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A B S T R A C T

This paper proposes a new method for determining the simulation parameters of the Jiles–
Atherton Model used to simulate the first magnetisation curve and hysteresis loop in ferromag-
netic materials. The Jiles–Atherton Model is an important tool in engineering applications due to
its relatively simple differential formulation. However, determining the simulation parameters
for the anhysteretic curve is challenging. Several methods have been proposed, primarily based
on mathematical aspects of the anhysteretic and first magnetisation curves and hysteresis loops.
This paper focuses on finding the magnetic moments of the material, which are used to define
the simulation parameters for its anhysteretic curve. The proposed method involves using the
susceptibility of the material and a linear approximation of a paramagnet to find the magnetic
moments. The simulation parameters can then be found based on the magnetic moments. The
method is validated theoretically and experimentally and offers a more physical approach to
finding simulation parameters for the anhysteretic curve and a simplified way of determining
the magnetic moments of the material.

1. Introduction

Ferromagnetic materials have long presented a challenge in determining their magnetic constitutive laws. Numerous approaches
and mathematical models have been developed to address this issue. The most accurate models, according to the literature, are
the Brillouin and Langevin Functions for describing reversible magnetic transformations, which produce ‘‘anhysteretic curves’’, and
the Presiach and Jiles–Atherton Model for describing irreversible magnetic transformations, which produce the first magnetisation
curve and hysteresis loop [1].

In daily applications, the magnetisation of a magnetic material due to an external generated magnetic field does not pass through
equilibrium states but through non - equilibrium states, showing the phenomenon of hysteresis.

Many models to describe the hysteresis behaviour of a magnetic material have been developed in the years, like Preisach Model,
Stoner–Wolfhart Model and so on. One of the most used, especially in engineering applications is the Jiles–Atherton Model (JA) [1].

This model describes the magnetisation of a ferromagnetic material in function of the external applied field with a first-order
Ordinary Differential Equation (ODE) depending on several critical parameters related to the material and experiment conditions.
To define the JA model of a given material, it is necessary to estimate the parameters from magnetisation measurements at different
intensities of the applied magnetic field. Such a problem is a well-known, very difficult task, and many approaches can be found
in the literature to simulate the first magnetisation curve and hysteresis loop. One such method is the genetic algorithm, which
uses a penalty fitness function and boundary values [2]. Another method is the ‘‘Branch and bound method’’, which uses boundary
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Table 1
JA model parameters.
𝑎𝐽 = 𝑘𝐵𝑇 ∕(𝜇0 𝑚) related to the shape of the anhysteretic curve
𝑘𝐵 the Boltzmann constant
𝑇 the temperature of the material in 𝐾
𝜇0 the magnetic permeability of free space
𝑚 the magnetic moment of a pseudo-domain
𝛼 related to the interdomain coupling
𝑀𝑠 the saturation magnetisation
𝑘 related to the coercive field and the pinning sites
𝑐 related to the reversible processes of magnetisation
𝛿 = 𝑠𝑖𝑔𝑛(𝑑𝐻∕𝑑𝑡) related to the derivative of external applied magnetic field

conditions of the parameters and is mainly based on mathematical considerations [3]. A third method involves considering the
anhysteretic function similar to the first magnetisation curve at the maximum applied field [4]. More recently, an improved genetic
algorithm has been developed that uses a loss function to evaluate the distance between simulated and experimental hysteresis
loops [5]. Additionally, neural networks have been used, with inputs such as frequency, maximum flux density and flux density,
and a parameter indicating whether the magnetic field increases or decreases [6]. Alternatively, Silveyra and Conde Garrido [7,8]
have proposed transforming the search space by expressing the model parameters in terms of a new set of parameters that can be
easily optimised within known bounds.

The above methods determine the simulation parameters primarily based on mathematical aspects of the anhysteretic and first
agnetisation curves and hysteresis loops, using differential or non-linear equations and differential susceptibilities. However, the
arameters for simulating the anhysteretic curve are related to the magnetic moment 𝑚, which has yet to be determined.

The present work aims to investigate a robust way to define approximate parameter values using the material physical properties
y introducing the linearisation of the anhysteretic magnetisation curves. This method offers several benefits, such as finding the
agnetic moments of the material, finding the simulation parameters for the anhysteretic curve more physically, and finding the

imulation parameters based solely on the value of initial anhysteretic susceptibility. The results show that it is possible to describe
he anhysteretic magnetisation curve of a ferromagnetic material with a paramagnetic function linearly approximated for every
alue of the external applied field. This approach could also be used to define the starting guess of parameter estimation procedure,
aking it robust and efficient.

The paper is structured as follows. In Section 2, we present the JA model, delineating the involved parameters and physical
uantities, and describe the algorithm for parameter estimation developed in the paper [9]. In Section 3, we propose a method
o find the magnetic moment. This involves linearising the anhysteretic magnetisation curve and examining its susceptibilities.
dditionally, we propose a robust and efficient algorithm to estimate the parameters of the JA model. Finally, in Section 4, we
alidate the proposed algorithm using both literature data and real measurements.

. The problem

According to the JA model, the magnetisation 𝑀 of ferromagnetic materials in function of an external applied field 𝐻𝑎 is
described by the following ODE:

𝑑𝑀
𝑑𝐻𝑎

= 1
1 + 𝑐

𝑀𝑎𝑛(𝐻𝑎) −𝑀
𝛿𝑘 − 𝛼(𝑀𝑎𝑛(𝐻𝑎) −𝑀)

+ 𝑐
1 + 𝑐

𝑑𝑀𝑎𝑛(𝐻𝑎)
𝑑𝐻𝑎

(1)

where 𝑀𝑎𝑛(𝐻𝑎) is the anhysteretic magnetisation function, described as an implicit non-linear function - 𝑓 (𝐻𝑎,𝑀):

𝑀𝑎𝑛(𝐻𝑎) ≡ 𝑓 (𝐻𝑎,𝑀) ≡ 𝑀𝑠

(

coth
(

𝐻𝑎 + 𝛼𝑀
𝑎𝐽

)

−
𝑎𝐽

𝐻𝑎 + 𝛼𝑀

)

(2)

𝑀𝑠, 𝑎𝐽 , 𝑐, 𝛿, 𝑘, 𝛼 are the model parameters, defined in Table 1, and 𝛼𝑀 is the molecular field [10].
If are considered only the anhysteretic values of a ferromagnetic material, then (2) becomes:

𝑀𝑎𝑛 = 𝑀𝑎𝑛(𝐻𝑎) = 𝑀𝑠

(

coth
(

𝐻𝑎 + 𝛼𝑀𝑎𝑛
𝑎𝐽

)

−
𝑎𝐽

𝐻𝑎 + 𝛼𝑀𝑎𝑛

)

(3)

because the magnetisation of the material is proportional to itself [11].
One of the most difficult tasks of such a modelling problem is the determination of the model parameters from measurements of

the anhysteretic magnetisation 𝑀𝑎𝑛 at different intensities of the external field 𝐻𝑎. In addition to the inherent difficulty of solving
an ill-posed problem, JA model also presents extreme challenges in defining starting guesses and extreme sensitivity to their value.

To address this difficulty, we propose to improve the original approach in [9], based on the exploitation of physical relationships
between different quantities that can be obtained from the measurements. The estimation procedure proposed in [9] exploits the
quantities reported in Table 2 and reduces the dependence of all model parameters to a single parameter 𝛼 which is heuristically
set. Such procedure is outlined in algorithm 1. The 𝚏𝚒𝚝_𝚌𝚘𝚗𝚍𝚒𝚝𝚒𝚘𝚗 is usually represented by a test on the least squares distance or
Mean Square Error between the simulated hysteresis loop and the experimental data. A known weakness of such an approach is the
211
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Table 2
Physical quantities that can be extracted from measured data.
𝜒 ′
𝑖𝑛 Initial differential susceptibility of the first magnetisation curve

𝜒 ′
𝑎𝑛 Initial differential susceptibility of the anhysteretic magnetisation curve

𝜒 ′
𝑚𝑎𝑥 Differential susceptibility at coercive field

𝜒 ′
𝑟 Differential susceptibility at remanence point

𝜒 ′
𝑚 Differential susceptibility at hysteresis loop tip

𝐻𝑐 Value of coercive field

𝑀𝑟 Value of magnetisation at remanence point

𝑀𝑚 Value of magnetisation at loop tip

𝐻𝑚 Value of external applied field corresponding to 𝑀𝑚

the measured data. One strength is the reduced computational cost consisting of the solution of two nonlinear equations for each
iteration.

In the next section we introduce a method to find the magnetic moment 𝑚 based on the linearisation of the anhysteretic
agnetisation curve and its susceptibilities. This provides a simple way to find values of parameters 𝑎𝐽 and 𝛼.

Algorithm 1 Estimation Algorithm Jiles [9]

1: Calculate the value of 𝑐 with equation: 𝑐 = 𝜒 ′
𝑖𝑛

𝜒 ′
𝑎𝑛

2: repeat
3: Set a seed value of 𝛼
4: Calculate a first estimation value of 𝑎𝐽 with equation: 𝑎𝐽 = 𝑀𝑠

3

(

1
𝜒 ′
𝑎𝑛

+ 𝛼
)

5: Compute 𝑘 as:

𝑘 =
𝑀𝑎𝑛(𝐻𝑐 )
1 − 𝑐

⎛

⎜

⎜

⎜

⎝

𝛼 + 1
(

1
1−𝑐

)

𝜒 ′
𝑚𝑎𝑥 −

(

𝑐
1−𝑐

)

𝑑𝑀𝑎𝑛(𝐻𝑐 )
𝑑𝐻

⎞

⎟

⎟

⎟

⎠

6: Solve for 𝛼 the following non-linear equation, using the current 𝛼 estimate as initial guess:

𝑀𝑟 = 𝑀𝑎𝑛(𝑀𝑟) +
𝑘

(

𝛼
1−𝑐

)

+ 1
𝜒 ′
𝑟−𝑐

𝑑𝑀𝑎𝑛 (𝑀𝑟)
𝑑𝐻

7: Update 𝑎𝐽 solving numerically the following non-linear equation, using as initial guess the current value of 𝑎𝐽 :

𝑀𝑚 = 𝑀𝑎𝑛(𝐻𝑚) −
(1 − 𝑐)𝑘𝜒 ′

𝑚
𝛼𝜒 ′

𝑚 + 1

8: Solve (1) with the estimated parameters in the measured points
9: until fit_condition

3. Magnetic moments and simulation parameters of anhysteretic curve

Let us start considering an anhysteretic theoretic curve of a ferromagnetic material generated by (2) with given simulation
arameters 𝛼 and 𝑎𝐽 .

Since for every value of external applied field 𝐻𝑎 the curve has only one value of anhysteretic magnetisation 𝑀𝑎𝑛, the following
njective function can describe its behaviour:

𝑀𝑎𝑛(𝐻𝑎) = 𝑀𝑠

(

coth
(

𝐻𝑎
𝑎

)

− 𝑎
𝐻𝑎

)

(4)

with a simulation parameter 𝑎 ≠ 𝑎𝐽 . Injective functions such as (4) usually describe the magnetic behaviour of a paramagnetic
material [11]: since there is no interaction between the magnetic moments in paramagnetic materials, the parameter 𝛼 is absent.
Therefore, analogously to (2), the shape parameter 𝑎 is:

𝑎 =
𝑘𝐵𝑇
𝜇0𝑚1

, (5)

where 𝑚1 is the magnetic moment of the equivalent paramagnetic curve that can describe the ferromagnetic one by function (4).
A common experimental procedure to obtain the anhysteretic curve of a magnetic material consists of superimposing a steady

xternal magnetic field on another magnetic field that varies between a minimum and maximum value. The varying magnetic field
s responsible for creating the hysteresis loop. Gradually, the range of the varying magnetic field is reduced until it aligns with
212
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the value of the constant external magnetic field. Through this procedure, consistent magnetisation values of the material can be
obtained that are free of hysteresis [12].

Considering then that the magnetisation curve of ferromagnetic materials is obtained with relatively small and constant values
f the external applied field 𝐻𝑎, it is possible to obtain a simplified approximation of 𝑀𝑎𝑛(𝐻𝑎). Considering the series expansion of
oth(𝑥) for 𝑥 ≠ 0,

coth(𝑥) = 1
𝑥
+ 𝑥

3
− 𝑥3

45
+ 2𝑥5

945
−⋯ , |𝑥| < 𝜋

and taking the first two terms, we obtain the linearised approximation 𝑀𝑎
𝑎𝑛(𝐻𝑎) :

𝑀𝑎
𝑎𝑛(𝐻𝑎) = 𝑀𝑠

⎛

⎜

⎜

⎝◁
◁◁
1
𝐻𝑎
𝑎

+
𝐻𝑎
𝑎
3

−
�
�
𝑎
𝐻𝑎

⎞

⎟

⎟

⎠

Substituting 𝑎 from (5):

𝑀𝑎
𝑎𝑛(𝐻𝑎) =

𝑀𝑠
3

𝜇0𝑚1
𝑘𝐵𝑇

𝐻𝑎 (6)

Using 𝑀𝑎
𝑎𝑛(𝐻𝑎) we can define the anhysteretic susceptibility of the ferromagnetic material 𝜒𝑎

𝑎𝑛 [11,12]:

𝜒𝑎
𝑎𝑛 =

𝑀𝑎
𝑎𝑛(𝐻𝑎)
𝐻𝑎

. (7)

Substituting into (6), we obtain the magnetic moment 𝑚1 of the equivalent paramagnetic material for the external applied field
related to the anhysteretic susceptibility of the ferromagnetic material:

𝑚1 =
3𝑘𝐵𝑇𝜒𝑎

𝑎𝑛
𝜇0𝑀𝑠

. (8)

Going back to function (3) the linearisation of the anhysteretic behaviour of a ferromagnetic material becomes:

𝑀𝑎𝑛 =
𝑀𝑠
3𝑎𝐽

(𝐻𝑎 + 𝛼𝑀𝑎𝑛) =
𝑀𝑠
3

𝜇0𝑚
𝑘𝐵𝑇

(𝐻𝑎 + 𝛼𝑀𝑎𝑛) (9)

To find the value 𝑚 for the magnetic moment of the ferromagnetic material in (9), we substitute 𝑀𝑎𝑛 with 𝑀𝑎
𝑎𝑛 ≡ 𝑀𝑎

𝑎𝑛(𝐻𝑎):

𝑀𝑎
𝑎𝑛 =

𝑀𝑠
3

𝜇0𝑚
𝑘𝐵𝑇

(𝐻𝑎 + 𝛼𝑀𝑎
𝑎𝑛),

hence using (7)

𝜒𝑎
𝑎𝑛 =

𝑀𝑠
3

𝜇0𝑚
𝑘𝐵𝑇

(1 + 𝛼𝜒𝑎
𝑎𝑛).

we find the following expression for 𝑚:

𝑚 =
3𝑘𝐵𝑇
𝜇0𝑀𝑠

𝜒𝑎
𝑎𝑛

(1 + 𝛼𝜒𝑎
𝑎𝑛)

. (10)

However, since 𝛼 is unknown this relation cannot be applied to compute 𝑚. Viewing the quantity 𝜒𝑎
𝑎𝑛

(1+𝛼𝜒𝑎
𝑎𝑛)

as the susceptibility 𝜒𝑝𝑎𝑟𝑎𝑚
of an equivalent paramagnetic curve of the ferromagnetic material, we obtain an alternative characterisation of 𝑚 depending on the
unknown susceptibility 𝜒𝑝𝑎𝑟𝑎𝑚 :

𝑚 =
3𝑘𝐵𝑇
𝜇0𝑀𝑠

𝜒𝑝𝑎𝑟𝑎𝑚. (11)

An estimate of 𝜒𝑝𝑎𝑟𝑎𝑚 can be obtained by substituting (11) in function (4) and solving the nonlinear equation:

𝑀𝑎𝑛 = 𝑀𝑎𝑛(𝐻𝑎) = 𝑀𝑠

(

coth
(3𝜒𝑝𝑎𝑟𝑎𝑚𝐻𝑎

𝑀𝑠

)

−
𝑀𝑠

3𝜒𝑝𝑎𝑟𝑎𝑚𝐻𝑎

)

(12)

for properly chosen values 𝐻𝑎.
The idea is to choose very high values of the applied external field 𝐻1

𝑎 - i.e. 𝐻1
𝑎 ≈ 106[𝐴𝑚 ], since the molecular field in the

aramagnetic case does not act. Still, the saturation of the magnetisation is almost reached. With the instruments at our disposal,
uch as those from Borckhaus Messtechnik, it is impossible to measure the anhysteretic magnetisation curve for magnetic field
alues exceeding 10 kA/m due to the instrument’s limitations. Instead of measuring the anhysteretic magnetisation curve at such
igh external magnetic field values, we utilise its equivalent paramagnetic curve with a magnetic moment 𝑚1.

We can compute the corresponding magnetisation value 𝑀𝑎𝑛1 at (𝐻1
𝑎 ) as:

𝑀𝑎𝑛1 = 𝑀𝑠

(

coth
(

𝜇0𝑚1
𝑘𝐵𝑇

𝐻1
𝑎

)

−
𝑘𝐵𝑇

𝜇0𝑚1𝐻1
𝑎

)

. (13)

Since 𝑀𝑎𝑛1 > 𝑀𝑎𝑛 (see Appendix), we solve Eq. (12) with the magnetisation value 𝑀𝑎𝑛 estimated as follows:
∗ ∗
213
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Table 3
Parameters of an electrical steel at room temperature and JA simulation parameters.
Ferromagnetic material parameters JA parameters

𝑀𝑠 𝑇 𝑇𝑐 𝑎𝐽 𝛼

1.6 ⋅ 106
[

𝐴
𝑚

]

303.5 [𝐾] 1023.5 [𝐾]

972 1.4 ⋅ 10−3

972 1.0 ⋅ 10−3

972 1.8 ⋅ 10−3

800 1.4 ⋅ 10−3

1000 1.4 ⋅ 10−3

1200 1.4 ⋅ 10−3

Finally, we can simplify computation by considering the anhysteretic susceptibility of the equivalent paramagnetic curve

𝜒𝑎𝑛1 =
𝑀𝑎𝑛1

𝐻1
𝑎

see [11], eqn (3.35)). Substituting 𝜒𝑎𝑛1 into (13) we obtain :

𝜂∗ ⋅ 𝜒𝑎𝑛1 −
𝑀𝑠

𝐻1
𝑎

(

coth

(

3𝜒𝑝𝑎𝑟𝑎𝑚𝐻1
𝑎

𝑀𝑠

)

−
𝑀𝑠

3𝜒𝑝𝑎𝑟𝑎𝑚𝐻1
𝑎

)

= 0. (14)

After computing 𝜒𝑝𝑎𝑟𝑎𝑚 through the numerical solution of (14), we obtain the magnetic moment 𝑚 through (11) and the parameter
𝑎𝐽 = 𝑘𝐵𝑇

𝜇0𝑚
, then we can compute 𝛼 by relations (10) and (11), i.e.:

𝛼 = 1
𝜒𝑝𝑎𝑟𝑎𝑚

− 1
𝜒𝑎
𝑎𝑛
. (15)

considering 𝜒𝑎
𝑎𝑛 as the initial anhysteretic susceptibility of the ferromagnetic material.

Once the parameters have been computed, we compute the approximate anhysteretic magnetisation value �̂�𝑎𝑛 correspondent to
every value of the external applied field 𝐻𝑎, solving the following nonlinear equations for each value of external applied field 𝐻𝑎 :

�̂�𝑎𝑛 −𝑀𝑠

(

coth

(

𝐻𝑎 + 𝛼�̂�𝑎𝑛
𝑎𝐽

)

−
𝑎𝐽

𝐻𝑎 + 𝛼�̂�𝑎𝑛

)

= 0. (16)

Since 𝜂∗ is not known, the idea is to evaluate (14) in a sequence {𝜂𝑘}𝑘>0 ∈ [0.9, 1) and define

𝜂∗ = argmin
𝜂

‖𝐫(𝜂)‖2, 𝐫(𝜂) = 𝜇0‖�̂�𝑎𝑛 −𝑀𝑎𝑛‖2

where 𝐫(𝜂) has components 𝑟(𝜂)𝑖 given by the difference between the magnetic anhysteretic data (𝜇0𝑀𝑎𝑛𝑖 ) and its approximation
(𝜇0�̂�𝑎𝑛𝑖 ) for each corresponding value of external applied field.

These steps are summarised in Algorithm JA_par.
From extended experimental tests with various materials, we verified that a value of 𝜂 ∈ [0.9, 1) is sufficient to obtain closely

ligned ferromagnetic and equivalent paramagnetic curves, for very high values of the externally applied field.

. Methodology validation and testing

This section validates the proposed method by investigating its robustness in presence of perturbations. Then the method is tested
gainst data taken from literature and real measurements.

.1. Methodology validation

Firstly, we demonstrate that the anhysteretic curve of a ferromagnetic material can be approximated using the linear approxi-
ation of a paramagnet for any given value of external applied field.

By utilising the anhysteretic susceptibilities of the ferromagnetic material’s anhysteretic curve, which are described by Eq. (7)
nd substituted into Eq. (8), it becomes possible to approximate the curve for any external applied field value using Eq. (6) of an
quivalent paramagnetic curve.

To accomplish this, we generate a theoretical anhysteretic curve by employing real parameters from a ferromagnetic material
nd synthetic simulation parameters. For example, we consider a carbon steel at room temperature, with the material parameters
isted in Table 3. We then choose a set of simulation parameters for the JA model, as provided in Table 3, to generate an anhysteretic
urve, which is depicted in blue in Figs. 3 and 4.

For each value of the external applied field and magnetisation along the anhysteretic curve of the ferromagnetic material, we
214

ompute the susceptibility (7) and the values of magnetic moment 𝑚1 by applying Eq. (8). By substituting these values into Eq. (6),
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Algorithm 2 Algorithm JA_par. INPUT: (𝐻𝑎,𝑀𝑎𝑛), 𝑘𝐵 , 𝑇 , 𝑀𝑠

1: Define 𝑀𝑠𝑡𝑎𝑟𝑡
𝑎𝑛 as the first experimental positive magnetisation value in the measurements set (𝐻𝑎,𝑀𝑎𝑛)

2: Define 𝐻𝑠𝑡𝑎𝑟𝑡
𝑎 as the external applied field value corresponding to 𝑀𝑠𝑡𝑎𝑟𝑡

𝑎𝑛

3: 𝜒𝑎
𝑎𝑛 =

𝑀𝑠𝑡𝑎𝑟𝑡
𝑎𝑛

𝐻𝑠𝑡𝑎𝑟𝑡
𝑎

;

4: 𝑚1 =
3𝑘𝐵𝑇𝜒𝑎

𝑎𝑛
𝜇0𝑀𝑠

;

5: 𝑎1 =
𝑘𝐵𝑇
𝜇0𝑚1

;

6: 𝐻𝑎
1 = 106: 𝑀𝑎𝑛1 =

[

𝑀𝑠

(

coth

(

𝐻1
𝑎

𝑎1

)

−
𝑎1
𝐻1

𝑎

)]

7: 𝜒𝑎𝑛1 =
𝑀𝑎𝑛1

𝐻1
𝑎

;

8: 𝜀 = 10−5; ⊳ step increment
9: 𝜂0 = 0.9;

10: 𝑘 = 0
11: Loop = true
12: while Loop do
3: Compute 𝜒𝑝𝑎𝑟𝑎𝑚 by solving the nonlinear equation :

𝜂𝑘 ⋅ 𝜒𝑎𝑛1 −
𝑀𝑠

𝐻1
𝑎

(

coth

(

3𝜒𝑝𝑎𝑟𝑎𝑚𝐻1
𝑎

𝑀𝑠

)

−
𝑀𝑠

3𝜒𝑝𝑎𝑟𝑎𝑚𝐻1
𝑎

)

= 0;

4: 𝑚2 =
3𝑘𝐵𝑇𝜒𝑝𝑎𝑟𝑎𝑚

𝜇0𝑀𝑠
;

5: 𝑎𝐽 = 𝑘𝐵𝑇
𝜇0𝑚2

;

6: 𝛼 = 1
𝜒𝑝𝑎𝑟𝑎𝑚

− 1
𝜒𝑎
𝑎𝑛
;

7: Solve the nonlinear system for �̂�:

�̂�𝑎𝑛 −𝑀𝑠

(

coth

(

𝐻𝑎 + 𝛼�̂�𝑎𝑛
𝑎𝐽

)

−
𝑎𝐽

𝐻𝑎 + 𝛼�̂�𝑎𝑛

)

= 0

8: 𝑟 = 𝜇0(�̂�𝑎𝑛 −𝑀𝑎𝑛); ⊳ Residual vector
9: 𝑘 = 𝑘 + 1; 𝑁𝑟(𝑘) = 𝑛𝑜𝑟𝑚(𝑟); ⊳ Norm of residual vector

20: if 𝑘 > 1 then
21: 𝙻𝚘𝚘𝚙 = 𝑁𝑟(𝑘) < 𝑁𝑟(𝑘 − 1)
22: end if
23: if 𝙻𝚘𝚘𝚙 then
24: 𝜂𝑘 = 𝜂𝑘−1 + 𝜀
25: end if
26: end while

we can evaluate the anhysteretic magnetisation for every value of the applied external field. In Fig. 1 we can appreciate the perfect
agreement between the anhysteretic magnetisation curve of a ferromagnetic material and that of an equivalent paramagnetic curve
for every value of external applied field. Such quality is preserved even for changes in the JA parameters 𝑎𝐽 and 𝛼 as reported
in the examples represented in Fig. 2 where such parameters are modified according to Table 3. By defining the curve obtained
using Eq. (4), with 𝑎 = 𝜇0𝑚1

𝑘𝐵𝑇
where 𝑚1 is calculated using the initial anhysteretic susceptibility (considering only the initial value

f 𝐻𝑎 > 0), as Paramagnet equivalent 1, we can observe in Fig. 3 that it tends to overestimate the anhysteretic magnetisation curve,
articularly for small values of 𝐻𝑎.

On the other hand, if we consider the curve obtained by setting 𝛼 = 0 in Eq. (4), and using the value of 𝑎 provided in the first row
f table 3, we obtain an underestimating curve, referred to as Paramagnet equivalent 2. This curve demonstrates better agreement
ith the anhysteretic magnetisation curve, particularly for large values of the applied field 𝐻𝑎. Finally, we verify that by evaluating
𝑝𝑎𝑟𝑎𝑚 for extremely high values of external applied field and magnetisation, through the solution of Eq. (16), and calculating the
nitial anhysteretic susceptibility of the ferromagnetic material 𝜒𝑎𝑛, we can determine the values of the parameters 𝑎𝐽 and 𝛼 that

result in a reliable approximation of the experimental anhysteretic curve of the ferromagnetic material described by Eq. (2). We
validate the evaluation of 𝜒𝑝𝑎𝑟𝑎𝑚 and 𝜒𝑎𝑛 by reporting in Figs. 4 the computed magnetisation curves varying 𝑎𝐽 and 𝛼 as in Table 3.

Again we can observe the perfect agreement between the theoretical and simulated anhysteretic curve with the simulation
215
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Fig. 1. Theoretical anhysteretic magnetisation curve and its linearisation with paramagnetic function. The field 𝐻 is sampled in 105 uniformly distributed points
with step 𝛿𝐻 = 10 [A∕m] in the range [0, 106] [A∕m]. The blue line represents the anhysteretic curve and the red dashed line is its linearisation with paramagnetic
function. The maximum residual in (10−9).

Fig. 2. Theoretical anhysteretic magnetisation curves and linearised approximations. (a) variation of 𝑎𝐽 : 800, 1000, 1200 (b) variation of 𝛼: 1⋅10−3 , 1.4⋅10−3 , 1.8⋅10−3.
Continuous lines represent the anhysteretic magnetisation curves, dashed lines are their linearised approximations. The field 𝐻 is sampled in 105 uniformly
distributed points with step 𝛿𝐻 = 10 [A∕m] in the range [0, 106] [A∕m]. The solid lines represent the anhysteretic curves and the dashed lines are their linearisation
with paramagnetic function. The maximum residual in (10−9).

Fig. 3. Theoretical anhysteretic magnetisation curve and its paramagnetic curves. Blue line is the anhysteretic magnetisation curve. Red dashed line is the
paramagnet equivalent 1 obtained by Eq. (4), with 𝑎 = 𝜇0𝑚1

𝑘𝐵𝑇
. Yellow dashed line is the paramagnet equivalent 2 obtained setting 𝛼 = 0 and 𝑎𝐽 as in table 3. The

field 𝐻 is sampled in 105 uniformly distributed points with step 𝛿𝐻 = 10 [A∕m] in the range [0, 106] [A∕m]. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Anhysteretic magnetisation curves obtained by 𝜒𝑝𝑎𝑟𝑎𝑚, 𝜒𝑎𝑛 estimates and simulation curves varying parameters 𝛼 and 𝑎𝐽 . (a) variation of 𝑎𝐽 : 800, 1000, 1200
(b) variation of 𝛼: 1 ⋅ 10−3 , 1.4 ⋅ 10−3 , 1.8 ⋅ 10−3. Continuous lines represent the anhysteretic magnetisation curves, dotted lines are their linearised approximations.
The field 𝐻 is sampled in 105 uniformly distributed with step 𝛿𝐻 = 10 [A∕m] points in the range [0, 106] [A∕m].

Fig. 5. Behaviour of the residual norm ‖𝐫‖ for 𝜂 ∈ [0.9, 1). (a) Data in [13] taken from Fig. 2(a), ‘‘Experimental anhysteretic at zero stress’’ (b) Data in [10]
taken from Fig. 8, ‘‘experimental’’.

Table 4
Parameters and residual obtained by algorithm 2.
Figure Data 𝜂∗ ||r|| 𝜒𝑝𝑎𝑟𝑎𝑚 𝑚2 𝑎𝐽 𝛼

5(𝑎) Fig.2a - [13] 0.9992 0.0764 171.7717 1.0779 ⋅ 10−18 3088 0.0015
5(𝑏) Fig.8 - [10] 0.9989 0.093 406.5476 2.5512 ⋅ 10−18 1304.9 0.0021

4.2. Algorithm 2 testing

In this section, we evaluate the performance of the JA_par algorithm using data from papers [10,13], which were extracted using
the web tool for data extraction called WebPlotDigitilizer [14].

Figs. 5 depict the residual behaviour within the interval [0.9, 1), thereby confirming that the minimum value can be found in the
given interval.

Additionally, these figures provide the optimal value 𝜂∗ computed by the JA_par algorithm. The computed residual and
parameters are presented in Table 4. The parameters 𝑎𝐽 and 𝛼 corresponding to 𝜂∗ provide the best fit for the anhysteretic data
(Figs. 6), making them the most representative of the magnetic material.

In Table 5 are shown the parameters found by proposed method - 𝑎𝐽 , 𝛼 and the Jiles’ ones - 𝑎𝐽 ,𝐽 , 𝛼𝐽 : We observe that there is a
good agreement between the parameters computed in the literature and those computed by our method. Moreover, we observe an
improvement in the fitted curve compared to that reported in Fig.8 - [10].

From a computational efficiency perspective, we observe that the algorithm requires solving nonlinear equations in steps 11 and
15 of the JA_par algorithm. For this purpose, the function fzero is applied, using zero as the starting guess.
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Fig. 6. Experimental anhysteretic magnetisation curves (blue circles) and JA_par simulations (orange line), residual curve (yellow line). (a) data [13]
‘‘Experimental anhysteretic at zero stress’’ (b) data [10] taken from Fig. 8, ‘‘experimental’’. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 5
Values of simulation parameters with the proposed method and those found in Jiles’ papers [13],[10].
Figure Data 𝑎𝐽 𝑎𝐽 ,𝐽 𝛼 𝛼𝐽
6(𝑎) Fig.2a - [13] 3088 3750 0.0015 0.0033
6(𝑏) Fig.8 - [10] 1304.9 1100 2.1 ⋅ 10−3 1.6 ⋅ 10−3

Fig. 7. Experimental hysteresis loop and its simulation from [9]. Data of figure (a) is taken from Fig. 6 and data of figure (b) from Fig. 9 of [9].

4.3. Experimental hysteresis validation

It is necessary to verify whether the parameters obtained through simulating the anhysteretic curve and solving Eq. (14) describe
the hysteresis curve accurately. To this purpose, we set the simulation parameters 𝑐 and 𝑘 in (1) as follows:

• 𝑐 =
𝜒 ′
𝑖𝑛

𝜒 ′
𝑎𝑛

;

• 𝑘 = 𝐻𝑐 ;

where 𝜒 ′
𝑖𝑛, 𝜒

′
𝑎𝑛 are defined in Table 2.

The results are checked on the curves obtained from Jiles’ paper [9] (Figs. 7) and real measurements (Fig. 8).
In the case of Fig. 7 the values of 𝑘 and 𝑐 are taken directly from Jiles’ paper [9].
In Table 6 are shown material parameters taken from Jiles’ paper [9]. The parameters 𝑘 and 𝑐 are calculated as in steps 1. and 5.

of Jiles’s algorithm 1, taking in account the approximation 𝜇′
𝑎𝑛 ≈ 𝜒 ′

𝑎𝑛, 𝜇
′
𝑖𝑛 ≈ 𝜒 ′

𝑖𝑛 and 𝐵𝑠 ≈ 𝜇0 ⋅𝑀𝑠. In Fig. 7 is shown the comparison
between data taken from Jiles’ paper [9] and the hysteresis loop simulated with the proposed method to find parameters 𝑎 and 𝛼. In
Table 7 are shown simulation parameters between the ones found by Jiles - 𝑎𝐽 ,𝐽 , 𝛼𝐽 and the ones found with the proposed method
- 𝑎 , 𝛼.
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Table 6
Materials characteristics taken from [9].
Figure Data 𝐵𝑠[𝑇 ] 𝜇′

𝑎𝑛 𝜇′
𝑖𝑛 𝐻𝑐 [

𝐴
𝑚
]

7(𝑎) Table IV - [9] 2 1343 142 693
7(𝑏) Table IV - [9] 2 5000 100 315

Table 7
Simulation parameters found by Jiles [9] – 𝑎𝐽 ,𝐽 , 𝛼𝐽 and with the proposed method - 𝑎𝐽 , 𝛼.

Figure Data 𝑎𝐽 𝑎𝐽 ,𝐽 𝛼 𝛼𝐽
7(𝑎) Fig.6 - [9] 2596 1000 4.1 ⋅ 10−3 1.4 ⋅ 10−3

7(𝑏) Fig.9 - [9] 1206 1085 2.1 ⋅ 10−3 2 ⋅ 10−3

Fig. 8. Experimental hysteresis loop and its simulation. Blue circles represent the measurements, red line is the computed simulation.

In the case of real data, a hysteresis loop is obtained from a Non Oriented M 470-50 A produced by Marcegaglia Ravenna s.p.a
with a Single Sheet Tester from Brockhaus Messtechnik. This machine has the following characteristics:

• Model: MPG100 D DC/AC
• frequency ranges: from 3 Hz to 10 kHz
• maximum polarisation: 2T
• measurement repeatability: ≤ 2 percent;
• 3631 sample points with external applied field range - 𝐻𝑎 = [−5000, 5000]𝐴𝑚 .

The coercive field - 𝐻𝑐 is directly given by Borckhaus instrument, while 𝜒 ′
𝑖𝑛 is calculated as the initial slope of the differential

susceptibility of the first magnetisation curve. Moreover 𝜒 ′
𝑎𝑛 is approximated with the maximum value of differential susceptibility

of hysteresis loop, that is the one corresponding to coercive field, since the anhysteretic magnetisation curve is not known.
From the result represented in Fig. 8, we can see is a good agreement between experimental data points and simulation.

5. Conclusion

This paper focused on the Jiles–Atherton Model, which is widely used in engineering applications, and presented a new approach
for finding the simulation parameters for the anhysteretic curve of ferromagnetic materials. By using the material’s susceptibility
and linearising the anhysteretic magnetisation curve with a paramagnetic function, we could find the magnetic moments of the
material and determine the simulation parameters in a more physical and simplified manner. Our results showed that it is possible
to describe the anhysteretic magnetisation curve of a ferromagnetic material with a linear approximation of a paramagnet for every
value of the external applied field. Validation of the proposed method with synthetic and experimental data has demonstrated its
effectiveness and stability.

In conclusion, JA_par extends the approach of Algorithm 1 by improving the quality of parameter estimation without requiring
the iterative solution of a system of ordinary differential equations (ODEs), which is computationally expensive and presents
challenges in solving an inverse problem. This approach can be useful in many engineering applications requiring accurate
ferromagnetic material characterisation.
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ppendix. Proof of 𝑴𝒂𝒏𝟏 > 𝑴𝒂𝒏

For better readability and understanding, we first restate Eqs. (12) and (13):

𝑀𝑎𝑛(𝐻𝑎) = 𝑀𝑠

(

coth
(3𝜒𝑝𝑎𝑟𝑎𝑚𝐻𝑎

𝑀𝑠

)

−
𝑀𝑠

3𝜒𝑝𝑎𝑟𝑎𝑚𝐻𝑎

)

(17)

𝑀𝑎𝑛1 (𝐻𝑎) = 𝑀𝑠

(

coth
(

𝜇0𝑚1
𝑘𝐵𝑇

𝐻𝑎

)

−
𝑘𝐵𝑇

𝜇0𝑚1𝐻𝑎

)

. (18)

Our aim is to prove that 𝑀𝑎𝑛1 (𝐻𝑎) > 𝑀𝑎𝑛(𝐻𝑎) for every value of 𝐻𝑎 > 0. Considering small values of 𝐻𝑎, we express the
agnetisations 𝑀𝑎𝑛 and 𝑀𝑎𝑛1 through their linear approximations 𝑀𝑎

𝑎𝑛 and 𝑀𝑎
𝑎𝑛1

:

⎧

⎪

⎨

⎪

⎩

𝑀𝑎
𝑎𝑛1

= 𝑀𝑠
3

𝜇0𝑚1
𝑘𝐵𝑇

𝐻𝑎 =
𝑀𝑠
3𝑎 𝐻𝑎

𝑀𝑎
𝑎𝑛 =

𝑀𝑠
3

𝜇0𝑚
𝑘𝐵𝑇

𝐻𝑎 =
𝑀𝑠
3𝑎𝐽

𝐻𝑎

(19)

We establish the relationship between 𝑚 and 𝑚1 as:

⎧

⎪

⎨

⎪

⎩

𝑚1 =
3𝑘𝐵𝑇
𝜇0𝑀𝑠

𝜒𝑎
𝑎𝑛

𝑚 = 3𝑘𝐵𝑇
𝜇0𝑀𝑠

𝜒𝑎
𝑎𝑛

1+𝛼𝜒𝑎
𝑎𝑛

→ 𝑚 =
𝑚1

1 + 𝛼𝜒𝑎
𝑎𝑛

(20)

Therefore, we find that 𝑚1 > 𝑚 for all 𝛼 > 0.
The expressions for the parameters 𝑎 and 𝑎𝐽 are given by:

𝑎 =
𝑘𝐵𝑇
𝜇0𝑚1

, 𝑎𝐽 =
𝑘𝐵𝑇
𝜇0𝑚

ubstituting from (20), we get:

𝑎𝐽 =
𝑘𝐵𝑇
𝜇0𝑚1

(1 + 𝛼𝜒𝑎
𝑎𝑛) = 𝑎(1 + 𝛼𝜒𝑎

𝑎𝑛).

thus 𝑎𝐽 > 𝑎,∀𝛼 > 0. Returning to (19), we derive:

𝑀𝑎
𝑎𝑛 =

𝑀𝑠
3𝑎𝐽

𝐻𝑎 =
𝑀𝑠

3𝑎(1 + 𝛼𝜒𝑎
𝑎𝑛)

𝐻𝑎 =
𝑀𝑎

𝑎𝑛1
1 + 𝛼𝜒𝑎

𝑎𝑛
.

Hence 𝑀𝑎
𝑎𝑛1

> 𝑀𝑎
𝑎𝑛 when 𝐻𝑎 ⪆ 0, and 𝑎, 𝛼 > 0. For sufficiently small values 𝐻𝑎 the inequality holds also for 𝑀𝑎𝑛1 and 𝑀𝑎𝑛. Now

we extend the inequality to 𝐻𝑎 ≫ 0. To simplify the analysis, we define the magnetisations 𝑀𝑎𝑛1 and 𝑀𝑎𝑛 in terms of the function
𝑓 (𝑥) ≡ coth(𝑥) − 1

𝑥 for 𝑥 > 0, setting:

• 𝑀𝑎𝑛(𝐻𝑎) ≡ 𝑀𝑠𝑓 (𝛾1𝐻𝑎), where 𝛾1 =
3𝜒𝑝𝑎𝑟𝑎𝑚
𝑀𝑠

∈ R+.

• 𝑀𝑎𝑛1 (𝐻𝑎) ≡ 𝑀𝑠𝑓 (𝛾2𝐻𝑎), where 𝛾2 =
𝜇0𝑚1
𝑘𝐵𝑇

∈ R+.

We observe that the function 𝑓 (𝑥) is strictly increasing for 𝑥 > 0. This is established by computing the derivative:

𝑓 ′(𝑥) = 1
𝑥2

− 1
sinh(𝑥)2

.

The derivative satisfies 0 < 𝑓 ′(𝑥) < 1∕3 for all 𝑥 in R+, with lim𝑥→0 𝑓 ′(𝑥) = 1∕3 and lim𝑥→∞ 𝑓 ′(𝑥) = 0.
For 𝐻𝑎 ⪆ 0 the condition 𝑀𝑎

𝑎𝑛1
> 𝑀𝑎

𝑎𝑛 writes as 𝑓 (𝛾2𝐻𝑎) > 𝑓 (𝛾1𝐻𝑎), now by the Lagrange mean value theorem:

0 < 𝑓 (𝛾2𝐻𝑎) − 𝑓 (𝛾1𝐻𝑎) = 𝐻𝑎(𝛾2 − 𝛾1)𝑓 ′(𝜉𝑎), 𝜉𝑎 ∈ (𝐻𝑎𝛾1,𝐻𝑎𝛾2)

+
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we can conclude that 𝛾2 > 𝛾1. Therefore, the inequality will hold for all 𝐻𝑎 ∈ R .
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