The analysis of all plots shown in Fig. 7 reveals that, on average, the predictions of the 36 target parameters 𝐸, 𝜌, and 𝐴 made
by the inverse surrogate models are more accurate than those made by the PSO algorithm, and, for both approaches, the predictions
yielded when the mode shapes are also taken into account are superior to those made only considering the modal frequencies. This
is well summarized in Fig. 8, where the average errors in the predictions of 𝐸, 𝜌, and 𝐴 for all 12 elements are given (these values
are also listed in the last row of Tables 4 to 6). Restricting the attention to the scenarios in which both modal frequencies and mode
shapes are considered, Fig. 8 shows that there is essentially a five-fold improvement in the prediction of mechanical and geometrical
properties of the elements when using the proposed method (average error between 2 and 3.5%) over the PSO algorithm (average
error between 12 and 17%).

This comes at the cost of a less accurate prediction of modal frequencies, as seen in Fig. 7(h), where the errors of the PSO are
barely visible at this zoom level. This is expected, since the specific goal of PSO is to minimize the differences between experimental
and predicted modal responses. However, such minimization does not guarantee the accuracy of the target structural parameters,
which in a few instances yielded the extreme admissible value (i.e. a 30% error), as seen in Fig. 7(b,d,f).

3.1.4. Case study I: robustness of the results and computational cost
Since the results of both FEMU procedures described in Sections 3.1.1 and 3.1.2 depend on their random initialization (the initial

set of candidate solutions for PSO [13], and the set of FEM samples used for training for the inverse surrogate model), they are both
repeated twenty times, and Table 8 gives mean and standard deviation of the errors on the predicted mechanical and geometrical
properties of the FEM truss. The same table also reports the average time required to run a single FEMU instance on a PC mounting
an Intel® CoreTM i7-8565U CPU at 1.8 GHz.
9
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Fig. 7. Comparison between updated and actual values (left plots) and associated errors (right plots) for: (a–b) 𝐸, (c–d) 𝜌, (e–f) 𝐴 and (g–h) 𝜔, when using
different methods. In the key, PSO (𝜔) and PSO (𝜔 and 𝜙) refer to the use of objective functions 𝑂1 and 𝑂2, respectively, and RF (𝜔) and RF (𝜔 and 𝜙) refer
to inverse surrogate models 𝐠1 and 𝐠2, respectively. Note that the vertical axis of plot (g) is in log-scale. The PSO (𝜔 and 𝜙) errors in plot (h) are not visible
at this vertical scale, but they are given in Fig. 5.

The results largely confirm all observations drawn in the previous section, with the proposed approach outperforming the
PSO-based optimization for both scenarios including or excluding the mode shapes. The table also shows that the proposed
inverse surrogate approach has a good repeatability, since its results have standard deviations consistently below 1%, and that
the computational costs of the two approaches are nearly identical. It is worth noting that such computational cost is only incurred
once for a given structure when using the inverse surrogate model, since once the regression model is trained any further model
updating driven by a newly collected experimental sample is essentially immediate, while the PSO algorithm would need to be
re-run completely.

Since on actual structures the precise estimation of high order modes poses some challenges [46,47], the results (averaged over
twenty repetitions) obtained by both approaches when only the first five modal parameters are exploited are reported in Table 9.
10
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Table 5
Error (%) in the updated 𝜌 of all elements.
Element PSO (𝜔) PSO (𝜔 and 𝜙) RF (𝜔) RF (𝜔 and 𝜙)

1 29.90 12.16 2.87 5.64
2 22.76 24.55 5.71 0.04
3 29.99 29.98 1.30 5.42
4 24.38 2.24 3.53 3.36
5 29.67 26.56 4.09 9.31
6 21.43 24.51 0.06 0.44
7 12.13 26.24 3.37 1.97
8 22.51 7.13 6.01 3.33
9 25.93 30.00 10.31 3.45
10 24.36 5.90 3.57 2.69
11 28.89 19.78 1.88 3.61
12 15.46 0.01 11.07 2.97
Mean 23.95 17.42 4.48 3.52

Table 6
Error (%) in the updated 𝐴 of all elements.
Element PSO (𝜔) PSO (𝜔 and 𝜙) RF (𝜔) RF (𝜔 and 𝜙)

1 5.61 19.07 2.12 0.41
2 12.84 16.83 1.91 0.75
3 14.15 3.38 3.27 2.89
4 27.80 10.26 3.22 4.29
5 13.76 29.33 6.75 5.96
6 21.43 1.98 4.62 1.28
7 29.91 0.73 0.45 2.01
8 27.69 5.64 3.65 0.21
9 30.00 21.89 4.66 2.15
10 23.39 5.24 4.33 4.48
11 20.52 28.29 4.73 0.11
12 10.64 1.38 12.12 1.09
Mean 19.81 12.00 4.32 2.13

Table 7
Error (%) in the updated 𝜔𝑖 for all modes.
Mode PSO (𝜔) PSO (𝜔 and 𝜙) RF (𝜔) RF (𝜔 and 𝜙)

1 9.04e−07 0.00015 1.05 1.79
2 3.78e−06 0.00037 1.35 1.69
3 0.21 0.00050 0.48 0.24
4 1.07e−06 0.00185 2.03 2.49
5 2.74e−06 0.00092 1.76 1.89
6 0.089 0.00093 1.79 0.37
7 0.43 0.00074 1.73 1.51
8 4.52e−06 0.00031 0.83 0.69
9 5.90e−05 0.00016 1.47 0.79
10 4.53e−06 0.00058 0.19 0.34
11 1.09e−05 0.00043 0.70 1.60
12 2.50e−06 0.00026 2.64 2.63
Mean 0.06 0.00060 1.34 1.34

marginally inferior to that of Table 8. Conversely, and counter-intuitively, the results of PSO have slightly improved from those of
Table 8. This likely results from the reduced possibility of ‘‘overfitting’’ to the diminished number of modal parameters existing in
the objective functions.

Finally, the robustness of the proposed method in the presence of measurement noise is investigated. For this purpose, the first
ive sets of modal parameters (both 𝜔 and 𝜙) are contaminated with white noise having zero mean and standard deviation equal to

5% of their original values. The results, reported in Table 10, show that the proposed inverse surrogate model performs similarly
as in the noiseless scenario of Table 9, suggesting that the proposed method is robust also in the presence of measurement noise.

3.2. Case study II: IASC–ASCE structural health monitoring benchmark structure

The quarter-scale structure of the Earthquake Engineering Research Laboratory at the University of British Columbia [38], shown
in Fig. 9(a), is considered as a second, experimental case-study. The structure is a four-story building with a 2.5 m by 2.5 m floor
plan and a total height of 3.6 m. It is made of hot-rolled grade 300 W steel with a yield stress of 300 MPa. Each exterior face of
each floor has two diagonal braces. The four floor slabs have masses of 3200, 2400, 2400 and 1600 kg, respectively from the lowest
11
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Fig. 8. Mean values of model updating errors through all elements for: (a) 𝐸, (b) 𝜌, and (c) 𝐴.

Table 8
Mean and standard deviation (STD) of model updating errors when all FEMU methods are repeated 20 times, and all 12 modes
are considered.
Parameter PSO (𝜔) PSO (𝜔 and 𝜙) RF (𝜔) RF (𝜔 and 𝜙)

Mean STD Mean STD Mean STD Mean STD

Error E (%) 16.64 3.47 14.28 2.83 4.09 0.82 3.46 0.83
Error 𝜌 (%) 19.11 5.13 18.44 1.98 3.92 0.68 3.19 0.80
Error A (%) 20.23 3.66 14.49 3.30 3.82 0.77 3.54 0.93
Mean run time (sec) 3.73 21.76 4.07 18.44

Table 9
Mean and standard deviation (STD) of model updating errors when all FEMU methods are repeated 20 times, and only the first
5 modes are considered.
Parameter PSO (𝜔) PSO (𝜔 and 𝜙) RF (𝜔) RF (𝜔 and 𝜙)

Mean STD Mean STD Mean STD Mean STD

Error E (%) 16.78 2.98 12.52 3.33 4.05 1.13 3.67 1.31
Error 𝜌 (%) 18.37 2.27 15.68 1.84 4.48 1.17 4.17 1.23
Error A (%) 16.81 3.03 12.87 2.84 4.22 1.27 3.90 0.68
Mean run time (sec) 1.22 21.82 4.14 13.99

Table 10
Mean and standard deviation (STD) of model updating errors when all FEMU methods are repeated 20 times on the first 5 modes
contaminated with noise.
Parameter PSO (𝜔) PSO (𝜔 and 𝜙) RF (𝜔) RF (𝜔 and 𝜙)

Mean STD Mean STD Mean STD Mean STD

Error E (%) 18.54 4.09 14.45 2.60 5.15 1.23 4.81 0.88
Error 𝜌 (%) 19.94 2.85 18.62 2.91 4.28 1.00 3.78 1.02
Error A (%) 18.50 2.60 14.72 2.79 4.87 1.07 4.48 0.72
Mean run time (sec) 1.37 20.82 3.21 12.27

to the highest one. The first five natural frequencies of the structure calculated with the stochastic subspace identification (SSI)
method [48] applied to ambient vibration recordings are given in [49] and are also reported in the first row of Table 13.

An open-access FEM of the structure created in MATLAB was provided in [50], and it is shown in Fig. 9(b–c). Columns and floor
beams are modeled as Euler–Bernoulli beams, while diagonal braces are modeled as bars without bending stiffness. Each raised
floor has 3 DOFs, namely the two horizontal translations and the x-y rotation, and each raised node has three additional DOFs,
namely vertical motion and x-z/y-z rotations, while all ground nodes are fully fixed. This equates to a total of 120 DOFs possessed
by the model. Geometrical and material properties of all structural members are given in Table 11 [50]. Note that the Table refers
to strong inertia directions for columns and beams, and these are for bending about the y axis and vertically, respectively.

When the values given in Table 11 are assigned to the model, the modal frequencies listed in the second row of Table 13 are
btained, which are, on average, about 10% off from the experimental ones of the first row. Therefore, both PSO- and RF-based
EMU approaches are used to update all model parameters in order to reduce such differences. These are the 11 parameters shown
n Fig. 10, which plots the results of a sensitivity analysis conducted using Eqs. (6) and (8). Note that the indices 𝑐, 𝑏, and 𝑏𝑟 stand
or column, beam, and brace, respectively. Although the first five modal frequencies are shown to exhibit virtually zero sensitivity
o some of the parameters, such as 𝐼𝑠,𝑏, 𝐽𝑐 and 𝐽𝑏, these are still given as input to the FEMU procedures as it is interesting to assess
hether their initial values would be left unchanged (as it would seem reasonable) or would be varied during the updating routine.
12
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Fig. 9. Photo (a) and layout of the FEM of the IASC-ASCE benchmark structure given in [50]: (b) 3D view; (c) 2D view in the y-z plane.

Fig. 10. Normalized sensitivity (𝜅) of each modal frequency to variations in the mechanical and geometrical parameters of the FEM.

Table 11
Properties of structural members.
Source: Table reproduced from [50].
Property Columns Floor beams Braces

Section type B100 × 9 S75 × 11 L25 × 25 × 3
Cross-sectional area 𝐴 (m2) 1.133 × 10−3 1.43 × 10−3 0.141 × 10−3

Moment of inertia (strong direction) 𝐼𝑠 (m4) 1.97 × 10−6 1.22 × 10−6 0
Moment of inertia (weak direction) 𝐼𝑤 (m4) 0.664 × 10−6 0.249 × 10−6 0
St. Venant torsion constant 𝐽 (m4) 8.01 × 10−9 38.2 × 10−9 0
Young’s modulus 𝐸 (Pa) 2 × 1011 2 × 1011 2 × 1011

Shear modulus 𝐺 (Pa) 𝐸∕2.6 𝐸∕2.6 𝐸∕2.6
Mass per unit volume 𝜌 (kg/m3) 7800 7800 7800

3.2.1. Case study II: model updating using PSO and the proposed inverse surrogate model
The PSO-based FEMU procedure is performed using the five experimental frequencies listed in the first row of Table 13 to form

the objective function 𝑂1 as set in Eq. (9), and by then adjusting the design variables of Table 11 (up to a +/- 30% range of
variation from their initial values) to minimize it. The algorithm was run under the settings of Table 2, which required 72.03 s of
computational time, and the resulting history for the objective function 𝑂1 is shown in Fig. 11(a).

An inverse surrogate model termed 𝐠3 is created by randomly shifting the parameters of Table 11 within a +/- 30% range of
variation from their initial values as the target, and by using the resulting first five modal frequencies as the independent variables.
The settings of Table 3 are used to generate 𝐠 , except that in this case the number of samples for the training phase was set to
13
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Fig. 11. (a) History of the objective function 𝑂1 during the iteration of the PSO algorithm on case study II. (b) OOB normalized error vs. number of trees for
ll 11 target parameters for 𝐠3.

Table 12
Design variables and their relative shift after model updating.
Design Initial Updated values Shift from initial(%) Updated values Shift from initial
variable values (PSO) (PSO) (%) (RF) (RF) (%)

𝐼𝑠,𝑐 1.970 × 10−06 1.379 × 10−06 30.00 1.690 × 10−06 14.19
𝐼𝑠,𝑏 1.220 × 10−06 1.586 × 10−06 30.00 1.205 × 10−06 1.24
𝐼𝑤,𝑐 6.640 × 10−07 4.648 × 10−07 30.00 5.887 × 10−07 11.35
𝐼𝑤,𝑏 2.490 × 10−07 1.743 × 10−07 30.00 2.286 × 10−07 8.18
𝐽𝑐 8.010 × 10−09 1.041 × 10−08 30.00 7.973 × 10−09 0.47
𝐽𝑏 3.820 × 10−08 4.966 × 10−08 30.00 3.519 × 10−08 7.89
𝐴𝑐 1.133 × 10−03 7.931 × 10−04 30.00 9.539 × 10−04 15.81
𝐴𝑏 1.430 × 10−03 1.001 × 10−03 30.00 1.298 × 10−03 9.20
𝐴𝑏𝑟 1.410 × 10−04 1.313 × 10−04 6.90 1.300 × 10−04 7.79
𝐸 2.000 × 1011 1.800 × 1011 10.00 1.889 × 1011 5.57
𝜌 7800 5460 30.00 7675 1.60

5000. The training phase required a computational time of 90.39 s, and the OOB error analysis computed for the 11 target variables
that is shown in Fig. 11 confirms that all errors plateau before 𝑛𝑡 = 100, hence there would be no benefit by using a larger 𝑛𝑡 value.

.2.2. Case study II: comparison of results
Table 12 reports the updated FEM parameters and their deviations from the initial values. Although very large variations from

uch values would not be expected, since they were measured by the authors of [49], the table shows that the PSO method has
hifted several parameters at their upper or lower admissible bound, i.e. at +/- 30%, especially those associated to low sensitivities
s seen in Fig. 10. This is likely a result of the ill-conditioning issue that plagues ‘‘classic’’ optimization-based FEMU approaches,
here similar modal results can arise from various combinations of structural properties, and therefore there is a risk of convergence

owards local minima. The proposed inverse surrogate model, instead, yielded feasible deviations within the admissible range for
ll the parameters.

The modal frequencies associated to the updated FEMs are listed in Table 13. Similarly as for the case of ‘‘case study I’’, PSO
ielded modal frequencies closer to the experimental ones than those resulting from the RF-based approach. All errors from PSO
re lower than 5% except for the case of the third mode, which is the only torsional mode among the five considered. Nevertheless,
he modal frequencies associated to the FEM updated by the proposed inverse surrogate model are still significantly improved from
he initial ones, since all errors are at least halved, except, as in the case of PSO, for the third frequency.

.2.3. Case study II: robustness of the results
To investigate the robustness of the results, both procedures described in Section 3.2.1 were repeated 20 times in order to take

nto account the influence of the random initialization of both approaches. The results are presented in Tables 14 and 15. The latter
onfirm all conclusions drawn in the previous section, and the standard deviations associated to the proposed inverse surrogate
odels are relatively low, with all values at or below 4% in Table 14, and below 1% in Table 15, hence demonstrating a good

epeatability.
14
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Table 13
Modal frequencies of the IASC-ASCE benchmark structure. The experimental ones are courtesy
of [49]. The ‘‘initial FEM’’ are obtained using the FEM with the parameters given in [50].
Parameter 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5
Experimental (Hz) 7.49 7.76 14.49 19.89 21.01

Initial FEM (Hz) 8.20 8.53 13.95 22.54 24.24
PSO (Hz) 7.57 7.81 13.19 20.58 21.87
RF (Hz) 7.68 7.96 13.13 21.05 22.55

Initial FEM error (%) 9.53 9.89 3.72 13.31 15.36
PSO error (%) 1.02 0.60 8.99 3.47 4.11
RF error (%) 2.53 2.61 9.39 5.84 7.31

Table 14
Mean and standard deviation (STD) of model updating errors when all FEMU methods are repeated 20 times.
Design Mean PSO shift STD PSO shift Mean RF shift STD RF shift
variable from initial (%) from initial (%) from initial (%) from initial (%)

𝐼𝑠,𝑐 30.00 4.33 × 10−05 15.58 2.51
𝐼𝑠,𝑏 29.28 2.24 × 100 3.05 2.29
𝐼𝑤,𝑐 30.00 6.25 × 10−04 11.45 3.09
𝐼𝑤,𝑏 30.00 3.50 × 10−05 5.43 3.29
𝐽𝑐 28.49 6.22 × 100 3.05 1.65
𝐽𝑏 29.99 2.67 × 10−02 3.91 2.48
𝐴𝑐 30.00 2.24 × 10−07 17.68 2.61
𝐴𝑏 30.00 2.35 × 10−04 7.86 3.63
𝐴𝑏𝑟 6.90 1.13 × 10−02 9.38 1.46
𝐸 10.00 1.04 × 10−06 5.02 0.85
𝜌 30.00 4.40 × 10−04 10.81 4.06

Table 15
Mean and standard deviation (STD) of modal frequency errors when all FEMU methods
are repeated 20 times.
Mode Mean PSO STD PSO Mean RF STD RF

error (%) error (%) error (%) error (%)

1 1.02 5.34 × 10−03 2.48 0.73
2 0.61 5.02 × 10−03 2.55 0.75
3 8.99 4.94 × 10−03 9.20 0.73
4 3.47 5.12 × 10−03 5.78 0.72
5 4.11 4.63 × 10−03 7.22 0.78

4. Conclusions

This article proposes a method for deterministic finite element model updating based on a so-called ‘‘inverse surrogate model’’,
hich is represented by a random forest algorithm for regression where the independent variables are a set of structural responses,
nd the target variables are geometric and mechanical properties of the structural elements. The approach is computationally
fficient, as computational costs are related to the RF training phase only, while inference following any new set of experimental
odal parameters is immediate.

The performance of the proposed method was compared to that offered by the widely used PSO algorithm on a numerical and
n experimental dataset where the structural responses are represented by a set of modal parameters. The results show that this
pproach is less susceptible to ill-conditioning issues, characteristic of deterministic FEMU procedures, for which similar structural
esponses can arise from various combinations of structural properties (see e.g. [32]). This occurs since optimization methods tends
o focus only on minimizing an objective function based on the disparity between experimental and model-derived modal parameters,
ypically neglecting the mutual relations between the latter, therefore increasing the risk to convergence to local minima. In fact, on
oth case studies, although the PSO-based updated modal parameters are closer to the experimentally measured ones, the predictions
f the geometric and mechanical properties of the structure made by the proposed inverse surrogate model are significantly more
ccurate than those given by PSO. The robustness of the proposed method was also tested by re-running each computation 20
imes with random initialization, and the results indicate a good repeatability since the standard deviation in the estimation of each
tructural parameters was contained within a 1% and a 4% range in the first (numerical) and the second (experimental) case study,
espectively.
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