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ARTICLE INFO ABSTRACT

Keywords: The Edge Computing paradigm is increasingly gaining traction in modern telecommunication scenarios, as it
Service orchestration enables the offloading of computational tasks from end devices to a variety of nodes located in close proximity
Edge Computing to them. This approach is essential for meeting the ever-stricter Quality of Service requirements imposed by

Data Plane Programmability
Industrial security
P4

modern applications. Concurrently, the advent of Data Plane Programmability allows for unmatched flexibility
on the networking plane, supporting processing of multiple protocols in a logically centralized fashion with
simple in-line computation, and offering the possibility to offload additional services to networking equipment.
Reaping those benefits necessitates heedful management of resources and infrastructure. This, in turn, calls
for the introduction of a service orchestration entity, capable of taking advantage of device heterogeneity
to enable efficient and swift service provisioning. This work delves into the potential of introducing an
orchestration system able to cope with the challenges of offloading security tasks at the Edge. This effort
involves developing and implementing novel architectural components that capitalize on the heterogeneous
nature of the Edge infrastructure as well as of the Programmable Data Plane as a potential tool for service
offloading. To establish the feasibility and performance of this approach, an industrial scenario is considered,
where the integrity of data from legacy devices must be ensured. Following an evaluation of the hashing
performance of the Programmable Data Plane in comparison to general-purpose devices, a simulation study is
conducted on the overall orchestration system, demonstrating the viability of the proposed approach.

1. Introduction of great help, as devices in the Programmable Data Plane (PDP) are very

flexible when it comes to performing simple and quick data processing

In recent years, due to the increasing pervasiveness of data pro-
cessing capabilities across the whole network, service instantiation has
been moving from core networks towards the elements that generate
the data itself, located at the edge of the infrastructure, leading to the
emergence of the Edge Computing (EC) paradigm [1]. User devices as
well as data sources can greatly benefit from this transition, as they
are in constant demand for real-time and latency-sensitive process-
ing [2]. Along with meeting these requirements, the adoption of EC
also promises an optimization of network traffic, an improvement of
the user experience, and an enhancement of privacy and security for
a number of applications, including industrial automation. Indeed, EC
can be pivotal in augmenting services offered by the network with new
processing capabilities, making up for the scarcity of computing power
or software compatibility typically displayed by specialized equipment,
e.g., by providing low-power legacy devices with packet encryption
functionalities. In doing that, Data Plane Programmability (DPP) can be
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on the traffic they handle, opening up to a large set of functionalities
that can be offered to network services.

In industrial environments, clusters of sensors and actuators are
typically deployed across the scenario, in arrangements often referred
to as Industrial Internet of Things (IIoT) networks. They present spe-
cific architectural challenges and weaknesses [3], stemming from their
peculiarities. Indeed, such networks are usually heterogeneous, un-
suitable for computation-intensive operations, and prone to security
issues, due to their devices needing to always be connected to the
Internet while lacking energy-demanding security software modules.
DPP-based solutions can help tackle these problems, in multiple ways.
The Programming Protocol-Independent Packet Processors (P4) lan-
guage has emerged as a powerful tool to control PDP devices, allowing
network operators and service providers to define the behavior of the
network devices at a packet-level granularity, enabling them to create
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custom forwarding and processing pipelines tailored to specific applica-
tions [4]. By using P4 to include cross-level headers, packet processing
can be offloaded to a single or few network devices provisioned with
more resources, supporting simple encryption or integrity checking.
Moreover, DPP can facilitate the adoption of security countermeasures
without adding complexity to the IIoT devices.

In this paper we explore the potential of employing DPP as a
tool to enhance service offloading at the Edge, focusing on industrial
security applications. Including DPP in a framework for flexible service
provisioning, we can enable the customization and adaptability needed
to improve services offered at the Edge. This calls for the introduction
of a service orchestration entity, capable of taking advantage of a
pool of heterogeneous (computing and networking) resources to enable
efficient and swift service provisioning. In other words, we abstract
the functionalities of PDP devices and make them comparable to those
of computing nodes, then we apply policy-based placement strategies
to pick the most suitable resource to provide a given service. As a
case study, we refer to an industrial environment, where the security
of remote maintenance services can be enhanced by activating proper
services offered at the Edge. We emulate the use case scenario to
evaluate the performance of implementing data integrity functions
on PDP devices in comparison to general-purpose computing nodes.
Finally, leveraging on the results of the emulation, we assess through
simulation how the availability of P4 switches can improve the effi-
ciency, performance, and scalability of service offloading. In the context
of this work, we refer as service to the composition of functionalities
(e.g., data processing, traffic steering, etc.) that may be deployed in a
distributed way over the network and EC infrastructures, and typically
offered to the user as a cohesive bundle. Service components (i.e., the
single parts being composed) are the abstracted elements representing
the underlying physical or virtual resources that can be configured to
perform those functionalities.!

The remainder of the paper is structured as follows. In Section 2 we
offer a recollection of state-of-the-art security challenges for industrial
environments, as well as solutions for service orchestration at the Edge.
In Section 3 we introduce the architecture and working principles of the
service orchestration framework we employed. In Section 4 we present
the scenario in which this work is articulated, outlining the typical
structure of an industrial network, its main challenges, and what issues
we aim to solve with our proposed solution. In Section 5 we describe
the topology for our emulated environment and provide its evaluation,
along with a commentary of preliminary results that assess the potential
of employing PDP devices in the delineated orchestration context. In
Section 6 we showcase through simulation results the benefits offered
by our approach in the offloading of services at the Edge, focusing on
the described use case. In Section 7 we draw conclusions and highlight
future research directions.

2. Related work

In this section, we first review research efforts that highlight the po-
tential of employing DPP to cope with shortcomings of IIoT networks,
with a focus on processing offloading to network devices. We then
provide a summary of state-of-the-art solutions for the orchestration
of services at the Edge. In doing that, we use the terms EC and Fog
Computing (FC) interchangeably, as their definition may overlap in
scenarios such as the one depicted in this work. Indeed, from the point
of view of cloud service providers, EC resources are typically referred
to as “near edge”, whereas FC resources are classified as “far edge”,
justifying the terminology we adopt here [5].

1 In the following, depending on the context, for the sake of readability we
may refer to “the function performed by a single service component” simply
as a service.
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2.1. Data plane programmability for in-network offloading

DPP enables reshaping packet processing procedures to smartly
exploit the hardware capabilities of networking resources. This ar-
chitectural advantage can be leveraged to implement custom packet
programming for multiple purposes. PDP devices can be employed to
support security and ease communication within IoT environments.

Some work analyzing this matter can be found in the literature.
P4 can be employed in IIoT scenarios, as argued in [6] and in [7],
which propose a framework to describe in-network computation tasks,
respectively to support Al-based scenarios and event detection over a
publish/subscribe architecture (using hardware targets like FPGAs and
SmartNICs).

P4 can also enable communication over complex wireless networks,
as argued in [8], as well as [9,10], which provide examples of how
to exploit P4 devices to enable peer-to-peer communication, manage
link load and enable WiFi communication over distributed Internet of
Things (IoT) wireless networks. The common denominator of these
approaches is that P4 targets introduce little to no communication
overhead.

One of the few DPP-based IoT architectural solutions for multi-
access networks is proposed in [11], employing P4 and In-band Net-
work Telemetry (INT) [12] over a P4 target to dynamically offload tasks
on the network.

Hence, in-network offloading can help service management systems
drastically cut some operational overhead and allow for finer-grained
network inspection. This is especially relevant in environments revolv-
ing around IIoT, usually composed of nodes with limited computational
power. Moreover, these networks use heterogeneous means of commu-
nication and require ad hoc clients and servers to send and receive
information. Thus, DPP and P4 can be helpful to potentially offload
part of the server-side computation since programmable targets can
be used and programmed like regular nodes. In fact, a P4 switch
can handle multiple or even custom protocols, and hence be used as
gateways for communications inside the plant, as well as run simple
in-line computation when processing packets. These features allow for
service offloading on the data plane, so the network devices can be
instrumented to perform network services computation at line rate. In
this paper, we show the advantages of such offloading features in an
IIoT context focusing on security applications.

2.2. Service orchestration at the edge

The EC paradigm enables efficient and distributed execution of
computational tasks closer to the network’s edge, bringing significant
benefits in terms of latency, privacy, and bandwidth utilization. How-
ever, effective resource orchestration in EC environments remains a
challenging task, due to the dynamic and heterogeneous nature of the
resources present in such systems.

While substantial steps have been made regarding the standard-
ization of service orchestration systems, such as OpenFog [13] and
Mobile Edge Computing (MEC) [14], open-source implementations of
fully-compliant orchestration systems are still lacking. However, we
present here a comprehensive overview of state-of-the-art orchestration
systems, to give context to the system we relied on for our evaluations.

In [15] the authors propose a novel orchestration architecture for
FC environments. Such architecture is divided into three tiers, namely
“cloud tier”, “edge cloudlets”, and “edge gateways”, and arranged
by the distance from the user to the requested resources (e.g., the
edge gateway nodes are positioned closer to the user than the edge
cloudlets nodes, offering applications with better latency performance).
The workload placement is regulated to meet the demands of fog
applications.

The authors of [16] created a prototype EC orchestrator, addressing
the heterogeneity of the IoT environment as well as the capabilities
of involved devices and the imposed constraints. The orchestrator is
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logically centralized, and an agent needs to run in every controlled
node, to manage local virtual instances (i.e., containers). They focused
their evaluation on two critical performance factors, namely the time
performance of the system while orchestrating different services in
different configurations (e.g., varying image size, image location, etc.),
and the success rate of the system in instantiating the services as
requested.

A hybrid architecture to manage resources in the Fog-to-Cloud
continuum is presented in [17]. It suggests a solution for the distributed
management of applications and services in the IoT and Fog domains,
while it recommends using a centralized strategy for the orchestration
in the Edge and Cloud domains, to benefit from global awareness of the
resources present in the network.

In [18], the authors provide a layered and modular architecture
with containerized services and microservices that operate on the Fog-
to-Cloud continuum. A hierarchically lower layer is responsible for
performing sensing and operations, while a middle layer handles in-
termediate computing resources and routing, and an upper layer deals
with wider-view operations such as long-term global storage.

The aforementioned works propose new architectures for service
orchestration in EC scenarios, emphasizing the distributed character of
these systems and the demand for accurate monitoring and data on the
availability of resources for both nodes and services. These solutions,
however, only combine the information on available resources to pick
a node on which to deploy the service, without considering different
service provisioning models, nor considering the specific performance
users expect of services after their activation.

On the contrary, the authors of [19] propose a service-centric
approach, that leverages the inherent flexibility offered by the cloud-
native Everything-as-a-Service (XaaS) model to provision services in
a more dynamic way. This solution still makes use of data gathered
from available resources to decide where and how to deploy services,
but in doing so it also considers the nature of the requested service,
including the possibility of deploying it in multiple ways, along with
the present state of the system. This orchestrator was subsequently
extended in [20] and in [21], making it a suitable choice for our
purposes here.

The novelty of this paper resides in (i) the adoption of PDP devices
for the offloading of security-critical network service functions in an
IIoT scenario, and (ii) the inclusion of DPP as a tool to enhance avail-
ability and flexibility of services in a XaaS-aware service orchestration
framework.

3. Orchestrating services leveraging programmable data plane de-
vices

Orchestrating services over a heterogeneous set of resources re-
quires cooperation between monitoring, management, and decision
processes. In this section, we describe the structure, functional ele-
ments, and working principles of the service orchestration framework
we employed. Such framework is based on that introduced in [19,
20]. It retains the original XaaS approach, which makes the system
aware of different service deployment models, borrowing from the XaaS
deployment paradigm typical of Cloud Computing scenarios, and ex-
tends it with the support for services offered by networking resources.
Specifically, the orchestrator can instantiate services according to five
different service provisioning paradigms:

« Infrastructure-as-a-Service (IaaS), for the deployment of a generic
virtualization engine (e.g., Docker) on a computing resource;

+ Platform-as-a-Service (PaaS), to provide the user with a software
framework (e.g., the Python SDK) including tools, libraries, and
interpreters, for the execution of generic programs;

» Software-as-a-Service (SaaS), to offer a specific application (e.g., a
Web-based one) that users may access through a dedicated inter-
face;
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Fig. 1. Service orchestration framework architecture.

+ Function-as-a-Service (FaaS), to provide the user with a lightweight
service component, reduced to a single function (e.g., real-time
video transcoding), handled entirely by the computing resource
on which it is deployed in an event-driven, serverless manner;
Programmable-Data-Plane-as-a-Service (PDPaaS), exposing to the
user packet-level functionalities of programmable networking re-
sources (i.e., PDP devices), e.g., to steer traffic or process packets
as they cross the network, with potentially significant perfor-
mance advantages.

Leveraging the flexibility offered by this approach, the orchestration
system is able to combine different paradigms to obtain the desired
service in an efficient and effective way. For instance, if a service is
not natively available on a computing resource, but such resource is
capable of hosting a compatible version of it, then the requested service
can be deployed there. In other words, the orchestrator may decide to
deploy an application (i.e., a SaaS-native element) on top of a virtu-
alization engine (i.e., a IaaS-native element) running on a computing
resource that did not previously offer that specific application. This
introduces great adaptability, albeit at the expense of greater service
activation complexity that may entail drawbacks such as an increased
service activation time.

The architecture of the orchestration system is represented in Fig. 1.
At a macroscopic level, the framework consists of two layers, namely
the Orchestration level and the Resource level. The former comprises the
functional elements of the logically centralized orchestrator, while the
latter encompasses all the distributed and dynamic resources that are
available in the infrastructure for the orchestrator to activate services.

The functional elements of the service orchestrator are structured
in a way that reflects the need for abstraction of the service activation
process, while also facilitating a modular implementation. Starting
from the top of the figure and moving downwards, the point of contact
between the orchestrator and the external world is provided by the
Service gateway, which allows users and other systems to access the
functionalities of the orchestrator. Immediately below, it comes the
Service intelligence element, which implements the core functionalities
of the orchestration process; it is tasked with making service activa-
tion decisions to satisfy external requests while enforcing predefined
policies. The monitoring information is made available to the decision-
making module by the Service monitoring element, which handles the
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Fig. 2. Interactions between functional elements of the orchestration system.

processed telemetry data that describes the status of active services and
the availability of components to instantiate new ones. Its functions
are complemented by the Service management element, which handles
the lifecycle of services, ensuring that their deployment and decommis-
sioning is operated in compliance with the decisions coming from the
Service Intelligence. The role of the Resource aggregator element is that of
providing the abstractions that allow the elements above to work with
abstracted service components that lack any technology-specific details.
Similarly to their overlaying counterparts, the Resource monitoring and
Resource management elements are in charge of collecting telemetry
data and handling the deployment processes, respectively, but at a
lower level of abstraction, interacting with resource domains in a way
that is specific to their technological characteristics. Lastly, the Resource
connector element is in charge of the communication between the
service orchestrator and the underlying infrastructure, facilitating the
integration of diverse domains into a pool of resources visible to the
orchestration processes.

For this work, we introduced the support for some additional ser-
vices that may leverage DPP, depending on the availability of PDP
devices. We make the practical assumption that the code needed in
order to provision the newly introduced services is already available in
the PDP devices, so as to simplify their deployment by just activating
them when needed, without running a re-configuration of the pipeline.

The procedure of activating a service through the orchestration
system typically starts with the intended user requesting a list of the
offered services. This list reports information in a symbolic format,
representing the available services as well as those that the orchestrator
can deploy. The user may then request the activation of a specific
service. The activation process is entirely handled by the cooperation
among the functional elements in the service orchestrator. The steps
of such process are displayed in Fig. 2, where the interactions per-
taining to the activation of services are labeled with A, whereas those
related to the monitoring process are labeled with M. The former chain
of actions is triggered by the request coming from the user, while
the latter happens periodically. The numbers on the labels represent
the order in which those interactions take place. In summary, when
receiving a service activation request, the orchestrator will leverage
the periodically refreshed monitoring information on the available
resources to determine how to activate the requested service. It will
then trigger the required steps to configure the underlying resources for
the provisioning of the service to the user. At the end of the procedure,
the orchestrator will inform the user of the outcome, allowing it to
access the service.

To showecase the support for the PDPaaS paradigm, we extended the
orchestrator with the ability to interact with the PDP. From the point
of view of the orchestrator, and specifically of its Service intelligence
element, all resources are comparable, as they are described in terms
of their features by means of abstractions provided by the Resource
aggregator element. This makes it so that PDP devices are regarded
in the same way as any other resource, allowing PDP resources to be
included, alongside computing resources, in the same pool from which
the placement algorithm picks for the activation of the requested ser-
vice. Also consistently with the implementation of the other instances

of the XaaS paradigm, the same principles for the monitoring and
management of computing resources are applied to PDP resources. In
practice, this translates to the introduction of a REpresentational State
Transfer (REST) interface on the control plane of the programmable
switches, enabling the interaction with the orchestrator for monitoring
and management purposes.

The principles and mechanisms described in this section can be
leveraged to address significant issues in the reference scenario, as
detailed in the following.

4. Industrial security: a focus on legacy devices

In this section, we outline the Industrial Control Systems (ICS)
context to which the use case discussed in this paper pertains. We
specifically describe some of the most important challenges on the
orchestration and management of services in this context, and how our
solution can help tackle some of those challenges, such as those related
to remote maintenance. ICS are composed of interconnected Cyber
and Physical components that monitor and manage physical processes.
They are responsible for the safety and operations of the industrial
process, which implies the management of heterogeneous hardware
and software. They include devices such as sensors, actuators, super-
visory control and data acquisition (SCADA) systems, Human Machine
Interfaces (HMI), and dedicated subsystems such as programmable
logic controllers (PLC) [22]. This heterogeneity obviously translates
into system complexity, which implies more effort to manage and
prevent anomalies. The Purdue Enterprise Reference Architecture [23]
is the reference networking architecture for ICS systems, adopted in the
ANSI/ISA-95 standard, and we can use it to analyze each segment of a
typical ICS.

As depicted in Fig. 3, the Purdue Architecture divides the ICS
network into six layers which are arranged into three logical segments:
the layers from O to 3 constitute the Manufacturing Zone, while levels
4 and 5 constitute the Enterprise Zone, with a Demilitarized Zone
of convergence between them. The Enterprise Zone, also referred to
as Information Technology (IT) network, incorporates traditional IT
devices and systems where the primary business functions of the en-
terprise occur, including the orchestration of manufacturing operations
and services. On the other hand, the Manufacturing Zone is known
as Operational Technology (OT) network because it contains systems
and devices responsible for the control, monitoring, and automation
of physical processes. At level 0 of the Manufacturing Zone, sensors
and actuators are deployed to interact directly with the physical pro-
cess while level 1 is composed of PLCs which implement systems
control logic by observing sensor readings and by consequently updat-
ing actuators signals. Level 2 (SCADA, HMI) and level 3 devices are
responsible for control, data acquisition, and monitoring in order to
manage plant operations. Edge nodes at level 3 are also responsible
for running applications that need to interact with OT devices and for
providing security for the Manufacturing network. In addition, devices
belonging to those two levels can communicate with the Enterprise
Zone through the demilitarized zone (DMZ), which manages the con-
nection between the IT and the OT networks while maintaining the
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two worlds isolated from each other. The DMZ serves as a controlled
buffer zone, enabling secure data exchange and access management
while maintaining distinct security protocols suited to each network’s
priorities: IT focuses on data integrity and confidentiality while OT
prioritizes system availability and physical safety. Additionally, the
DMZ architecture aids in regulatory compliance by establishing a clear
boundary that can be audited according to industry standards [24].
The reliability of the OT network is paramount: failures cannot be
acceptable due to the critical nature of the physical processes monitored
and faults would imply shutting down the entire industry, leading to
potential economic losses. Finally, it is important to highlight that the
risk impact is also different considering that, in the IT network, the
principal risk is the loss or unauthorized alteration of data. Instead, in
the OT environment, a security breach can jeopardize both production
and equipment, while in the worst case, can cause a loss of lives or
environmental damage [22]. This alignment with cybersecurity best
practices underscores the DMZ’s vital role in safeguarding industrial
infrastructure, making it an essential component of modern network
design

4.1. Threats on legacy devices: the OPC UA protocol

ICS employs a wide range of protocols, depending on the specific
objectives of each system. Real-time constraints and legacy hardware
are two of the most important challenges that industrial protocols are
specifically made to address. Legacy components in particular are one
the main source of issues in modern ICS. Legacy devices usually lack
proper security measures. At the same time, protecting and managing
these devices becomes necessary because replacing them is often a
complex and expensive process. These devices typically show limited

flexibility and frequently lack the capability to be updated to meet
modern standards. As a consequence, these devices may exhibit short-
comings such as the absence of mechanisms for firmware management.
This often leads to issues derived from outdated software (SW) and
firmware (FW) such as limited connectivity, insecurity of channel com-
munication, unverified data integrity, uninsured data confidentiality,
or lack of access control monitoring policies.

In this context, a new building model, OPC UA [25] has emerged as
the de-facto standard for machine-to-machine communication because,
compared to other common industrial features, it enables platform-
independent and secure communication by design. It has become pop-
ular with the advent of Industry 4.0, a paradigm that aims to create
new business logic and markets while opening the old OT industrial
segment to the Internet, legacy devices included.

Adopting this protocol in an industrial environment enables the
integration of heterogeneous hardware, which is instead a constraint
brought by proprietary protocols (like Siemens S7). At the same time,
the advanced security-by-design capabilities of the protocol reduce
some of the typical security risks of ICS (such as lack of message authen-
tication or encryption). Two communication strategies are possible,
namely client-server and publisher—subscriber. Even though OPC UA
does not strictly enforce the use of security mechanisms, both com-
munication models allow messages to be signed to ensure authenticity
and encrypted to add confidentiality. Actually, OPC UA messages can
be exchanged in one of three Security Modes: None for unprotected
communication, Sign for authenticated communication, SignAndEncrypt
for authenticated and encrypted communication [26].

Despite the benefits of the protocol, supporting the security features
of OPC UA by product vendors, libraries implementing the standard,
and end-users remains challenging, preventing companies from adopt-
ing proper security mechanisms. Currently, roughly 14.6% of OPC UA



G.F. Pittala et al.

device vendors do not support security features at all, while 64.6% of
them present issues or errors in the Trustlist management, enable Rogue
Client, Rogue Server, and Man-in-the-middle attacks, and only 20.8%
of them correctly implement the security features offered by the OPC
UA protocol [27].

We argue that, despite its potential, the OPC UA architecture needs
to be backed by additional mechanisms when the adoption of its
security features is limited or nonexistent.

4.2. Use case: Remote maintenance of industrial plants

With the ever-growing need for operational efficiency and negli-
gible downtime, remote maintenance is becoming a critical tool for
industrial plant maintainers. In fact, the possibility of connecting with
the industrial plant remotely (e.g., from the premises where the IT is
located) enables quick ordinary reconfiguration and prompt reaction to
unexpected events, at all times. In this section, we describe a typical
remote maintenance use case and outline the risks that this work
method involves.

In our use case scenario, a technician needs to operate on equipment
situated in the industrial plant, but from an external location, through a
remote connection. Such connection may carry text-based data (e.g., for
command line operation on a terminal) or multimedia data (e.g., for
visual control of machinery).

The technological requirements to establish this kind of remote
session are mostly already met in modern industrial environments.
However, their activation is often hard to automate, since the OT
is generally managed in local networks, and it may include special-
ized hardware (e.g., an industrial gateway that performs security du-
ties) [28]. Moreover, it is prone to security and privacy threats, arising
from the exchange of potentially critical information outside of the
private network of the company. Furthermore, in order to guarantee
maximum efficacy, the Quality of Service (QoS) perceived by the user
(i.e., the technician, in this example) should be high enough to support
the workflow without impediments or delays.

The traffic generated by the remotely controlled equipment needs
to cross multiple network segments. For instance, the data may be
generated on a device connected to a server (e.g. OPC-UA) located
on a PLC in the OT segment. From there, it needs to cross the OT
network, which is composed of devices such as PLCs, SCADAs, and
actuators, which typically have low computation capabilities. Then it
goes through the IT network, which usually hosts most of the com-
putation power. Finally, it crosses the Internet, which exposes it to a
number of potential threats [29]. All things considered, the technology
implied is not enough to grant confidentiality and integrity of the
data, while of course availability depends on the switching and firewall
configuration. More specifically, we can analyze the Confidentiality, In-
tegrity, Availability (CIA) risks of each of the traversed domains. Based
on computation capability, the crossed path can be divided into two
portions, namely OT-IT (low capability route) and IT-Internet (high ca-
pability route). In the OT-IT portion, confidentiality is not threatened,
as data travels within the private network of the company. Its integrity,
however, can be undermined by the fact that legacy devices do not
usually support integrity checks. On the other hand, in the IT-Internet
portion, data is prone to confidentiality threats, since more personal
or company data are shared in such portion as well as integrity issues
that may cause data flow disruption or alteration. In both portions, data
availability is threatened by out-of-domain connections that can lead to
denial-of-service attacks.

Companies often leverage Virtual Private Network (VPN) technol-
ogy to establish a private end-to-end connection between the client and
the IT (which usually comprises a VPN server), ensuring Confidentiality
and Integrity of the transmitted data. All things considered, we can
still identify two main points that need to be addressed to achieve
automated deployment of safe remote maintenance sessions in the
industrial plant. The first is the lack of CIA in the OT-IT portion, due to
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the scarce computation capabilities of the involved devices. The second
is the automatic deployment of remote service components to support
the maintenance session on client request, keeping CIA requirements
into account.

For the purpose of this work, we have defined and implemented
instances of such support services, which we refer to as Maintenance
Services (MSs), and their goal is to enhance the reliability of the
remote maintenance routine, consistent with the use case presented
in this section. This is achieved by applying hashing to the data flow,
according to one of four different hashing algorithms, namely CRC32,
XXH64, MD5, and SHA256. The data flow may be either text-based
(e.g., for remote terminal operation) or video-based (e.g., for remote
inspection), resulting in a total of eight new services offered to the user.

In Section 5, we provide a proof of concept to tackle the afore-
mentioned concerns by leveraging service orchestration and PDPaaS
through the activation of MSs.

5. Proof of concept: Emulation of an industrial environment

This section must be intended as a motivation chapter to introduce
the evaluation on Section 6. In fact, the testbed used to draw the
results shown in this section is emulated. Thus, the results must be
interpreted as a simple prototype of our solution, which we believe can
be reasonably scaled up to a real-world scenario.

Fig. 4 shows the emulated industrial environment used for the tests,
which is inspired by the architecture described in Section 4.

The IT and the OT are separated by a DMZ: on the IT side, it is
accessed via a traditional router, while the OT devices are reached
through a P4 programmable switch. The P4 switch can be managed by
the orchestration framework to provide specific PDPaaS services. Since
the goal is to establish a remote maintenance connection, our system
provides a remote VPN connection to the industrial network for a client
located on the Internet. The VPN server is placed in the IT network,
alongside the workstations and the orchestrator presented in Section 3.
In particular, the orchestrator is responsible for deploying services both
in the IT and the OT. The types of services that can be managed by the
orchestrator are also described in Section 3.

When compared to the Purdue reference architecture, the OT net-
work is simplified to only one level, in which two main elements are
located, namely OPC UA servers and Edge Nodes. Edge Nodes supply
computational power to the Manufacturing Zone and can support the
deployment of PDPaaS services to provide integrity along the OT-IT
path. OPC UA servers, instead, are legacy devices with low computing
and networking capabilities. Considering this aspect, we assume that
they can only operate in Security Mode None. In addition, OPC UA
servers are connected to monitoring cameras, as described in [30],
which observe the assembly line and allow the remote maintainer to
discover faults in the production processes.

5.1. Experimental setup

We implemented the emulated industrial testbed using the Kathara
framework [31]. Our Kathara topology and all the test scripts are open-
source and public at [32]. All elements of the testbed are implemented
as Docker containers, except for a separate node on IT premises hosting
the Service Orchestrator. The remote client hosts an OPC UA client
process capable of connecting to a VPN server located in the IT net-
work. We built a specific Docker container image published to Docker
Hub to implement these functionalities, employing the opcua-asyncio®
Python library for the OPC UA client functionalities. Edge nodes and
IT workstations are general-purpose Debian-based Docker containers;
edge nodes have higher computing capabilities, in terms of RAM and
CPU power, than the others. OPC UA servers, on the other hand, are

2 https://github.com/FreeOpcUa/opcua-asyncio
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equipped with less RAM and less CPU power, to account for the fact
that they represent legacy devices, and they are based on the same
image as the ones that represent the remote client. The VPN server is an
OpenVPN server that pushes the route to reach the OT private subnets
to the remote client. Between the OT and the IT segments, there is a
traditional Open vSwitch [33] which acts as a firewall by means of
IPTables rules, with the goal of allowing only VPN traffic. A container
emulating the P4 switch is placed between the IT nodes and the Open
vSwitch connecting the OT and the IT networks. It is equipped with
a simple level 2 forwarding pipeline® and configured to only forward
traffic to the end hosts: the P4 code is compiled for the reference virtual
target bmv2.* On top of this, we developed a P4 program for each
payload size and hashing function, i.e., 256 and 1024 bytes, for a total
of 8 pipelines (i.e., 2 different payload sizes and 4 hashes). To develop
the hash functions, we exploited the idea of P4 extern.® An extern is
an API that uses an external dependency, which can be queried by the
target. Each hash function is implemented in the form of

hash(output, input[])

where the output is the hash produced by hashing the concatenation
of the input payload chunks, each chunk being 256 bytes since bmv2
only allows for variables with a size up to 2048 bits. Each hash extern
leverages standard C++ implementations of the hashing functions.

3 https://github.com/UniboSecurityResearch/P4-Forch_KatharaTopo,/blob/
master/routerl/root/p4/program.p4

4 https://github.com/p4lang/behavioral-model

5 https://p4.org/p4-spec/docs/P4-16-working-spec.html#sec-external-
units

roof-of-Concept implementation.

Each pipeline hashes the payload in the ingress queue control, by
simply calling the extern and adding the hashed payload in the custom
field at the start of the payload, as summarized in Algorithm 1.

Algorithm 1: Hashing in the ingress pipeline

Input : a packet packet containing
H packet header, hash payload hash custom field,
P payload;
Output: hashedp = hashed P

1 hash < hash(hashedp, P): we set the custom hash field in the

packet, which is then carried in the network.

We tested the topology on a Ubuntu 20.04 LTS Server with 14 GB
of RAM and 3 CPU cores KVM machine.

5.2. Hashing performance comparison

To evaluate our solution we compared the performance of the
programmable nodes and traditional edge nodes in performing the
CRC32, XXH64, MD5, and SHA256 hashing functions. To do so, we ran
some tests calculating the effectiveness of the two different options to
hash OPC UA packet payloads. The results obtained can then be used
by the orchestrator when deciding on whether a switch or an edge node
should be chosen as a resource to deploy the integrity hashing function
on the plant.

As we can see from Fig. 5, the payload processing time of the switch
increases depending on the type of hash function.

We chose a simple metric to calculate the added hashing overhead,
the Total Time Increment (TTI). Given the average processing time to
process an OPC UA packet by a switch (Ty,,;,.) over a number N of
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analyzed packets with a processing time T,

T T
T, .. ===
baseline N

and given the time to hash an OPC UA packet by a switch or an edge
node (7},,,,) over a number N of analyzed packets with a processing
time H;,
Thavh = le\:’l Hi

’ N
The Total Time Increment (TTI) is defined as the percentage increase
of the hashing time with the baseline, calculated as:

TTI(%) — Thash - Tbaseline . 100
Tbaseline

We calculated the TTI for three different payload sizes: 256 bytes
(Fig. 6) and 1024 bytes (Fig. 7), for different traffic rates. We gathered
data for traffic lower than 4 Mbps since in our configuration the topol-
ogy has packet loss for traffic above that threshold. These limitations
come from the use of a virtualized environment and bmv2.

Figs. 6 and 7 show the TTI for OPC UA payloads of 256 bytes,
comparing switch and edge node hashing to the baseline. By looking
at the graphs, we can summarize two main outcomes:

1. Computing hashes on the edge nodes entails a TTI that is 4
orders of magnitude bigger than hashing on the switch.
2. The TTI of the switch varies depending on the hashing function.

Statement 1. is explained by the fact that the processing time of the
edge node is calculated between the ingress and egress interfaces of
the container. In fact, this time is the composition of the time to move
the packet sniffed with the Scapy® library from kernel to user space,
the time to hash the payload with a Python script, and the time to
move back the packet from user to kernel space. Moreover, the node
TTI depends more on the traffic rate than the hashing function.

The switch TTI results roughly confirm the expected behavior in
terms of hashing complexity [34]. In fact, the SHA256 hash calculation
takes more steps than CRC32, XXH64, and MD5.

Fig. 8 groups the TTI curves for 1024 bytes payload, using a
logarithmic TTI scale. Each set of curves is graphically grouped with
a colored circle, based on the type of device that performs the hash.
The logarithmic scale outlines the difference between the node TTIs
and switch TTIs.

As an overall comparison, Fig. 9 sums up how the average pro-
cessing time for a packet on the switch completely outperforms the
respective one on the edge node. This suggests that, if choosing between

6 https://scapy.net/
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an edge node and a switch for service placement purposes, the obvious
choice is the programmable switch.

6. Evaluation process and results

As implied by the results presented in Section 5.2, offloading the
computation required for MSs to PDP devices allows to achieve better
performance compared to using conventional computing devices for the
same task, while also requiring no replacement of legacy devices that
are already deployed in the scenario. In this section, we evaluate the
feasibility and the performance of the orchestration of those services in
an environment such as the one described in Section 5. To do so, we
implemented a Python-based discrete event simulator.

In the simulator, the orchestration system is actually reduced to
its Service intelligence element, as no real telemetry data is collected
from - and no management action is applied to — underlying resources.
The intelligence of the simulated orchestrator is in charge of mak-
ing placement decisions while enforcing a given policy, and, as the
simulation progresses, the availability of resources is affected by the
decisions made up to that point. For performance evaluation purposes,
we implemented three policies, so as to have the orchestrator prioritize
different aspects while making its decisions.

The first policy is denoted as Random (R), and instructs the orches-
trator to make a completely random decision on the action to apply to
any service request, including the choice of where and how to activate
the service or block the service activation altogether. Such actions
are uniformly distributed and independent of one another, meaning
that each service request might be served by a computing resource,
a networking resource (if available), or be blocked, with the same
probability. This placement algorithm is represented in Algorithm 2.

Algorithm 2: Service placement with Random policy

Input : set R of computing resources
R¢ ={r¢|ie NAi<amount of computing resources};
set R" of networking resources, R" =
{r;' | j € NA j < amount of networking resources } ;
combined set R of available resources
R = {r € R°UR"|r is not completely busy}
Output: service placement decision p
1 p « choice({r € R} U {block}), where choice represents a
random selection of an element from the input set, with
uniform probability

The second policy is called Load balancing (LB), according to which
the orchestrator is expected to balance the service placement between
computing and networking resources, with a particular focus on net-
work utilization. In other words, when enforcing this policy, the or-
chestrator tries to balance the overall load due to service placement
across the resources. This favors the choice of a networking resource
over a computing one when the network load grows, leveraging the
better ability of networking resources in providing specific services. As
detailed in Algorithm 3, when applying this policy, the orchestrator
sorts the available resources based on the collected metrics (CPU, RAM,
disk, network usage, etc.), from the least to the most loaded. It then
picks the resource with the lowest network occupation between the first
computing resource and the first networking resource in the sorted list.

The third and final policy considered is referred to as User QoS
(UQoS) because it aims at optimizing all aspects perceived by users,
including the service activation time and overall latency, as discussed
in 5. The rationale behind this is in the consideration that activating a
service on a PDP device with a pre-configured pipeline is much faster
than doing it on a computing resource, as will be further argued later
on in this section. Additionally, the performance in terms of service
fruition of PDP devices have been shown to be superior to that of
computing resources. For these reasons, if the objective is to enhance
the overall user experience as much as possible, networking resources
should be favored over computing ones at all times. In line with what is
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represented in Algorithm 4, when activating a service, the orchestrator
will always select the P4 switch if it is available, or the least occupied
edge node otherwise, blocking the request if none of these resources is
available.

In each simulation run, the orchestrator receives a sequence of
service requests, which may require any of the supported services to
be activated, including the newly-implemented MSs, that may leverage
DPP. The service requests are generated following a Poisson process,
with the service duration being exponentially distributed. Specifically,
service requests are randomly generated out of a pool of 50 different
services, of which 8 are MSs and 42 belong to the other service models
with the following proportion: 10% IaaS, 20% PaaS, 30% SaaS, and
40% FaaS. Each request may pose different requirements in terms of
computing power, memory, storage, and network capabilities, as well
as in terms of service provisioning mechanisms (referred to the XaaS
paradigm detailed in Section 3). Based on the policy to be enforced, the

10!
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Fig. 9. Edge node and switch average delay comparison for different hashing functions.

details specified in the request, and the current status of the underlying
resources, the orchestrator needs to make a decision on how and on
which resource to activate the service, or to block the request in case
no suitable resource is available. In the simulation, no actual telemetry
data is collected, so all resources are considered to be fully available
at the beginning of each run, while at each simulation step they are
assigned to an incoming service request, and released at its completion.

We estimate the service activation delay, defined as the additional
time required by the orchestrator to activate the service (not including
network time), by counting the amount of times that a MS was activated
according to each of the different models supported, and multiply that
amount by the average time required to activate a service in that way,
as evaluated in [20].

The simulation scenario stems from the topology depicted in Fig. 4,
instantiated in the simulator in three different configurations, with
either 1, 4, or 9 compute nodes and a P4 switch available, for a total
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Algorithm 3: Service placement with Load Balancing policy

Input : set R of available resources r as defined in Alg. 2;
current status s of each resource as a collection of
metrics, s(r) = {CPU, RAM, etc.},Vr € R;

Output: service placement decision p

if R = ¢ then

L p < block

[

return

w

4 if |R| =1 then
p < the only available resource
return

[}

7 Create the ordered set R, by sorting elements of R by their
metrics, starting from the least busy one
if no networking resource in R, then
p < the first element of R,
L return

@

10

11 if network load of least busy networking resource < network load of
least busy computing resource then

12 L p < the least busy networking resource

13 else
14 L p < the least busy computing resource

Algorithm 4: Service placement with User QoS policy

Input : set of available resources R as defined in Alg. 2;
current status s of each resource as defined in Alg. 3
Output: service placement decision p
1 if R =¢ then
2 L p < block
3

return
4 if |R| =1 then
5 L p < the only available resource
6

return
7 Create the ordered set R, by sorting elements of R by their
metrics, starting from the least busy one
8 if 3 networking resource € R then
9 L p < the least busy networking resource
10

return
11 p « the least busy resource

of 2, 5, or 10 available items in the resource pool the orchestrator
can choose from. Industrial environments are very diverse, in that the
amount and distribution of computing and networking resources can
vary widely among different premises. In such environments, we expect
to have a limited amount of computing resources in the IT and at
most one programmable switch (along with potentially multiple non-
programmable ones) between OT and IT. We argue that the different
scenarios we showcased represent real-world industrial ones, both from
the point of view of the technological solutions involved (i.e., P4) [22],
as well as from that of the infrastructural network models [35]. Based
on the same topology, we further distinguish two cases, differentiated
by whether the P4 switch is available or not — in other words,
whether the orchestrator can rely on heterogeneous (computing and
networking) resources or not.

We simulated each different scenario given by the combination of
configuration of nodes, switch availability, policy, and traffic intensity.
In particular, available nodes were allowed to vary freely between
simulations, but at least one of them was required to support the IaaS
model. Moreover, we let the traffic intensity (the ratio between arrival
rate and service rate) vary from 10 to 1500, in steps of 10. For each
scenario, we run the simulation 20 times, with different seeds, to obtain

10
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Fig. 10. Probability of the orchestration system in blocking a generic service request
due to insufficient available resources. The curves represent the performance of different
service placement policies with different amounts of available resources, as indicated
by acronyms and numbers in the legend.

different incoming service requests at each run. We generated and
submitted 10° service requests for each run. We then computed the
sample mean over the 20 runs and reported them in the graphs as the
solid and dashed lines, surrounded by shaded areas depicting the 95%
confidence interval.

To begin with, we assessed the probability of a service request
being blocked by the orchestration system. This was computed as
the ratio between the number of blocked requests and the number
of offered ones. As shown in Fig. 10, the results show an Erlang-
B formula behavior, as can be expected, given the distributions of
the service request arrival rate (Poisson) and of the service duration
(exponential), as well as the fact that the orchestrator behaves like a
multiple-server system without queuing space. We can also confirm
the intuitive expectation that the blocking probability is higher for
scenarios with a lower amount of available resources, and for those
using the Random service placement policy. The difference between
Figs. 10(a) and 10(b) is in the availability of the P4 switch. In the
former case, the switch can be leveraged to provision services. In the
latter case, the switch is assumed pre-loaded with other tasks, making
it unavailable for the orchestrator. The policy that is most influenced
by this difference is the User QoS, as it prioritizes the use of the PDP
device. Also the Load Balancing policy shows some sensitivity to the
availability of networking resources for a very small amount of overall
resources, as in that case the policy can no longer reduce the load on
the compute nodes.

As a further evaluation, we assessed the impact of the activation
of MSs on the workflow of the user. In other words, we wanted to
evaluate the delay caused by the additional deployment time of the
service components needed to apply hashing to the text or video stream
that the user employs to perform remote operations and compare the
impact of different service policies. We defined a metric, called Mean
Activation Time (MAT), that is computed at the end of the simulation
of each scenario, as the ratio between the total time taken by the
activation of MS instances over the number of such instances activated
in the simulation run, where all kinds of service requests are generated.
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In practical terms, if MAT is zero, the activation of services by the or-
chestrator did not introduce any tangible delay in the remote operations
of the user. For instance, this is possible when the MS is deployed on
a P4 switch pre-loaded with the code needed to perform the service,
requiring only a signal (e.g., a REST HTTP request) to activate the
additional traffic processing, without the need for a reconfiguration of
the pipeline. To be precise, this would still inevitably require a small
time, but we can reasonably approximate it to zero, as it would be
seamless to the workflow of the user. Any value of MAT larger than
zero means that the user is subjected to a small delay while the hashing
mechanisms are activated.

This MAT is represented in Fig. 11, focusing on the case when a
PDP device is available. Such switch is consistently leveraged by the
policy User QoS for the deployment of services, allowing that policy
to achieve a negligible MAT. The MAT related to the other policies
depends on the traffic intensity. In particular, the decrement of the
MAT with larger values of traffic intensity is due to the decreasing
availability of edge nodes, forcing the two policies to choose between
the PDP device or blocking the request. To fully understand this result,
one must consider that the activation of services on compute nodes
takes longer for the first MS instances deployed on them, due to the
need to download the required software (e.g., the Docker image) and
set it running. The activation time decreases as further requests for the
same services are served, as the software components will already be
on the node. When considering small values of traffic intensity, the
impact of the first requests (i.e., the ones taking longer to be activated)
will still be relevant with respect to the following ones (i.e., those
served in a shorter time), leading to a higher value of MAT. In line
with this rationale, one would expect all curves to exhibit a maximum
for the lowest value of traffic intensity. However, that is not so for
the Load balancing case, as this policy places services on the resource
that is least involved in handling network traffic, generally favoring
compute nodes in an initial phase, until the point where it can no
longer keep up with the increasing traffic intensity as resources are
saturated, resulting in choosing the PDP device. The small number of
requested MSs in comparison to other generic services (on average 8 out
of 50) are typically served by the PDP device. On the other hand, the
Random policy exhibits a trend compliant with its working principle
of randomly selecting a service placement action, and such actions
are restricted to activating the service on the PDP device or blocking
the request. The horizontal line denoted as “Threshold” represents the
mean of the MAT value across all the policies when the PDP device
is completely busy, thus unavailable to the service placement process.
The fact that this line is never crossed is due to the availability of the
PDP device, showing that, when the nature of the services allows it,
leveraging DPP always leads to better performance compared to using
compute nodes alone.

As a last evaluation, we assessed the blocking probability again, but
limiting the requested services only to those that can be deployed on
the programmable switch, i.e., to MSs. In Fig. 12(a) we can see that
if the switch is available, the only policy experiencing blocking is the
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Fig. 12. Probability of the orchestration system in blocking a request for a Management
Service due to insufficient available resources. The curves represent the performance
of different service placement policies with different amount of available resources, as
indicated by acronyms and numbers in the legend.

Random one, as the other policies always pick the switch to provide
the service. This is the reason for the apparent better performance of
the Random policy for low values of traffic intensity in Fig. 11: the
policy is actually blocking numerous requests. Conversely, when the
switch is not available, the situation is comparable to when the switch
is available but overloaded, making Fig. 12(b) resemble Fig. 10(a).

7. Conclusion

In this work, we demonstrated how DPP can be employed to en-
hance service orchestration over a heterogeneous infrastructure, con-
sisting of a diversified set of resources. We focused on an industrial
environment, which is particularly prone to security threats, and sug-
gested solutions to mitigate the issue. We considered a number of
different methods to improve data integrity, implementing services em-
ploying them, and making them available to a service orchestration sys-
tem that is able to activate them at need over heterogeneous resources.
The evaluation consisted of two parts, the former focused on the
data integrity mechanisms, and the latter on the service orchestration
solution.

We demonstrated how the use of PDP devices can be largely benefi-
cial to the execution of data integrity mechanisms compared to regular
container-based services on the edge nodes. In fact, the programmable
switches completely outperform the edge nodes in terms of processing
time since the integrity calculation is placed inside the network nodes
and performed on the flowing traffic. We evaluated the orchestration
solution with the use case of remote maintenance in mind, addressing
various technical, policy, and performance aspects. We focused on the
offloading of computation for MS to PDP devices, showing that this
approach offers superior performance compared to conventional com-
puting devices without requiring the replacement of legacy equipment.
We considered multiple distinct service placement policies that allow
the orchestration systems to make intelligent decisions in line with their
objectives and resource availability. We aimed at replicating real-world
conditions, where MS orchestration must handle a dynamic sequence
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of service requests with varying requirements. We measured the like-
lihood of service requests being blocked due to resource constraints,
as well as the delay introduced by MS activation, showing that the
presence and availability of PDP devices may have a significant impact
on the achieved user QoS.

In conclusion, this research contributes to a deeper understand-
ing of how to optimize the orchestration of management services in
industrial settings. By addressing technical, policy-driven, and resource-
specific aspects, our study provides guidance for achieving better re-
source utilization, reduced service activation delays, and improved user
experiences.
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