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a b s t r a c t 

In the min-Knapsack problem, one is given a set of items, each having a certain cost and weight. The 

objective is to select a subset with minimum cost, such that the sum of the weights is not smaller than 

a given constant. In this paper, we introduce an extension of the min-Knapsack problem with additional 

“compactness constraints” (mKPC), stating that selected items cannot lie too far apart. This extension has 

applications in statistics, including in algorithms for change-point detection in time series. We propose 

three solution methods for the mKPC. The first two methods use the same Mixed-Integer Programming 

(MIP) formulation but with two different approaches: passing the complete model with a quadratic num- 

ber of constraints to a black-box MIP solver or dynamically separating the constraints using a branch- 

and-cut algorithm. Numerical experiments highlight the advantages of this dynamic separation. The third 

approach is a dynamic programming labelling algorithm. Finally, we focus on the particular case of the 

unit-cost mKPC (1c-mKPC), which has a specific interpretation in the context of the statistical applications 

mentioned above. We prove that the 1c-mKPC is solvable in polynomial time with a different ad-hoc dy- 

namic programming algorithm. Experimental results show that this algorithm vastly outperforms both 

generic approaches for the mKPC and a simple greedy heuristic from the literature. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In this paper, we present an extension of the min-Knapsack 

roblem ( Csirik, Frenk, Labbé, & Zhang, 1991 ) with applications 

n statistics, including change-point detection in time series. Be- 

ng an extension of min-Knapsack, the considered problem is N P - 

omplete. We also consider a special case of the problem, which is 

oth relevant for the statistical applications and solvable in poly- 

omial time. 

The min-Knapsack problem asks to select a subset of n items, 

ach with weight w j ≥ 0 and cost c j ≥ 0 ( j ∈ { 1 , . . . , n } ), such that

he sum of the costs of the selected items is minimum, and their 

otal weight is not smaller than a constant q ≥ 0 . 

In this paper, we introduce a variant of the min-Knapsack prob- 

em, which we call the min-Knapsack Problem with Compact- 

ess Constraints (mKPC). Applications in time series analysis and 
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igh-dimensional statistics (see Section 1.1 ) motivate the study of 

his variant. 

In the mKPC, there is a distance metric defined over the items. 

onsider two items i and j and assume, from now on and with- 

ut loss of generality, that i < j. We define the distance between 

tems as the difference of their indices, i.e., j − i . We can think of

he items as an ordered sequence, and we are interested in how 

ar apart i and j lie in the sequence. With this notion of distance, 

e impose the additional condition that the set of selected items 

s compact. Formally, we consider a maximum distance parameter 

∈ N . If two items i and j are both selected and j − i > �, then

e require that there is at least another selected item between 

 and j. I.e., we require that there is a selected item k such that

 < k < j. 

Fig. 1 presents an example which shows the difference between 

he min-Knapsack problem (without compactness constraints) and 

he mKPC (with compactness constraints). Items lie on the x axis 

ccording to their index, and the bar heights indicate their weights. 

he value of parameter � for the mKPC is set to 2 and c j = 1

or all items. An optimal solution of the min-Knapsack problem, 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Comparison of the solutions of the min-Knapsack problem and the mKPC on the same instance. Parameter � = 2 . 

d

p

b

a  

F

1

t

p

c  

t

u

i

s

F

h

t

c

i

L

a  

t

R

m

G

t

s

c

b

c

t

a  

t

a

F

t

 

i  

t  

s

i

h

b

s

i

t

o

p  

i

t

s

p

c

T

&

p

l

F

t

a

p

s

a

T

o

s

c

a

s

c

2

m

p

m

S

p

2

i

epicted in Fig. 1 (a), has total cost 12. However, it violates com- 

actness constraints: items 8 and 12 (with distance 4 > 2 ) are 

oth selected, but no other item between them is selected. Indeed, 

n optimal solution of the mKPC has a cost of 13, as shown in

ig. 1 (b). 

.1. Motivation 

The motivation for the mKPC comes from applications in statis- 

ics. In the following, we give a detailed example from change- 

oint detection in time series. 

A time series is a sequence of numerical values indexed by dis- 

rete time points ( Hamilton, 1994 ). Given a time series y 1 , . . . , y n ,

he objective of change-point detection is to identify whether the 

nderlying probability distribution of y changes, how many times 

t does so, and at which time points. Typical change-points for time 

eries occur when the time series changes its expected value (see 

ig. 2 a), its variance (see Fig. 2 b), or both. Change-point detection 

as important applications ( Aminikhanghahi & Cook, 2017 ). Among 

he most prominent ones are those in healthcare, e.g, to detect 

hanges in patient conditions ( Yang, Dumont, & Ansermino, 2006 ); 

n climatology, e.g., to detect climate change ( Reeves, Chen, Wang, 

und, & Lu, 2007 ); in econometrics, e.g., to detect warning signs of 

 crisis ( Kim, Oh, Sohn, & Hwang, 2004 ); in signal processing, e.g.,

o detect changes in recorded images ( Radke, Andra, Al-Kofahi, & 

oysam, 2005 ). 

Cappello & Madrid Padilla (2022) introduced a state-of-the-art 

ethod, named PRISCA, for detecting changes in the variance of a 

aussian time series. They propose an iterative method which at- 

empts to identify one change point at each iteration. As Fig. 2 b 

hows, however, a method identifying one time point for each 

hange point does not give results which are easy to interpret 

ecause there is often considerable uncertainty about when the 

hange takes place. In the figure, this uncertainty is represented by 

he wide shaded areas. Therefore, at each iteration, PRISCA builds 

 discrete probability distribution over { 1 , . . . , n } , associating each

ime point with the probability that it is a change point. An ex- 

mple distribution relative to the first change point is depicted in 

ig. 3 . The height of the bars in the bottom chart corresponds to 

he probability associated with each time point. 

Next, it identifies a level- q credible set , i.e., a subset of { 1 , . . . , n }
n which the sum of the probabilities is at least q (for a given

hreshold q ∈ [0 , 1] ). For example, a level-0.95 credible set corre-

ponds to a 95% probability that the set contains the change point. 

Following a criterion of parsimony, it is desirable that the cred- 

ble set contains as few elements as possible. Not all time points, 

owever, must carry the same penalty if included in the credi- 
386 
le set. For example, a time instant corresponding to an external 

hock might cost less in terms of parsimony compared to a time 

nstant when no such shock occurred. Therefore, one can associate 

o each time point j a scaling factor c j and minimise the sum 

f these factors. On the other hand, when no such information is 

resent, one can just set c j = 1 for all time instants. As we will see

n Section 2.2 , using a unitary scaling factor decidedly simplifies 

he problem. In the rest of this explanation, we will consider, for 

implicity, this unit-cost case. 

The most straightforward method to build the credible set is 

erhaps to follow a greedy approach which inserts points by de- 

reasing value of probability until the desired threshold q is met. 

his criterion was used, for example, by Wang, Sarkar, Carbonetto, 

 Stephens (2020 , Supplementary Data, Section A.3). Using this ap- 

roach, however, can result in a situation in which time points be- 

onging to different change points end up in the same credible set. 

ig. 4 exemplifies this concept. The points highlighted in yellow in 

he bottom chart are included in the same credible set, but they 

re not all associated with the first change point. 

To overcome this problem, one must then consider the com- 

actness of the credible set: because each set should identify a 

ingle change point, its elements should be “compact” and, ide- 

lly, distributed tightly around the real (unknown) change point. 

his objective can be achieved via compactness constraints. Indeed, 

nce the value of parameter � is fixed (usually to a small number 

uch as 2 or 3), the problem of producing the most parsimonious 

redible set becomes our mKPC, in which the probability values 

ssociated to each time point take the role of the weights. Fig. 5 

hows how including compactness leads to a better credible set 

onstruction. 

. Formal definition 

In this section, we give a formal definition of the mKPC by 

eans of an integer programming model, and we discuss the com- 

lexity of the mKPC and of the unit-cost mKPC (1c-mKPC). As 

entioned in Section 1 , in fact, the mKPC is N P -complete. In 

ection 2.2 , however, we prove that the 1c-mKPC is solvable in 

olynomial time. 

.1. Mathematical model 

We can formulate the m-KPC as the following integer program, 

n which binary variable x j takes value 1 iff the jth item is se- 
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Fig. 2. Example time series which change their expected value and variance. Black points indicate the time series values y t . Shaded areas represent periods where, qualita- 

tively, an analyst would expect a change point. 
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ected: 

in 

n ∑ 

j=1 

c j x j (1) 

ubject to 

n ∑ 

j=1 

w j x j ≥ q (2) 

 i + x j − 1 ≤
j−1 ∑ 

k = i +1 

x k ∀ i, j ∈ { 1 , . . . , n } , j > i + � (3) 

 j ∈ { 0 , 1 } ∀ j ∈ { 1 , . . . , n } . (4) 

e denote constraints (3) the compactness constraints . 

.2. Complexity 

The mKPC is N P -complete because it contains the min- 

napsack problem as a special case when � = n . In the applica- 

ions described in Section 1.1 , however, it can often be the case 

hat all items take unit cost (i.e., c j = 1 for all i ∈ { 1 , . . . , n } ). This

roblem is denoted as 1c-mKPC and arises, for example, when the 
387 
ser has no prior knowledge of which time instants of a time se- 

ies are more likely to be change points. The following theorem 

stablishes a strong result about the 1c-mKPC: namely, that it can 

e solved in polynomial time. 

heorem 1. Consider the decision version of the 1c-mKPC: for a given 

nteger number t ∈ { 1 , . . . , n } , we want to know whether there exists

 feasible solution of the 1c-mKPC using at most t items. The decision 

ersion of the 1c-mKPC can be solved in polynomial time. 

roof. Consider a Dynamic Programming (DP) table W with en- 

ries W (i, � ) for each i ∈ { 1 , . . . , n } and � ∈ { 1 , . . . , i } . Entry W (i, � )

ill contain the maximum weight of a subset of { 1 , . . . , i } such

hat the set has size � and that the element of the set with the

ighest index is item i . This table can be trivially initialised with 

 (i, 1) = w i for all i ∈ { 1 , . . . , n } . Furthermore, the following DP re-

ursion is valid: 

 (i, � ) = max 
j∈ 
{

[ i −�] , ... ,i −1 

}{W ( j, � − 1) 
}

+ w i , (5) 

here notation [ i − �] is used as a shorthand for max { 1 , i − �} .
ecursion (5) is valid because of the following observation. Any set 

f size � having item i as its highest-index element must contain 

t least one element in { [ i − �] , . . . , i − 1 } as its second-highest-
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Fig. 3. Probabilities associated with each time point and representing how likely the point is to be the first change point of the time series. 
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ndex element. If that were not the case, in fact, the compactness 

onstraint would be violated. 

Finally, to know whether there is a subset of { 1 , . . . , n } of size

t most t such that its elements have weight at least c and that 

atisfies compactness constraints, we must check that 

in 

{
� ∈ { 1 , . . . , n } | ∃ i ∈ { �, . . . , n } s.t. W (i, � ) ≥ q 

}
≤ t. (6)

We now analyse the complexity of the above algorithm to con- 

lude that it runs in polynomial time in the instance size n . Indeed,

able W has size O (n 2 ) and we derive the worst-case complexity of

omputing an entry. To compute a generic entry W (i, � ) through 

5) we need to compare values in rows [ i − �] , . . . , i − 1 of column

 − 1 , i.e., we perform at most � comparisons. Noting that the ta- 

le can be built in increasing order of columns and rows (indeed, 

 is lower-triangular) and that � ≤ n , we conclude that the total 

omplexity of the DP algorithm is O (n 3 ) . �

. Related problems 

In addition to applications in statistics discussed in Section 1.1 , 

he mKPC has a specific combinatorial structure. As anticipated, 

he problem falls in the wide family of knapsack problems (see 

ellerer, Pferschy, & Pisinger, 2004; Martello & Toth, 1990 ). In par- 
388 
icular, it extends the min-Knapsack problem by introducing com- 

actness constraints. For the earliest results on the min-Knapsack 

roblem in English, we refer the reader to the seminal work of 

sirik et al. (1991) ; for earlier works in Russian see, e.g., Babat 

1975) . 

The special structure of compactness constraints can be repre- 

ented by a graph G = (V, E) in which each item i corresponds to

 vertex v i ∈ V , and an edge { v i , v j } ∈ E is defined for each pair of

ertices v i and v j , i < j, such that j − i < �. The mKPC asks to se-

ect a subset of V inducing a connected subgraph, such that the 

orresponding items optimise the associated min-Knapsack prob- 

em. 

If instead of graph G we are given a generic graph, and if we 

lso have to include a predefined subset T ⊂ V of vertices in the 

onnected subgraph, the problem is known as the Connection Sub- 

raph problem (see Conrad, Gomes, van Hoeve, Sabharwal, & Suter, 

007 ). This problem is strongly N P -complete and remains so even 

hen T = ∅ . As discussed in Section 2.2 , the mKPC (that is, the

onnection Subgraph problem with T = ∅ and the special struc- 

ure of graph G ) remains N P -complete. The definition of the mKPC 

s a problem on a graph gives us an interpretation of inequalities 

3) as a special case of the connectivity constraints introduced by 

ischetti et al. (2017) to impose connectivity of Steiner trees. How- 
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Fig. 4. The bottom chart shows a credible set relative to the first change point of the time series in the top chart when disregarding compactness. The points in the credible 

set are highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ver, the special structure of graph G that results when solving 

he mKPC makes it more efficient to specialize those constraints 

o the specific problem without the need to introduce G explicitly. 

n particular, the separation of inequalities (3) is straightforward 

see Section 4.2 ). 

As discussed, our compactness constraints can be interpreted as 

 connectivity requirement on a suited graph. Similar requirements 

ppear in political districting problems, where one has to partition 

eographic units (e.g., counties or census blocks) to obtain dis- 

ricts for elections. Districts must contain geographically contigu- 

us units and have the same number of inhabitants. Political dis- 

ricting problems are typically defined on a graph where vertices 

epresent the geographic units and have a weight corresponding 

o the population, and the edges connect units that are contigu- 

us. Hence, the problem consists in partitioning the vertices into 

ubsets having approximately the same weight and inducing con- 

ected subgraphs. According to several recent contributions, this 

ast requirement is the most challenging to be satisfied (see, e.g., 

icca, Scozzari, & Simeone, 2013; Validi, Buchanan, & Lykhovyd, 

022 and Swamy, King, & Jacobson, 2022 ). 

In a different perspective, Stiglmayr, Figueira, Klamroth, Pa- 

uete, & Schulze (2022) introduce some robustness measures for 
389 
olutions in multi-objective integer linear programming. Here the 

dea is to select a solution which is not only efficient but also ro- 

ust, in the sense that its “closeby” solutions are efficient as well 

allowing for a substitution of the selected solution). The closeness 

f solutions depends on the specific problem and can be identi- 

ed as a change of base via a pivot in a linear program or as a

move” in a combinatorial problem. In any case, close solutions are 

enoted as adjacent, thus defining a graph. The robustness of each 

olution is evaluated by analysing its neighbourhood in this graph. 

. Solution approaches 

In this section, we describe exact approaches for the mKPC. 

e also describe a greedy heuristic for the 1c-mKPC, used in the 

RISCA package ( Cappello, 2022 ). 

.1. Integer programming 

The first approach involves solving model (1) –(4) with a black- 

ox integer programming solver. The model is compact because it 

ses O (n ) variables and O (n 2 ) constraints. 
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Fig. 5. The bottom chart shows a credible set relative to the first change point of the time series in the top chart, considering compactness requirements. The points in the 

credible set are highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Strengthening compactness constraints . Compactness constraints 

3) state that if two items lying more than � positions apart are 

elected, then at least another item between them must be se- 

ected. These constraints, however, can be made stronger. For ex- 

mple, if the two selected items lie at least 2� positions apart, 

hen at least two further items between them shall also be se- 

ected. In general, (3) can be strengthened as follows: 

j − i − 1 

�

⌋
(x i + x j − 1) ≤

j−1 ∑ 

k = i +1 

x k ∀ i, j ∈ { 1 , . . . , n } , j > i + �. 

(7) 

The following example shows why these constraints help 

ighten the continuous relaxation of the mKPC. Consider an in- 

tance in which the two heaviest items are the first one and the 

ast one: let n = 1002 , w 1 = w 1002 = 0 . 495 , and w j = 10 −4 for all

ther j ∈ { 2 , . . . , 1001 } . Further, assume that costs are all equal,

hat � = 5 , and that α = 0 . 95 . Without compactness constraints,

ne might simply choose items 1 and 1002, obtaining a total 

eight of 0 . 99 > 0 . 95 . Due to compactness constraints, however,

e must “link” these two items, taking other intermediate items. 

he most parsimonious way to achieve that is to take one every 
390
items, i.e., items 6, 11,..., 1001. The optimal solution, therefore, 

elects 2 + 200 = 202 items. 

When solving the continuous relaxation of the mKPC, however, 

n optimal solution is x 1 = x 1002 = 1 , and x j = 10 −3 for all other

j ∈ { 2 , . . . , 1001 } . Such a solution has cost 3 and does not violate

ny compactness constraint. For example, when i = 1 and j = 1002 ,

e have 
∑ j−1 

k = i +1 
x k = 10 0 0 · 10 −3 = 1 and thus (3) is satisfied. On

he other hand, the strengthened constraint (7) would be violated 

y such a solution: 

1001 

5 

⌋
(x i + x j − 1) = 200(1 + 1 − 1) = 200 
≤ 1 = 

j−1 ∑ 

k = i +1 

x k . 

.2. On-the-fly constraint generation 

Formulation (1) –(4) has polynomial size, but the number of 

ompactness constraints can be very large for large values of n . 

heir management can be impractical, and it can cause a degrada- 

ion of black-box IP solvers’ performances, in particular during pre- 

rocessing and when solving linear programming relaxations. For 

his reason, we evaluate the effectiveness of a branch-and-cut ap- 

roach in which we first remove the compactness constraints and 
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Fig. 6. Graph G used by the labelling algorithm. The graph in the figure depicts an 

instance with � = 2 . 
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hen generate them on-the-fly by separating infeasible integer and 

ractional solutions of the resulting relaxed problem. In the rest of 

his section, we derive the corresponding separation procedures. 

Integer solution separation . The following procedure checks 

hether an integer solution x ∗1 , . . . , x 
∗
n violates a compactness con- 

traint. For each item i ∈ { 1 , . . . , n } with x ∗
i 

= 1 , we search the first

tem σi ∈ { i + 1 , . . . , n } such that x ∗σi 
= 1 . If σi > i + �, then (3) is

iolated for j = σi and must be added to the formulation. Other- 

ise, there is no index j such that constraint (3) is violated for 

he index pair (i, j) . Stopping the algorithm after we find the first

iolated constraint (if any) would cut away the current infeasible 

nteger solution. However, we can keep scanning items i even after 

e find one involved in violating a compactness constraint, thus 

ttempting to separate other useful inequalities. 

Fractional solution separation . Given a fractional solution 

 

∗
1 
, . . . , x ∗n , the following procedure determines whether it violates 

 compactness constraint. For each item i ∈ { 1 , . . . , n − � − 1 } such

hat x ∗
i 

> 0 , let S = 0 . Then: 

1. For each item k ∈ { i + 1 , . . . , i + �} , update S with value S + x ∗
k 
.

If, at some point, S ≥ 1 , then there is no index j for which (3) is

violated for the index pair (i, j) . We can then move to the next

i . 

2. Otherwise, start scanning items j ∈ { i + � + 1 , . . . , n } such that

x ∗
j 
> 0 . 

(a) If x i + x j − 1 > S, then the solution violates the compactness 

constraint for index pair (i, j) . 

(b) Otherwise, update S with value S + x ∗
j 

and move to the next 

j. 

he validity of step 1 follows because condition S ≥ 1 makes the 

ight-hand side of (3) larger or equal than 2 and thus, the inequal- 

ty holds. The condition in step 2.a corresponds exactly to a viola- 

ion of (3) , while step 2.b is needed to consider all items between

 and j. 

Strengthened compactness constraints . Finally, we observe that 

he separation procedure for compactness constraints can be mod- 

fied in a straightforward way to detect and add violated inequal- 

ties (7) instead of the original (3) . In particular, for the fractional 

ase, it is enough to replace the condition in step 2.a with condi- 

ion 

j − i − 1 

�

⌋
(x i + x j − 1) > S. 

.3. Dynamic programming 

To derive a DP algorithm for the (general) mKPC, we first in- 

roduce an auxiliary directed graph G = (V, A ) . The vertex set con-

ains a source node σ , a sink node τ , and one node for each item.

verall, V = { σ, 1 , . . . , n, τ } . The arc set A contains: 

• Arcs from σ to each node i ∈ { 1 , . . . , n } . 
• Arcs from each node i ∈ { 1 , . . . , n } to τ . 
• An arc from node i to j, for each pair i, j ∈ { 1 , . . . , n } such that

i < j ≤ i + �. 

Fig. 6 depicts graph G when � = 2 . Thinner arrows represents 

rcs from σ and to τ , while the thicker ones represents arcs be- 

ween nodes { 1 , . . . , n } . A feasible solution of the mKPC corre-

ponds to a path in G starting at σ , ending at τ , and such that

he weight collected at visited nodes is at least q . 

To avoid the complete enumeration of all feasible solutions, we 

ropose a labelling algorithm in which we associate a label to each 

artial path from σ . A label L = (i, C, W ) has three components:

he last visited node i , the total cost C of visited nodes, and the

otal collected weight W . The initial label is L = (σ, 0 , 0) . Each
391 
ime a label L = (i, C, W ) is extended from i to j, the new label

 

′ = (i ′ , C ′ , W 

′ ) has components: 

 

′ = j, C ′ = 

{
C + c j if j ∈ { 1 , . . . , n } 
C if j = τ

, 

W 

′ = 

{
W + w j if j ∈ { 1 , . . . , n } 
W if j = τ

. (8) 

ptimal solutions of the mKPC correspond to labels such that i = 

, W ≥ q , and C is minimal. 

Note that, as soon as W ≥ q for some label, the only sensible 

xtension for that label is from the current node to the sink node 

. Analogously, if W < q , then it does not make sense to extend

hat label to τ because the new label would correspond to an in- 

easible solution. 

Consider two labels, L 1 = (i, C 1 , W 1 ) and L 2 = (i, C 2 , W 2 ) , refer-

ing to two partial paths to the same node i . If C 1 ≤ C 2 and W 1 ≥
 2 , then no extension of L 2 up to the sink node τ can correspond 

o a strictly better solution than the corresponding extension of L 1 

long the same path. This observation leads to the following dom- 

nance rule: L 1 dominates L 2 if C 1 ≤ C 2 , W 1 ≥ W 2 , and at least one

f the two inequalities is strict. In this case, one can discard label 

 2 . In case both inequalities are actually equalities, one can discard 

ither L 1 or L 2 (but not both) arbitrarily. 

.4. Greedy heuristic for the 1c-mKPC 

For the special case of the 1c-mKPC, we describe here the 

reedy heuristic procedure used in the PRISCA package ( Cappello, 

022 ) to determine whether a credible set corresponds to a valid 

hange point. As mentioned in Section 1.1 , the authors consider the 

ase in which all costs are unitary, and they deem the credible set 

alid if their heuristic solution of the corresponding 1c-mKPC uses 

ewer than 

n 
2 items. 

The greedy procedure aims at identifying a subset of items 

 ⊆ { 1 , . . . , n } with total weight at least q and satisfying the com-

actness constraints. The procedure starts by initialising P with a 

ingle item, namely the one with the highest weight: 

 = 

{
argmax 

{
w j | j ∈ { 1 , . . . , n } }

}
. 

t then keeps augmenting P by adding, at each iteration, the heav- 

est item which is not yet selected and does not violate compact- 

ess constraints: 

 ← P ∪ 

{
argmax 

{
w j | j ∈ { 1 , . . . , n } \ P, ∃ i ∈ P : | j − i | ≤ �

}}
.

he algorithm stops as soon as 
∑ 

j∈ P w j ≥ q . 
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. Computational results 

In this section, we report the results of computational exper- 

ments to test the effectiveness of the algorithms presented in 

ection 4 . The code was implemented in C++ , using Gurobi 9.5 

s the MIP solver. Experiments ran on a machine equipped with 

n Intel Xeon CPU running at 2.4 GHz and 4GB RAM (increased to 

GB for instances with n = 600 ). The MIP solver was instructed to

nly use one thread. All algorithms used a time limit of 3600s. The 

nstances and the code used are available under an open-source li- 

ence ( Santini, 2022 ). 

After describing the instance set used, we analyse the results of 

hree sets of experiments: 

1. Experiments to assess the impact of strengthened constraints 

(7) . 

2. Experiments to compare the compact formulation, the branch- 

and-cut algorithm, and the DP labelling algorithm for the 

mKPC. 

3. Experiments to investigate the difficulty of solving the unit-cost 

version of the problem. To this end, on top of the above al- 

gorithms, we also add the DP algorithm for the 1c-mKPC (de- 

scribed in the proof of Theorem 1 ) and the greedy heuristic de- 

scribed in Section 4.4 . 

.1. Instances 

We consider two sets of instances. We obtained the first set, 

enoted S1 , from the authors of ( Cappello & Madrid Padilla, 

022 ). This set consists of 300 instances with n ∈ { 40 , 200 } , q ∈
 0 . 90 , 0 . 95 } , and � ∈ { 2 , 3 , 5 } . All costs are equal to 1 and, there-

ore, set S1 contains 1c-mKPC instances. 

Because the costs in the S1 instances are all unitary, and 

he number of items is relatively low, we also generated a sec- 

nd set, denoted S2 . This set contains 189 instances with n ∈ 

 20 0 , 40 0 , 60 0 } , q = 0 . 95 , and � ∈ { 2 , 3 , 5 , 10 } . In the following, we

xplain how we generate the weights and the costs in the in- 

tances of set S2 . We use three weight-generation methods: 

• The Noise method first assigns each item j a weight 

w 

′ 
j = 

1 

n 

+ N 

(
0 , 

1 

4 n 

)
, 

where N (λ, σ ) denotes a normal distribution with location λ
and scale σ . To avoid numerical issues, we also ensure that no 

weight is smaller than 10 −12 , i.e., we set 

w 

′ 
j ← max { w 

′ 
j , 10 

−12 } . 
Because the sum of the above weights is not necessarily equal 

to one, we finally normalise them: 

w j = 

w 

′ 
j ∑ n 

i =1 w 

′ 
i 

∀ j ∈ { 1 , . . . , n } . (9) 

Fig. 7 shows an example of a Noise instance, with its op- 

timal solution represented in orange. The y axis, labelled 

“Probability”, refers to the statistical application mentioned in 

Section 1.1 , in which item weights represent probabilities. Noise 

instances tend to require a large fraction of selected items to 

reach the target weight of q = 0 . 95 . 
• The OnePeak method proceeds as follows. It first chooses a ran- 

dom location λ between 1 and n , sampling from a truncated 

normal distribution with location 

n 
2 and scale n 

4 , and rounding 

to the nearest integer. It then generates an instance in which 

the weights have a peak around λ, i.e., an instance similar to 

the one depicted in Fig. 3 . To this end, it considers another 

truncated normal distribution between 1 and n , with location 
392
λ and scale n 
k 

. Here k ∈ { 8 , 16 , 32 } is an instance generation pa-

rameter. Weights will be more tightly distributed around the 

peak when k is larger. The method samples 50 0 0 times from 

this distribution and builds the corresponding histogram with 

n bars. The jth bar counts how many samples fell in the inter- 

val [ j, j + 1) . The weight w 

′ 
j 

of the jth item is then set as the

height of the jth bar of the histogram. Finally, weights w j are 

obtained by normalisation as in Eq. (9) . Fig. 8 shows an exam- 

ple of a OnePeak instance. 
• The TwoPeaks methods is similar to OnePeak , except that the 

histogram is built by sampling from the sum of two truncated 

normal distributions with locations λ1 and λ2 , and common 

scale n 
2 k 

. Intuitively, λ1 and λ2 are the locations of two peaks. 

The values of the two locations are drawn from two further 

truncated normal distributions between 1 and n , and rounded 

to the nearest integer. The first distribution has location 

n 
3 , the 

second one has location 

2 n 
3 , and both have scale n 

6 . Fig. 9 shows 

an example of a TwoPeaks instance. 

We use three costs generation methods: 

• The Constant method simply assigns unit costs to all items and 

allows us to extend the results obtained on the S1 set to larger 

instances with different weight types. 
• The Few method aims at modelling real-life statistical applica- 

tions in which few items have a small cost, and all other items 

have a constant larger one. In particular, it first selects n 
100 

items using a roulette wheel method with probabilities equal to 

item weights. It then assigns these items a weight of 0.10 and 

all other items a weight of 1. The reason we use roulette wheel 

selection is that, in the application, the items with the lower 

costs correspond to time instants with a higher prior probabil- 

ity of containing a change point. These items are thus also more 

likely to be detected by the algorithm and, as a consequence, to 

have a larger weight. Therefore, assuming that the prior knowl- 

edge is accurate and that the algorithm works correctly, items 

with larger weights are more likely to have lower costs. 
• The Random method assigns each item a cost uniformly dis- 

tributed in the interval [1 , 10] . 

Note that we have three possible values for parameter n , three 

alues for parameter �, and three for the cost generation method. 

heir combination gives 27 parameter combinations using weight 

eneration method Noise . Because we generate 3 instances for 

ach combination, we build 81 Noise instances. Furthermore, for 

ach of these 27 combinations, we have 3 possible values for pa- 

ameter k , yielding 81 parameter combinations for each of the 

nePeak and TwoPeaks weight generation methods. Again, gener- 

ting 3 instances for each combination, we obtain 243 instances 

or each method. Overall, we then construct 81 + 2 × 243 = 567 in-

tances. 

.2. Computational experiments 

In this section, we present the results of computational ex- 

eriments on the instances described in Section 5.1 . We first in- 

estigate the role of strengthened inequalities (7) on the com- 

act formulation and the branch-and-cut (B&C) algorithm. Next, 

e compare these two algorithms with the labelling algorithm 

ntroduced in Section 4.3 . We present the results of these com- 

arisons using instances of set S2 because these are larger and 

ore varied. Finally, we compare our approaches (including the DP 

ne introduced via Theorem 1 ) with the greedy heuristic of the 

RISCA package ( Cappello, 2022 ) on 1c-mKPC instances. This com- 

arison allows us to assess the advantage of exact algorithms over 

 heuristic one. We include instances from set S1 in this experi- 

ent to ensure that exact algorithms are competitive on instances 

rom the statistics literature. 
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Fig. 7. Example Noise instance with its optimal solution. 

Fig. 8. Example OnePeak instance with its optimal solution. 

e

Impact of strengthened compactness constraints . We use two rel- 

vant metrics to assess the impact of strengthened inequalities (7) : 

1. The percentage optimality gap, i.e., the gap between the best 

primal and dual bounds returned by each algorithm within the 

time limit. This metric is denoted as Gap % and is defined as 

follows: 

Gap % = 100 · UB − LB 

, 

UB 

393 
where “UB” indicates the best primal solution and LB is the 

tightest dual bound returned by the solver. Gap% corresponds 

to the familiar gap returned by black-box integer programming 

solvers and depends on both the quality of the primal and dual 

bound. 

2. The second metric is the solution time in seconds, including the 

time spent creating the model and exploring the branch-and- 

bound tree. It is denoted by Time (s). 
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Fig. 9. Example TwoPeaks instance with its optimal solution. 

Table 1 

Impact of strengthened inequalities (7) on the performance of the Compact Formulation and the Branch & Cut algorithm. The table refers to instances whose weights are 

generated with the Noise and OnePeak methods. 

n Weights Costs Compact MIP with (3) Compact MIP with (7) B&C with (3) B&C with (7) 

Time (s) Time (s) Time (s) Time (s) 

200 Noise Constant 3.71 4.82 0.00 0.00 

Few 4.12 6.72 0.01 0.01 

Random 3.92 7.39 0.01 0.01 

OnePeak Constant 4.74 5.02 0.00 0.01 

Few 4.32 5.25 0.01 0.01 

Random 5.28 6.22 0.05 0.02 

400 Noise Constant 50.60 49.34 0.01 0.01 

Few 56.08 99.85 0.03 0.02 

Random 52.35 63.58 0.03 0.03 

OnePeak Constant 87.03 104.23 0.01 0.01 

Few 72.92 76.48 0.04 0.02 

Random 72.34 110.54 0.23 0.10 

600 Noise Constant 185.42 187.73 0.01 0.01 

Few 233.83 239.03 0.05 0.02 

Random 243.66 220.93 0.03 0.03 

OnePeak Constant 466.23 635.56 0.02 0.01 

Few 445.60 455.45 0.33 0.13 

Random 388.22 554.11 0.41 0.19 

Overall 152.05 187.17 0.10 0.04 
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We also note that instances generated using weight types Two- 

eaks are considerably harder than the other instances. Therefore, 

e present the results obtained on Noise and OnePeak instances 

eparately from those obtained on TwoPeaks instances. After com- 

enting on these results, we will come back to the difficulty of 

woPeaks instances, and we will explain what sets them apart 

rom the other instances. 

Table 1 reports the results on the Noise and OnePeak instances 

f set S2 . Because all algorithms solve to optimality all instances 

ith up to 600 items, Table 1 is only reporting the runtimes. 

ote how the runtimes are very different for the complete com- 

act formulation and for the B&C algorithm. For the largest in- 

tances, for example, the average runtimes needed to solve the 

ompact formulation are in the order of hundreds of seconds. The 
394 
&C algorithm, on the other hand, closes these instances in a few 

undredths of a second: a difference of five orders of magnitude. 

egarding the effect of strengthened compactness constraints, we 

ote that they do not seem to help when solving the full compact 

ormulation. If anything, in fact, they slightly increase the compu- 

ation time. On the other hand, they reduce the computation time 

f the B&C algorithm. 

Table 2 presents the results on the TwoPeaks instances. These 

nstances are considerably harder to solve: in several cases, the 

olvers run out of time without solving the model to optimality. 

ven when they solve the model to optimality, it takes, on average, 

uch longer compared with Noise and OnePeak instances. For 

hese instances, the strengthening constraints have a consider- 

ble effect on the solvers. Indeed, by using the strengthened 
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Table 2 

Impact of strengthened inequalities (7) on the performance of the Compact Formulation and the Branch & Cut algorithm. The table refers to instances whose weights are 

generated with the TwoPeaks method. 

n Costs Compact MIP with (3) Compact MIP with (7) B&C with (3) B&C with (7) 

Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) 

200 Constant 5.99 710.39 0.09 492.53 13.53 1746.66 0.83 884.48 

Few 7.63 828.35 0.05 462.61 12.66 2056.36 0.63 627.83 

Random 4.18 578.62 0.54 561.51 8.71 1362.68 0.48 591.01 

400 Constant 6.11 1993.72 2.52 1999.99 15.98 2558.45 1.56 1818.52 

Few 10.92 1531.91 2.48 1737.72 13.42 1747.64 3.00 1603.26 

Random 3.51 1079.89 3.41 1915.56 13.21 2606.64 2.69 1350.17 

600 Constant 18.88 2131.24 6.46 2147.31 15.97 2133.58 14.07 1740.09 

Few 19.31 2603.57 6.72 2890.47 19.49 2851.15 7.70 2419.43 

Random 12.92 2376.42 6.23 2677.12 15.92 2666.89 4.79 2085.05 

Overall 9.94 1537.12 3.17 1653.87 14.13 2008.89 3.81 1428.38 

Fig. 10. Left: percentage of items selected fractionally in the optimal solution of the continuous relaxation of the mKPC. Right: normalised Gini coefficient showing how 

close the fractional values are to 0.5 (the higher the value, the closer to 0.5). 
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nequalities (7) the average gaps are roughly reduced by two- 

hirds. We also observe that, on these harder instances, the B&C 

lgorithm loses its advantage on the compact formulation. The 

aps produced by B&C are slightly worse, while the runtimes are 

omparable. 

Peculiarity of the TwoPeaks instances . As Tables 1 and 2 show, 

woPeaks instances are much harder to solve using branch-and- 

ound methods compared with the other instances. The reason 

ies in the characteristics of the optimal solution of the continu- 

us relaxation of the mKPC. Solutions of TwoPeaks instances have 

 large number of fractional items, and the value of the corre- 

ponding variables x are closer to 0.5. This implies that much more 

ranching is necessary while exploring the branch-and-bound tree. 

o appreciate the extent by which TwoPeaks instances differ from 

he other instances, Fig. 10 shows boxplots of two metrics relative 

o the optimal solution of the continuous relaxation of the mKPC, 

ivided by weight generation method. Let x ∗
1 
, . . . , x ∗n be such a so-

ution. Metric Frac % gives the percentage of items selected frac- 

ionally in the solution, i.e., 

rac % = 100 ·

∣∣∣∣{ j ∈ { 1 , . . . , n } : 0 < x ∗
j 
< 1 

}∣∣∣∣
. 
n 

395 
etric FracGini is the normalised Gini coefficient of the fractional 

ariables, i.e., 

racGini = 

∑ n 
j=1 x 

∗
j 
(1 − x ∗

j 
) ∣∣∣∣{ j ∈ { 1 , . . . , n } : 0 < x ∗

j 
< 1 

}∣∣∣∣
. 

he value of this metric is higher when many x ∗
j 

are concentrated 

round 0.5, while it is lower when the x ∗
j 

take values close to 0 

r 1. Values x ∗
j 
∈ { 0 , 1 } do not contribute to the sum at the nu-

erator. Therefore, solutions with more fractional items have more 

on-zero terms in the sum at the numerator. To compensate, we 

ormalise dividing by the number of fractional items. 

Comparison of the algorithms for the mKPC . Table 3 compares the 

erformance of three approaches for the mKPC. Because strength- 

ned inequalities (7) result in lower gaps, we enable them for both 

he branch-and-cut algorithm and the compact formulation. 

Table 3 reports the following metrics: 

1. Opt % is the percentage of instances in each row for which the 

algorithm found a provably optimal solution. 

2. PGap % is the percentage primal gap, i.e., the gap between the 

best primal solution found by each algorithm and the best 
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Table 3 

Comparison of the MIP-based approaches (the branch-and-cut and the compact formulation) with the labelling algorithm presented in Section 4.3 , on the S2 instances. 

n Weights Costs B&C with (7) Compact MIP with (7) Labelling 

Opt % PGap % Time (s) Opt % PGap % Time (s) Feas % Opt % PGap % Time (s) 

200 Noise Constant 100.00 0.00 0.00 100.00 0.00 4.82 100.00 100.00 0.00 1.85 

Few 100.00 0.00 0.01 100.00 0.00 6.72 100.00 100.00 0.00 3.05 

Random 100.00 0.00 0.01 100.00 0.00 7.39 88.89 44.44 26.36 2917.73 

OnePeak Constant 100.00 0.00 0.01 100.00 0.00 5.02 100.00 100.00 0.00 1.32 

Few 100.00 0.00 0.01 100.00 0.00 5.25 100.00 100.00 0.00 1.59 

Random 100.00 0.00 0.02 100.00 0.00 6.22 100.00 88.89 0.05 125.94 

TwoPeaks Constant 77.78 0.49 884.48 96.30 0.05 492.53 100.00 96.30 0.13 1.81 

Few 85.19 0.45 627.83 92.59 0.04 462.61 100.00 96.30 0.06 1.59 

Random 88.89 0.01 591.01 88.89 0.00 561.51 100.00 85.19 0.04 144.46 

400 Noise Constant 100.00 0.00 0.01 100.00 0.00 49.34 100.00 100.00 0.00 48.02 

Few 100.00 0.00 0.02 100.00 0.00 99.85 100.00 100.00 0.00 160.17 

Random 100.00 0.01 0.03 100.00 0.01 63.58 66.67 0.00 100.00 3600.00 

OnePeak Constant 100.00 0.00 0.01 100.00 0.00 104.23 100.00 88.89 0.15 20.09 

Few 100.00 0.00 0.02 100.00 0.00 76.48 100.00 100.00 0.00 34.99 

Random 100.00 0.00 0.10 100.00 0.00 110.54 100.00 74.07 0.52 1975.23 

TwoPeaks Constant 59.26 1.38 1818.52 55.56 1.42 1999.99 100.00 92.59 0.83 29.94 

Few 55.56 2.12 1603.26 55.56 1.55 1737.72 100.00 92.59 0.79 45.55 

Random 66.67 1.29 1350.17 55.56 1.31 1915.56 96.30 66.67 12.36 2071.43 

600 Noise Constant 100.00 0.00 0.01 100.00 0.00 187.73 100.00 100.00 0.00 234.71 

Few 100.00 0.00 0.02 100.00 0.00 239.03 100.00 100.00 0.00 1090.45 

Random 100.00 0.01 0.03 100.00 0.01 220.93 66.67 0.00 100.00 3600.00 

OnePeak Constant 100.00 0.00 0.01 100.00 0.00 635.56 100.00 96.30 0.02 207.80 

Few 100.00 0.00 0.13 100.00 0.00 455.45 100.00 85.19 0.04 282.16 

Random 100.00 0.00 0.19 100.00 0.00 554.11 88.89 40.74 25.05 3337.04 

TwoPeaks Constant 51.85 14.12 1740.09 44.44 5.46 2147.31 100.00 100.00 3.32 231.36 

Few 33.33 13.26 2419.43 29.63 4.83 2890.47 100.00 88.89 2.89 345.75 

Random 44.44 4.20 2085.05 29.63 4.62 2677.12 81.48 18.52 39.37 3485.78 

Overall 83.95 1.73 620.83 83.25 0.92 815.75 97.18 83.42 6.24 697.20 

Table 4 

Comparison of four algorithms on the unit-cost instances of sets S1 and S2 . 

Algorithm n Opt % PGap % Time (s) 

B&C with (7) 40 100.00 0.00 0.0010 

200 99.23 0.01 28.9298 

400 76.19 0.36 698.9947 

600 76.19 5.22 698.4682 

Compact MIP with (7) 40 100.00 0.00 0.0190 

200 99.62 0.00 40.8350 

400 80.95 0.33 590.5545 

600 71.43 1.07 1454.4012 

Labelling ( Section 4.3 ) 40 100.00 0.00 0.0007 

200 100.00 0.00 0.6564 

400 100.00 0.00 21.0971 

600 100.00 0.00 212.1984 

Dynamic Programming ( Theorem 1 ) 40 100.00 0.00 0.0000 

200 100.00 0.00 0.0000 

400 100.00 0.00 0.0005 

600 100.00 0.00 0.0021 

Greedy ( Section 4.4 ) 40 96.67 0.30 0.0000 

200 87.74 1.36 0.0000 

400 66.67 10.73 0.0000 

600 61.90 10.54 0.0000 
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known primal solution. We use PGap % instead of Gap % because 

the labelling algorithm provides no dual bound when it cannot 

solve an instance within the time limit. 

3. Finally, we observe that the labelling algorithm can terminate 

in three different states. If it completes before the time limit, 

it has found the optimal solution. If it times out and there is 

at least one label extended to the sink node τ , then the algo- 

rithm can be used as a heuristic: any label extended to the sink 

node corresponds to a feasible solution. The algorithm can re- 

turn the best such solution, although it cannot prove or dis- 

prove its optimality while there are still unextended labels. If 

the algorithm times out and no label was extended to τ , then 

we do not even have a feasible solution to compute PGap %. 

Therefore, we introduce the additional column Feas % for the 

labelling algorithm. It contains the percentage of instances in 
f

396 
each row for which the algorithm found at least one feasible 

solution. 

To ensure a fair comparison, we compute averages using a 

Gap % of 100 % and a Time (s) of 3600 s when the labelling al-

orithm does not give any feasible solution. 

Table 3 shows that branch-and-cut can usually find more op- 

ima than the other algorithms and in a shorter time. The average 

rimal gap, however, is lower for the compact MIP formulation. 

he labelling algorithm does not always manage to produce a fea- 

ible solution. In particular, its performance degrades for instances 

ith cost type Random and, to a lesser extent, with weight type 

oise . For these instances, in fact, dominance is less likely, and the 

abelling algorithm becomes similar to a complete enumeration of 

easible solutions. 
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When the labelling algorithm finds feasible solutions, however, 

hey are often optimal. In these cases, branch-and-cut usually also 

nds optimal solutions in a shorter time. A notable exception is 

woPeaks instances: when costs are Constant or Few , labelling is 

he best-performing algorithm, finding more optima in a consider- 

bly shorter time. 

Experiments on 1c-mKPC instances . Finally, we report the perfor- 

ances of five algorithms on the unit-cost mKPC. In addition to 

he three algorithms considered above, we add the DP approach 

resented in the proof of Theorem 1 and the greedy heuristic in- 

roduced in Section 4.4 . The test set for this experiment includes 

oth S1 instances and S2 instances with Constant costs. 

The results show that the tailored DP approach vastly outper- 

orms all other algorithms. It solves all instances, even the largest 

nes with n = 600 , in less than two-thousandths of a second per

nstance. The greedy heuristic is even faster (all measured times 

ere under 0.0 0 0 05 s) but often fails at identifying the optimal so-

ution, especially when the size of the instance grows. We can con- 

lude that specialised approaches for the 1c-mKPC are well justi- 

ed and that there is no reason to use heuristic algorithms because 

ur proposed DP approach is extremely fast in practice ( Table 4 ). 

. Conclusions 

This paper introduced the min-Knapsack Problem with Com- 

actness Constraints (mKPC), an extension of the classical min- 

napsack problem. The motivation for studying the mKPC is that it 

rises as a sub-problem in two state-of-the-art algorithms recently 

ntroduced in the statistical community. These are the PRISCA al- 

orithm of Cappello & Madrid Padilla (2022) for detecting change 

oints in time series and the SuSiE algorithm of Wang et al. 

2020) for variable selection in high-dimensional regression. 

We proposed three approaches to solve the mKPC: a compact 

ormulation with a quadratic number of constraints, a branch- 

nd-cut approach in which these constraints are separated dy- 

amically, and a labelling algorithm. Despite branch-and-cut being 

ore often used when the number of constraints is exponential in 

he problem size, computational experiments proved that this ap- 

roach could also be helpful when dealing with compact models. 

n particular, the branch-and-cut algorithm solves the largest num- 

er of instances to optimality. It is orders of magnitude faster than 

olving the entire formulation with the state-of-the-art black-box 

olver Gurobi . Computational experiments also showed that the 

roblem’s difficulty depends considerably on instance characteris- 

ics. In particular, instances with a particular double-peak structure 

re harder to solve to optimality. 

Finally, we focused our attention on a special case of the mKPC, 

amed the unit-cost mKPC (1c-mKPC). This problem is especially 

elevant for the statistical applications because it corresponds to 

he case in which the user of the PRISCA and SuSiE algorithms 

entioned above has no prior knowledge of, respectively, which 

ime instants and which features are more likely to be selected. We 

roved that the 1c-mKPC is solvable in polynomial time and pro- 

osed a specific dynamic programming algorithm. Computational 

esults clearly show that using this algorithm is better than the 

eneric mKPC approaches and a greedy heuristic from the statis- 

ics literature. 

This work contributes to the literature at the intersection be- 

ween operational research (OR) and statistics. Although some au- 

hors recently explored problems in machine learning from the 

oint of view of OR (see, e.g., Gambella, Ghaddar, & Naoum- 

awaya, 2021 ), there are not many works which address problems 
397 
rising in classical statistics. In particular, we showed that OR can 

rovide practical tools to solve to optimality problems which are 

ften approached heuristically in the statistical community (see, 

.g., Bertsimas, King, & Mazumder, 2016 , for an illustrious exam- 

le). Future work may identify further problems in statistics which 

R techniques can efficiently approach. 
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