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A B S T R A C T   

Assessing alternative agricultural water management strategies requires long-term field trials or vast data 
collection for model calibration and simulation. 

This work aims to assess whether an uncalibrated agro-hydrological model using global input datasets for 
climate, soil and crop information can serve as a decision support tool for crop water management under data 
scarcity. 

This study employs the Cool Farm Tool Water (CFTW) at eight eddy covariance sites of the FLUXNET2015 
dataset. CFTW is tested using global (CFTWglobal) and local (CFTWlocal) input datasets under current and 
alternative management scenarios. 

Results show that the use of global datasets for estimating daily evapotranspiration had little effect on the 
median Root Mean Square Error (RMSE) (CFTWglobal: 1.70 mm, CFTWlocal: 1.79 mm), while, however, the 
median model bias is much greater (CFTWglobal: − 18.6%, CFTWlocal: − 4.3%). Furthermore, the periods of 
water stress were little affected by the use of local or global data (median accuracy: 0.84), whereas the use of 
global data inputs led to a significant overestimation of irrigation water requirements (median difference: 
110 mm). The model performance improves predominantly through the use of more representative local pre-
cipitation data, followed by local reference evapotranspiration and soil for some European growing seasons. 

We identify model outputs that can support decision-making when relying on global data, such as periods of 
water stress and the daily dynamics of water use. However, our findings also emphasize the difficulty of over-
coming data scarcity in decision-making in agricultural water management. Furthermore, we provide recom-
mendations for enhancing model performance and thus may increase the accessibility of reliable decision support 
tools in the future.   

1. Introduction 

Securing food production for a projected 9 billion people by 2050, 
whilst reducing the associated environmental impact, is one of the major 
challenges of our age (Foley et al., 2011; Gerten et al., 2020; Godfray 
et al., 2010). 

Water is one of the main limiting factors to agricultural crop pro-
duction, therefore improving water management at the field level may 
provide a way to increase food production without increasing other 

inputs, such as fertilizers or pesticides (Jägermeyr et al., 2016; Mueller 
et al., 2012; Rosa et al., 2018). 

Water yield gaps are particularly pronounced in rainfed agriculture 
which indicates significant potential to increase production through 
addressing water constraints. Jägermeyr et al. (2016), for instance, 
identified water yield gaps of 6% in irrigated and of 29% in rainfed 
agriculture and modelled that global production could be increased by 
41% through improved irrigation management. This is supported by 
Rosa et al. (2018) estimating a potential increase in global production of 
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37%. 
On the other hand, water withdrawal from surface water or below- 

ground aquifers for food production removes water for ecosystems and 
other water users in the catchment (Davis et al., 2017; McLaughlin and 
Kinzelbach, 2015). Therefore caution has to be exercised to avoid 
negative consequences of water use for agricultural production (Rodell 
et al., 2009; Zaveri et al., 2016). 

The merits of alternative water management strategies are often 
investigated directly using field trials or by employing crop water 
models with site-specific input data and calibration. Agro-hydrological 
models have been shown to be effective in supporting irrigation water 
management at the field level (García-Vila et al., 2009; Multsch et al., 
2013; Sassenrath et al., 2013a). 

However, the use of such models in optimizing crop water man-
agement requires a substantial amount of site-specific data related to 
management, soil, weather, and crop. These data are not ubiquitously 
available (e.g. van Wart et al., 2013) which limits the capacity for 
informed decisions around site-level water management to be made 
(Mourtzinis et al., 2017; Rasera et al., 2023). Furthermore, 
agro-hydrological models generally require calibration before use, and 
such calibration requires additional data and in-depth knowledge, 
which reduces the accessibility to non-academics and those who are not 
experts on soil water modelling (Bastiaanssen et al., 2007). 

The substitution of local with regional or global datasets for climate, 
crop and soil in decision support tools for agricultural water manage-
ment might facilitate the adoption. However, these datasets introduce 
uncertainties in the model inputs which propagate into uncertainties in 
the model outputs (Mourtzinis et al., 2017; Rasera et al., 2023) and thus 
require thorough testing and sensitivity analysis before deployment. 

While global datasets are frequently tested, in particular, climate 
datasets using local weather station data (Blankenau et al., 2020; de 
Leeuw et al., 2015; Martins et al., 2017; Paredes et al., 2018; Srivastava 
et al., 2020; Szczypta et al., 2011), studies testing model outcomes at 
field level based on these datasets are less prevalent. Recent research has 
looked at the use of regional gridded datasets in the absence of 
field-level observations for crop growth modelling (Dias and Sentelhas, 
2021; Mourtzinis et al., 2017; Rasera et al., 2023). Although some 
studies show promising results using gridded datasets, they often high-
light the constraints for field-level applications. Mourtzinis et al. (2017), 
for example, emphasize that gridded datasets are no suitable replace-
ment for weather station data, in particular for yield and water balance 
modelling. The authors advocate increasing the density of weather sta-
tion networks (Mourtzinis et al., 2017). 

To our knowledge, there is no published or active research using 
global datasets to model daily, field-level water management. Therefore, 
evaluating the impact of the use of such datasets on the outputs of agro- 
hydrological models requires more attention (Baroni et al., 2019). If 
results are sufficiently accurate they allow decision-making for 
field-level water management under data scarcity. 

This paper addresses three research objectives: 
i) To quantify the error introduced through the use of global datasets 

for daily field-level modelling under conditions of data scarcity, 
ii), To identify individual measures to improve daily model perfor-

mance, and 
iii), To evaluate the alignment of model outcomes for different irri-

gation management scenarios using field-level and global input datasets. 
This will ultimately inform the ability to support decision-making at 

the field level through the use of an uncalibrated agro-hydrological 
model paired with global data. 

2. Methods 

We address these objectives by assessing the model performance of 
Cool Farm Tool Water (CFTW) presented in Kayatz et al. (2019a). CFTW 
is an online tool for performing growing season-specific water footprint 
assessments based on global soil, climate and crop information. This 

model framework provides reliable estimates for seasonal water foot-
prints compared to field-level observations and state-level assessents 
produced by the Water Footprint Network. While this may be sufficient 
for sustainability reporting and strategic decision-making for agricul-
tural supply chains, improving water management at the field level re-
quires reliable performance at a higher time resolution. In addition, such 
a tool should provide accurate estimates for the comparison of different 
management practices such as altering irrigation amounts and irrigation 
intervals (e.g. Irmak et al., 2016). 

The following section provides, i) a description of CFTW and the data 
used to evaluate the impact of different data inputs, and ii) the pro-
cedure applied to compare the predictions for varying irrigation man-
agement when using different input datasets. 

2.1. Cool Farm Tool Water 

CFTW is part of the online Cool Farm Tool (CFT) (https://app.coolfar 
mtool.org), which considers greenhouse gas emissions and crop water 
use for agricultural production, as well as biodiversity impacts at the 
farm level (Cool Farm Alliance, 2016; Hillier et al., 2011; Vetter et al., 
2018). The tool is tailored for growers and practitioners in agricultural 
supply chains using only such data as is readily available to users at the 
farm level and providing default data from alternative sources for the 
remaining inputs. 

As part of the Cool Farm Tool, CFTW is a water assessment tool for 
the evaluation of seasonal water footprints under current and alternative 
irrigation management practices. It is, to a large extent, based on FAO56 
using the single crop coefficient to determine daily actual evapotrans-
piration (ETa) (see Eq. 1) (Allen et al., 1998). 

ETa = ETO ∗ Kc ∗ Ks (1) 

Reference evapotranspiration (ETO) is based on the Penman- 
Monteith Equation deriving temperature, net radiation and surface 
pressure from the global gridded ERA Interim reanalysis dataset (Allen 
et al., 1998; Dee et al., 2011). 

Crop coefficients (Kc) are taken from FAO56 and are automatically 
adjusted for climate, soil and crop conditions using the FAO56 meth-
odology (Allen et al., 1998). In particular, during the initial growing 
stages, Kc is highly dependent on wetting frequency (ERA Interim), ETO 
(ERA Interim) and soil (Harmonized World Soil Database), while during 
later growing phases Kc needs to consider crop height, humidity (ERA 
Interim) and wind speed (Allen et al., 1998; Dee et al., 2011; FAO et al., 
2012). 

Ks is the transpiration reduction factor describing crop water stress as 
defined by Allen et al. (1998) and is determined by the soil water 
depletion and stress tolerance of the specific crop. CFTW enhances the 
classical ‘tipping bucket’ approach presented in FAO56 in four ways: i) 
The size of the bucket considers the root growth over the growing sea-
son, ii) soil water holding capacity considers soil organic carbon using 
the pedo-transfer function of Saxton and Rawls (2006), iii) CFTW 
automatically considers crop interception of irrigation and precipitation 
using Hoyningen-Huene (1983) and Braden (1985) as in the SWAP 
model (Kroes et al., 2008) and iv) runoff is automatically determined 
using the LPJmL approach (Jägermeyr et al., 2015). The required input 
data for these adjustments are derived from the Harmonized World Soil 
Database (HWSD), ERA Interim and FAO56 among others (Allen et al., 
1998; Dee et al., 2011; FAO et al., 2012). 

A full model description is provided in Kayatz et al. (2019a) and 
Kayatz et al. (2019b). 

To address the research questions, CFTW using global input data for 
climate, soil, and crop as described above as well as limited user inputs 
(CFTWglobal), is compared to an adjusted CFTW using local observa-
tions derived from the FLUXNET2015 dataset (CFTWlocal). Both use the 
CFTW methodology and rely on an uncalibrated agro-hydrological but 
employ different input data as defined in Table 1. By assessing these two 
model variants the added value of local input data as well as the most 
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important elements of the data affecting model performance can be 
determined (See Section 2.3). 

2.2. FLUXNET2015 test sites 

The analysis is based on 33 individual growing seasons from eight 
different Tier 1 eddy covariance sites from the FLUXNET2015 dataset 
(Table 2) (Pastorello et al., 2020). The sites selected for our analysis 
were those which had sufficient local data available on climate, crop, 
and soil. 

Field-level meteorological input data and observed evapotranspira-
tion for model evaluation in FLUXNET2015 contained minor gaps. We 
allowed for a gap-filling using ERA Interim data for up to 10% of the 
growing season similar to Kayatz et al. (2019a). Atmospheric pressure 

and dewpoint temperature were not observed at all eddy sites. In such 
cases, ERA Interim data and local observed daily minimum temperature 
were used as suggested by FAO56 (Allen et al., 1998). 

Model results were compared to evapotranspiration derived from 
corrected latent heat flux following the post-processing of the FLUX-
NET2015 dataset (Pastorello et al., 2020). To address remaining gaps in 
daily evapotranspiration we allowed for a gap-filling for a maximum of 
5% of the growing season using linear interpolation. 

2.3. Model evaluation 

We tested the uncalibrated agro-hydrological model driven by global 
datasets against model results using local input and observations in 
order to understand how this modelling approach can support decision- 
making under data scarcity and with limited modelling experience. No 
soil-, crop- or climate-specific calibration of CFTW was conducted. 

The model evaluation focuses on a comparison of daily evapotrans-
piration, daily water stress, and irrigation water requirements. Daily 
evapotranspiration supports decision-making for water management as 
it describes water lost from the soil profile. Water stress derived from soil 
water depletion and crop stress tolerance informs on time periods when 
crops are exposed to stress and require irrigation. While irrigation re-
quirements define the amount of water needed to meet crop water 
requirements. 

CFTWglobal and CFTWlocal were both tested against daily observed 
evapotranspiration using eddy covariance measurements. Since FLUX-
NET2015 does not provide consistent observations for soil water, no 
consistent data for water stress and irrigation requirements exist. The 
model evaluation therefore also included a direct cross-comparison be-
tween CFTWglobal and CFTWlocal for crop water stress and irrigation 
requirements. Here we assumed that modelling results using local in-
formation are more accurate, due to the higher accuracy of driving input 
parameters in particular for climate information. 

2.3.1. Daily evapotranspiration 
The model performance in terms of bias and variance for daily 

evapotranspiration were assessed using the percent bias (bias) and Root 
Mean Square Error (RMSE), as defined below: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑
(obs − sim)

2

√

(2)  

bias = 100% ∗

∑
(sim − obs)
∑

obs
(3)  

Where obs refers to the daily observed ETa, sim the daily simulated ETa, 
and n the number of observations and simulations. 

2.3.2. Crop water stress and irrigation requirements 
CFTWglobal and CFTWlocal were tested for their alignment in pre-

dicting crop water stress (Ks < 1) as well as irrigation requirement (IWR) 
(see Eq. 4). 

Table 1 
The following table provides an overview of the global and local datasets used 
for CFTW in this study. Gaps in local observations have been filled using global 
datasets, as long as the total gap did not exceed 10% of the growing season for 
each variable. FAO56 refers to data that has been derived from Allen et al. 
(1998). HSWD refers to the Harmonized World Soil Database (FAO et al., 2012), 
while ERA Interim refers to Dee et al. (2011). User is data that is currently 
already defined as user input in CFTW.  

domain CFTWglobal CFTWlocal 

Crop field location User User 
crop type User User 
crop yield User User 
growing area User User 
planting & harvesting 
date 

User User 

length growth stages FAO56 FAO56 
default crop factors FAO56 FAO56 
rooting depth FAO56 FAO56 
crop height FAO56 loc. obs. 
leaf area index FAO56 loc. obs. 

Soil soil texture HWSD loc. obs. 
soil organic matter HWSD loc. obs. 
initial soil water 
content 

User User 

readily evaporable 
water 

FAO56 FAO56 

readily available water FAO56 FAO56 
Climate min. and max. 

temperature 
ERA Interim loc. obs. 

dew point temperature ERA Interim loc. obs. 
net radiation ERA Interim loc. obs. 
surface pressure ERA Interim loc. obs. 
minimum relative 
humidity 

ERA Interim loc. obs. 

precipitation ERA Interim loc. obs. 
wind speed Approx. using 

FAO56 
Approx. using 
FAO56 

Management irrigation amount User User 
period irrigated User User 
number of irrigation 
events 

User User 

fraction irrigated User User 
irrigation method User User  

Table 2 
The table provides an overview of sites, crops and years used to assess CFTW accuracy based on global and local input. The sites listed here are also used to investigate 
irrigation management based on model input.  

site crops years location country reference 

BE-Lon winter wheat, potato 2005–2007, 50.6 N, 4.7 E Belgium Moureaux et al. (2006) 
CH-Oe2 winter barley, potato 2005–2007 47.3 N, 7.7 E Switzerland Dietiker et al. (2010) and Emmel et al. (2018) 
DE-Kli maize 2007 50.9 N, 13.5 E Germany Prescher et al. (2010) 
FR-Gri winter wheat, maize, winter barley 2006–2008, 2010–2012 48.8 N, 2.0 E France Loubet et al. (2011) 
IT-BCi maize 2004, 2005 40.5 N, 15.0 E Italy Vitale et al. (2009, 2007) 
US-Ne1 maize 2002–2007 41.2 N, 96.5 W USA Suyker and Verma (2009) 
US-Ne2 maize, soybean 2002–2007 41.2 N, 96.5 W USA Suyker and Verma (2009) 
US-Ne3 maize, soybean 2002–2007 41.2 N, 96.4 W USA Suyker and Verma (2009)  
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IWR =
∑

(ET0 ∗ Kc) −
∑

(Pnet + Inet) (4)  

Where Pnet and Inetare the sum of net precipitation and net irrigation. 
IWR was evaluated by comparing the absolute difference in IWR when 
using CFTWglobal versus CFTWlocal over the full growing season. 

The variable Ksaccuracy indicates the agreement of both model 
variants in indicating daily crop water stress (Ks < 1) and no crop water 
stress (Ks = 1). 

Ksaccuracy =
TP + TN

P + N
(5)  

Where TP (true positive) and TN (true negative) refer to the days with 
water stress or without water stress, respectively for both model setups. 
P and N are the days with water stress or without water stress respec-
tively, for CFTWlocal. 

2.3.3. Understanding model differences using the contribution factor 
The contribution factor Cf (see Eq. 6) describes the impact of a model 

input on the reduction of the RMSE or bias for ETa. Cf was assessed by 
replacing global input data with local information for reference evapo-
transpiration (minimum & maximum temperature, net radiation, at-
mospheric pressure), precipitation, soil information (soil type, soil 
organic carbon), and crop information (leaf area index (LAI), crop 
height) individually for all 33 growing seasons. 

Cf was determined as follows: 

Cf =
PGf − PG

PL − PG
(6) 

PG and PL are the performance metrics (e.g. RMSE or bias) comparing 
observations and CFTW outputs with global and local input data 
respectively. PGf is analogous but replaces an individual global dataset f 
with local data (for example, using local soil data instead of global soil 
data). The greater the value of Cf in comparison to the other factors, the 
more important the model input is in improving model performance. 

The same approach was applied for Ksaccuracy and IWR. As no ob-
servations for IWR and Ksaccuracy were available, CFTWlocal was 
instead used to determine the performance metrics. For bias and IWR 
absolute values were used to estimate the contribution factors. 

2.3.4. Assessment of different management interventions 
Finally, to support decision-making in agricultural water manage-

ment, CFTWglobal needs to enable the comparison of different man-
agement interventions. This study compares model results using global 
and local input data under different irrigation management in-
terventions. The interventions were compared in terms of their potential 
to lower IWR and to reduce the number of days (as a fraction of total 
days) that crops are exposed to stress during the irrigation period. 

Irrigation periods were derived from the model outputs of 
CFTWglobal and CFTWlocal under reported irrigation management. The 
irrigation period was defined as the longest consecutive period of water 
stress predicted by either of the two model setups in one growing season. 
If water stress reoccurred within five days of a previous water stress 
period it was treated as a single event. 

The following two irrigation strategies were investigated: 

Changing irrigation amount. Increasing irrigation directly influences 
available water in the soil profile and therefore water available to the 
crops. However, too much irrigation triggers runoff and deep percola-
tion, and therefore not all abstracted water used for irrigation may be 
available to the crop. 

Changing irrigation intervals. More frequent irrigation intervals may 
have multiple effects on crop water availability. Higher wetting fre-
quency can increase evaporation from the soil and canopy surface, in 
particular at the beginning of the growing season when 

evapotranspiration is dominated by evaporation. However, if combined 
with lower application rates it may also lead to less deep percolation and 
reduced runoff. 

Irrigation management is defined by timing, method and irrigation 
amount. For this study, CFTW is tested using different irrigation 
amounts and different timing. Specifically, the irrigation amount was 
altered by applying 10, 20, 30, 40 or 50 mm for each irrigation event. 
The interval was changed by applying irrigation every 2nd, 4th, 6th, 8th 
or 10th day. The selection of intervals and amounts was done to cover a 
wide range of potential management scenarios. These management 
options as well as their different combinations were applied to CFTW 
using local data input and global data input. Existing irrigation man-
agement was disregarded for these model comparisons. 

3. Results 

3.1. Comparing daily ETa estimates using local and global model input to 
observations 

Fig. 1 displays the model bias and the RMSE for CFTW with local and 
global input data. 

The median RMSE for ETa across all growing seasons is similar when 
using global and local input data. At the same time, the variability, 
determined by the standard deviation (sd) of the RMSE across growing 
seasons, is much greater when using global data (sd CFTWlocal 0.58, sd 
CFTWglobal 0.79). The model inter-comparison of the RMSE shows a 
high correlation between both model variants (R2 = 0.76, p-value <
0.05). 

The median model bias across all growing seasons (CFTWglobal: 
− 18.6%, CFTWlocal: − 4.3%) is greatly reduced when using local input 
data, while the variability (sd CFTWlocal: 19.0%, sd CFTWglobal: 
20.1%) is only slightly lower when using local data. Both model variants 
showed a good correlation for the bias results (R2 = 0.59, p-value <
0.05), but lower compared to the correlation of the RMSE. 

The use of global data does not, therefore, reduce the model accuracy 
for ETa based on the RMSE. However, the bias of the predicted ETa is 
greatly increased when relying on global data alone. For both perfor-
mance metrics, the variance of the model performance is reduced using 
local input data. 

Fig. 2 displays the ETa for individual growing seasons in which 
shifting from global to local input data showed the smallest and the 
largest model improvements. 

For winter wheat at the FR-Gri site in 2006, CFTW showed only slight 
improvements for bias and RMSE using local data, while for maize and 
soybean at US-Ne3 in 2006 and 2007 the estimate of ETa was greatly 
improved using local data. However, the RMSE for US-Ne3 in 2006 re-
mains relatively large at 2 mm even when using local inputs, due largely 
to poor model performance during July and early August and at the end 
of the growing season. 

The poor performance using global data at both US-Ne3 trials is 
linked to overestimation of relative soil water depletion and thus crop 
water stress (see App. Fig. 1). This overestimation is linked to a strong 
negative bias for precipitation (2006: − 52.1% and 2007: − 34.4%) and a 
slight overestimation of ET0 (2006: 12.7% and 2007: 4.5%) (see App. 
Fig. 1). In addition, the local soil information resulted in the estimated 
maximum water-holding capacity being 22.3% higher than with the 
global data (using the HWSD) which further increases the risk of water 
stress. An overview of the comparison between local and global climate 
data is provided in App. Table 1. 

The drivers for the improved bias and RMSE for modelled ETa are 
provided in Fig. 3. The contribution factors ranged from − 17.1–12.9 for 
the RMSE and − 6.4–9.1 for the bias. The reasons for contribution factors 
outside of the 0–1 range for individual trials were two-fold: i) Using local 
data resulted in a decrease in model performance and ii) exchanging 
individual datasets is more effective in improving model results 
compared to changing all datasets to local observations. 
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Fig. 1. Comparing model performance of CFTW using global and local input based on 33 seasons from 8 eddy covariance sites. (a) Shows the bias for CFTW using 
global and local input. (b) Shows the RMSE for CFTW using global and local input. 

Fig. 2. Daily evapotranspiration simulated with CFTW using global and local input versus observations. FR-Gri in 2006 shows only a very limited increase in 
performance for bias and RMSE, while US-Ne3 trials for 2006 and 2007 greatly benefit from using local data, in particular for bias. 
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Generally the contribution of local crop (median Cf RMSE,crop = 0.01) 
and soil information (median Cf RMSE,soil = 0.06) to the reduction of the 
RMSE is low. Perhaps surprisingly, using local crop data (median 
Cf bias,crop = 0.00) resulted in a slight reduction of model performance in 
terms of bias. 

The largest value of the contribution factor is observed when 
replacing global with local precipitation data (median Cf RMSE,prceip =

0.79), followed by local ET0 (median Cf RMSE,ET0 
= 0.33). For bias, the 

contribution factor of precipitation is even more dominant (median 
Cf bias,precip = 0.92). 

The dominance of precipitation is not consistent across all sites and is 
largely driven by the US-Ne sites. Other sites also show individual sea-
sons where ET0 or soil information has the highest contribution factor 
for bias and RMSE. Individual site results are provided in the appendix 
(App. Fig. 4 and App. Fig. 5). 

These findings are supported by the comparison of observed mete-
orological site data and ERA Interim (App. Table 1). Precipitation data 
shows a much weaker correlation and much higher bias compared to 
ET0. 

3.2. Estimating stress periods and irrigation requirements 

The cross-comparison of CFTW using global and local input data 
shows good agreement in terms of detecting periods of both water stress 
and no water stress (median Ksaccuracy = 0.84) (Fig. 4). Overall, using 

global data results in periods of crop water stress being on average 
(median) 12.6% longer caused by higher relative soil water depletion 
(see App. Fig. 2 and App. Fig. 3). This is particularly pronounced for the 
single-season from DE-Kli, where CFTWlocal shows no crop water stress 
for 92.6% of the season, while for CFTWglobal this value is only 33.1%. 
This offset is linked to an offset in seasonal precipitation (-29.0% global 
vs. local) as well as ET0 (+19.5% global vs. local). In total, Ksaccuracy is 
above 0.75 in 87.9% of all growing seasons. 

CFTWglobal overestimates periods of water stress, driven by an 
overestimation of relative soil water depletion, and irrigation re-
quirements. The median overestimation is 110 mm (40%) (see Fig. 4b, 
App. Fig. 2 and App. Fig. 3). 

This offset shows great variability and ranges from − 105 mm (global 
vs. local, CH-Oe2, 2007, winter barley) to 279 mm (US-Ne3, 2007, 
maize). Again, DE-Kli is an extreme case, since CFTW does not predict 
any irrigation need for the entire growing season using local data but 
estimates an irrigation demand of 108 mm using global data. The largest 
differences were simulated for all US-Ne sites - ranging from 76 mm to 
279 mm. 

The factors contributing to the increased accuracy in predicting Ks 
and the difference in IWR are displayed in Fig. 5. The largest contribu-
tion factor is for precipitation information (median Cf Ks,precip = 0.35). 
Similarly, for IWR, precipitation plays a dominant role in explaining the 
differences between both model outputs (median Cf IWR,precip = 0.66). The 

Fig. 3. The barplot displays the median contribution to improved model per-
formance (RMSE, bias) for actual evapotranspiration ETa. 

Fig. 4. The barplot displays the agreement of water stress periods and irrigation water requirements of CFTW using local and global input. The error bars of the 
barplot show the standard deviation across all growing seasons for each location. (a) Shows the temporal agreement of days indicating water stress and no water 
stress (Ksaccuracy). (b) Indicates the difference between irrigation requirements (IWR) using local data input and global data input. 

Fig. 5. The barplot shows the median contribution factor to improved model 
performance based on the model inter-comparison of CFTWlocal and 
CFTWglobal for Ks and difference in IWR. 
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contribution factor for ET0 is 0.32, indicating that this is also an 
important driver for the different model results. 

3.3. Identifying improved irrigation management 

The following section investigates the agreement of both model 
variants for different irrigation management practices. The duration of 
water stress (median correlation = 0.96) and irrigation requirements 
(median correlation = 0.99) are highly associated with each other for all 
growing seasons and different irrigation practices (Fig. 6). However, at 
the same time, the bias for the duration of water stress and IWR were 
relatively large, with a median of 25.0% (lower quartile = 10.5%, upper 
quartile = 53.8%) and 42.0% (lower quartile = 22.2%, upper quartile =
74.4%), respectively. This shows that estimates for both inputs agree in 
terms of the relative change resulting from a change in irrigation man-
agement, albeit there is a substantial difference in absolute terms. 

The individual trials revealed three typologies which are displayed in  
Fig. 7: (i) Duration of water stress changes for only one of CFTWglobal or 
CFTWlocal when applying different irrigation management (see CH- 
Oe2, 2005, winter barley or FR-Gri, 2006, winter wheat), ii) high 
agreement is present regarding water-stressed periods for both input 
data sets across all irrigation management scenarios (BE-Lon, 2005, 
winter wheat), and iii) agreement for water-stressed periods is present 
for some of the irrigation interventions but not all (US-Ne2, 2005, 
Maize). The last two of these represent 78.8% of the trials. Duration of 
water stress and IWR for all management interventions and trials are 
shown in the appendix (App. Fig. 6 and App. Fig. 7). 

4. Discussion 

4.1. Model performance and uncertainty using local field-level data 

Numerous studies have compared modelled ETa or potential 
evapotranspiration using field-scale meteorological, soil, and crop data 
with eddy covariance measurements over intervals from hourly to sea-
sonal (Gao et al., 2020; Gharsallah et al., 2013; Kimball et al., 2019; 
Maes et al., 2019; Wang et al., 2018; Wegehenkel et al., 2017). When 
RMSE for daily ETa has been reported, it has generally fallen into the 
lower range of values seen in this study using an uncalibrated model. 

For example, Gharsallah et al. (2013) reported an RMSE of 0.79 mm 
d− 1 for a maize site in northern Italy, while Wang et al. (2018) reported 
an RMSE of 1.13 mm d− 1 for maize in northern China using a soil-plant 
model based on FAO56. Anapalli et al. (2019) simulated 

evapotranspiration for corn, soybean, and cotton showing RMSEs 
ranging from 0.9 mm d− 1 to 1.4 mm d− 1 using the Root Zone Water 
Quality Model v2.0. 

In terms of bias, other studies have reported on an overestimation of 
daily evapotranspiration in particular during the mid-season (Maes 
et al., 2019; Wang et al., 2018). Our study has shown a slight underes-
timation of ETa using local input data (see Fig. 1). 

This study showed that CFTW can predict daily ETa using field-scale 
input data but performs, on average, slightly less well than existing 
studies. Thus CFTWlocal can support decision making by providing 
water use based on absolute values (bias) and daily dynamics (RMSE). 

Multiple reasons may have contributed to the slightly reduced per-
formance compared to existing studies: 

Firstly, while it may be expected that local calibration improves 
model performance, this is explicitly not the purpose of CFTW. CFTWs 
primary aim is to allow for water assessments for decision-making at the 
global scale without local calibration. 

Secondly, the FAO56 single crop coefficient approach is a simple 
model and is parameterized at the global level in CFTW. For irrigation 
management, FAO56 recommends using the dual crop coefficient 
approach, differentiating evaporation and transpiration (Allen et al., 
1998). In addition, the coarse spatial resolution of FAO56 default data 
may reduce the representativity of rooting depth, stress tolerance and 
crop coefficients. Further, crop coefficients in FAO56 have been estab-
lished in and before 1998 (Allen et al., 1998). Since this date, atmo-
spheric CO2 levels have significantly increased which may consequently 
have increased the water use efficiency of crops (Hatfield and Dold, 
2019). This adds uncertainty to the FAO56 approach and the published 
crop coefficients. 

Lastly, the calculation of the soil water balance uses a ‘leaky bucket’ 
approach and determines the size of the bucket using the pedo-transfer 
functions published by Saxton and Rawls (2006) (Kayatz et al., 2019a). 
This incurs uncertainty regarding the bucket size, the soil water distri-
bution in the rooting depth and ultimately crop water stress. 

4.2. Uncertainty with global data and potential improvements 

The RMSE was primarily analysed to assess the ability of CFTW to 
capture the daily variability of observed ETa. The use of global data 
increased the median RMSE by just 5.3% (median RMSE CFTWlocal: 
1.70 mm, median RMSE CFTWglobal: 1.79 mm), while the variability 
between all trials grew by 36.2% (see Fig. 1). Thus, based on the daily 
dynamics, CFTWglobal may be equally suitable for decision-making as 

Fig. 6. Correlation of water stress periods (a) and irrigation requirements (b) during the irrigation period of CFTW using local and global input for different irrigation 
intervals and irrigation amounts. The error bars of the barplot show the standard deviation across all growing seasons for each location. 
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CFTWlocal when considering the slightly higher variability. 
The median contribution factor identifies precipitation as the main 

reason for these differences, followed by ET0 (see Fig. 3). The daily 
dynamic of ETa is, in large part, driven by daily ET0. The much lower 
contribution factor may therefore be explained by the high quality of 
ERA Interim-derived ET0 data using the Penman-Monteith equation by 
FAO56. ET0 has the highest median correlation coefficient comparing 
local observations to global data after temperature and atmospheric 
pressure (App. Table 1). Precipitation has an indirect effect on daily ETa 
dynamics via Ks, and may reduce ETa to zero when soil water content 
has reached the permanent wilting point. Crops were exposed to longer 
periods of water stress (Ks < 1) when using global input data. This 
emphasizes the importance of accurate precipitation data and the high 
contribution factor. 

Bias for ETa was analysed to gain an understanding of the average 
offset of observations and modelled data with different input datasets. In 
stark contrast to RMSE, the bias increased by 332.6% (median bias 
CFTWlocal: − 4.3%, median bias CFTWglobal: − 18.6%), clearly high-
lighting the caveats of using global information for daily model results 
(see Fig. 1). The variability of the bias only increased by 5.8%. There-
fore, caution is required if using CFTWglobal for decision-making based 
on absolute ETa values, due to the significant increase of the bias. 

The main contribution factor is precipitation, while all other inputs 
showed either very limited or no contribution to improvements of the 
modelling results (see Fig. 3). This again is in line with our analysis of 

meteorological input data, where global precipitation was characterised 
by a high underestimation (App. Table 1). Replacing precipitation input 
data with local information, reduces the median bias across all trials to 
8.5% (see Fig. 3). 

The above indicates that the main driver for the difference in model 
outcomes is the discrepancy in precipitation data. Reducing uncertainty 
for decision support tools should therefore focus on on acquisition of 
precipitation at field level. 

Similar results have been published regarding yield modelling 
employing gridded datasets. Menezes et al. (2022) and Dias and Sen-
telhas (2021) suggest using local precipitation data to improve daily 
crop growth simulations for rice and sugarcane, respectively, in Brazil. 
Rasera et al. (2023) compared modelled citrus yields using weather 
station information and gridded climate datasets. The authors suggest 
using local precipitation data compared to NASA Power precipitation 
data due to the high heterogeneity of rainfall (Rasera et al., 2023). 

Fewer publications consider agro-hydrological modelling for irriga-
tion management explicitly. Mun et al. (2015) highlight the importance 
of accurate water inputs for reducing uncertainty in assessing irrigation 
strategies using the model MIST. In contrast, Sassenrath et al. (2013b) 
compared modelled soil water deficit using weather station data as well 
as radar-based gridded National Weather Service precipitation data in 
the Mississippi Delta. Both model outputs produced comparable results, 
demonstrating that some gridded precipitation datasets may well be 
able to compete with weather station data. 

Fig. 7. The tile plot displays the fraction of the irrigation period where the crop is exposed to crop water stress for different irrigation scenarios (irrigation interval - 
horizontal, irrigation rates – vertical). “local” and “global” display the difference between no irrigation management and the irrigation scenarios. A negative value 
therefore indicates a reduction of the period exposed to water stress. “difference” displays the delta between CFTW global and CFTW local for different irrigation 
practices. For the latter, a negative value indicates that crop water stress for CFTWglobal is higher than for CFTWlocal. 
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The contribution factor of local soil and crop data for improving 
model performance is for most sites negligible (see App. Fig. 4 and App. 
Fig. 5). For soil, this is particularly surprising as studies have highlighted 
the importance of soil information for the modelling of crop growth or 
irrigation planning (Aggarwal, 1995; Prats and Picó, 2010). Soil infor-
mation defines the available water capacity in CFTW and therefore the 
resilience against droughts (Kayatz et al., 2019a). As soil information is 
relatively easy to obtain, CFTW recommends using local observations. In 
some of our study sites, soil data did play a dominant role in improving 
model performance, namely FR-Gri, 2006, winter wheat (bias), FR-Gri, 
2008, maize (bias), IT-BCi, 2005, maize (bias) and BE-Lon, 2005, 
winter wheat (RMSE) (see App. Fig. 4 and App. Fig. 5). However, these 
seasons belonged to the best performing sites for ET0 and precipitation 
based on the RMSE, except for IT-BCi, 2005, maize. This emphasizes that 
global soil information can be the main driver for model differences and 
may play an important role if not dominated by errors of other input 
variables. 

Local crop data played only a minor role in explaining the differences 
between both model variants (see Fig. 3, App. Fig. 4 and App. Fig. 5). 
However, it is important to highlight that this study only analysed the 
effect of LAI and crop height. These parameters affect the interception 
loss of precipitation and irrigation in the canopy and the height 
adjustment of the Kc respectively (Kayatz et al., 2019a). Information 
such as rooting depth or a more locally representative Kc values were not 
changed since they were not available and are also rarely avaiable in a 
farm setting. Satti et al. (2004) compared different ET0 approaches to 
determine IWR in the USA and showed that the Kc is more relevant 
compared to the chosen ET0 method. Opposing findings have also been 
published by Multsch et al. (2015) for Australia, showing that the 
importance of Kc may be location-, climate-, and crop-specific. 

4.3. Assessment of plant water stress and irrigation water requirements 
for field management 

Although ETa at a daily level may be helpful to inform irrigation 
management at the farm level, the aim of this work was also to under-
stand, through model cross-comparison, how uncertainty in the input 
data propagates into uncertainty of model outcomes for IWR as well as 
the accuracy of Ks. 

Both model set-ups showed good agreement predicting water stress 
periods throughout the growing season albeit with a slight over-
estimation when using global data. IWR showed a considerable offset 
(see Fig. 4). Therefore, CFTWglobal may support decision-making by 
providing periods of water stress, but lacks the accuracy to provide IWR. 

Again, the highest contribution factor was for precipitation data in 
particular for the sites US-Ne1, US-Ne2, US-Ne3, CH-Oe2 and DE-Kli (see 
Fig. 5). Similar to ETa, the dominance of precipitation is not observed 
consistently. ET0 has a higher contribution factor towards the offset for 
IWR for most seasons at IT-Bci and FR-Gri. Enhancing the accuracy of 
soil information only dominated at BE-Lon. For the same sites, the 
dominant contribution factors for the difference in Ksaccuracy are more 
diverse, as soil or ET0 are the major contribution factors for increasing 
the alignment of both model outputs. 

Together with the findings for ETa this shows that even though model 
performance is most consistently improved by using local precipitation 
data, this is also highly site-specific. Furthermore, full testing of CFTW 
for accuracy of Ks and IWR for global datasets would require soil 
moisture measurements, which are not consistently available in the 
FLUXNET2015 dataset and are therefore beyond the scope of this study. 

Wisser et al. (2008) and Uniyal et al. (2019) have previously shown 
how differences in input data have a substantial impact on IWR at 
catchment level and global scale. Estimates of global irrigation water 
requirements may differ by 30% depending on input data (Wisser et al., 
2008). However, both of these studies focus on regional or global as-
sessments and thus depend on gridded meteorological data. Field-scale 
assessments require higher accuracy in order to provide useful insights 

but are also able to offer field-level information. 
When applying different irrigation management to both model var-

iants, IWR and duration of water stress were highly correlated for both 
model inputs for most growing seasons (see App. Fig. 6 and App. Fig. 7). 
Clear disagreement was only present in a few growing seasons as periods 
of water stress did not generally overlap. Similar to the assessment of the 
actual management, the results showed considerable differences for 
absolute IWR values. This is consistent with findings from Kayatz et al. 
(2019a). 

Decision-making based on CFTWglobal may allow relative compar-
isons of different management scenarios for periods of water stress and 
IWR but does not provide the accuracy for absolute values for the latter. 

4.4. Decision-making under uncertainty 

Due to their inherent heterogeneity and dynamic nature, crop pro-
duction systems always exhibit substantial uncertainty concerning key 
variables driving evapotranspiration. Nevertheless, decisions regarding 
water management have to be made, whether for short or long-term 
planning. Important questions are then: How much time, effort, and 
cost should be made to reduce uncertainty? What are the implications of 
uncertainty and what compromises need to be accepted? The decision 
maker needs to recognise the caveats of the predictions and have a 
sufficient understanding of potential improvements that would reduce 
prediction uncertainties. Especially when individual farms and their 
production are at stake. 

The results presented in this study show that CFTW with global input 
data enables management decisions by providing the dynamics of ETa 
and indicating periods of water stress. Furthermore, the model set-up 
allows for a relative comparison of water management interventions. 

However, uncertainty for water use, IWR and crop water stress can 
be greatly reduced in most cases by collecting local information for 
precipitation and thus aligns with the results of previous studies for crop 
modelling (Dias and Sentelhas, 2021; Menezes et al., 2022; Rasera et al., 
2023). The possibility of filling this data gap is highly location-specific 
and may be much easier when a dense weather station network is 
available. Implementing measurements may be an alternative option but 
measurement uncertainties would need to be considered (e.g. Habib 
et al., 2001; Ouyang et al., 2021). 

Therefore, the utility of decision support tools and models such as 
CFTW depends on the risk the user is able to accommodate. Risks need to 
be balanced against the practicalities of using the model, including those 
of obtaining the driving data. In a greenhouse setting, Mondaca-Duarte 
et al. (2020) showed that irrigation strategies under zero-tolerance for 
uncertainty in evapotranspiration and soil information may hinder any 
water savings, while a degree of risk tolerance may encourage the up-
take of lower irrigation applications. 

Furthermore, it is essential which evaluation criteria are applied to 
evaluate a decision support tool. Wallach et al. (2012) conducted a 
Bayesian analysis of modelled crop yield uncertainty and emphasized 
that it is important to be clear about the evaluation criteria. While the 
corn crop model used in their study did not perform well for yearly yield 
assessments, it delivered acceptable results for yields averaged over a 
number of years. Our study focussed on daily or seasonal model outputs 
for water management. Given the consistent overestimation of IWR and 
underestimation of ETa a multiyear evaluation would most likely result 
in similar findings in contrast to Wallach et al. (2012). 

Evaluation criteria may depend on the situation and purpose of the 
modelling results and therefore acceptability of risk may vary. If, for 
example, water and costs are not a limiting factor the user may be 
willing to err on the side of over irrigating rather than risk limitation of 
crop growth due to water limitation. 

5. Conclusions 

Assessing the agro-hydrological model CFTW using global and local 
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datasets for the accuracy of ETa, crop water stress, and IWR and, 
thereby, the ability to support decisions for water management showed:  

i) Global data significantly increases the bias for ETa, but shows 
only a limited impact on estimating the daily dynamic of ETa.  

ii) Closing this gap in model performance CFTW would require, 
firstly, more accurate information for precipitation, and then ET0. 
Soil data and especially crop data only contributed to an 
improved model performance for a few of the growing seasons 
and sites analyzed in this study. However, the results show some 
heterogeneity between sites and seasons, therefore requiring 
further analysis of the uncertainty of global input datasets.  

iii) Predictions for crop water stress under current management 
agreed well for most growing seasons for local and global input 
but tend to slightly overestimate periods of water stress. IWR was 
also highly correlated for both model variants but showed a high 
offset between both model outputs.  

iv) Alternative management scenarios showed a high correlation for 
periods of water stress and IWR but disagreed in absolute terms. 

Overall, the present study shows how decision support tools using 
global datasets may help to assess different scenarios and identify rela-
tive management improvement, but lack the accuracy to guide daily on- 
field irrigation management. The latter requires robust information 
about absolute irrigation requirements and timing. Our findings may 
help to improve decision support tools for crop water management and 
increase the accuracy of crop water footprints. 
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Appendix  

App. Table 1 
bias, RMSE, and Correlation of all daily weather variables comparing global ERA Interim data to local observations. The median, mean, and standard deviation (sd) 
describe the statistics across all 33 growing seasons.   

Bias % RMSE Correlation  

mean median sd mean median sd mean median sd 

tmax  0.21  1.80  5.99  2.22  2.08  0.96  0.92  0.95  0.09 
tmin  7.53  10.60  11.62  2.29  2.29  0.74  0.94  0.96  0.06 
precip  -16.94  -29.00  30.69  5.51  5.64  2.15  0.55  0.54  0.11 
tdew  -8.00  -8.20  9.83  2.71  2.56  0.83  0.87  0.90  0.07 
P  -0.63  -0.60  0.84  0.74  0.64  0.88  0.90  0.99  0.22 
tmean  2.78  5.00  7.40  1.83  1.88  0.70  0.95  0.97  0.05 
rhmin  -7.92  -9.00  8.47  11.40  11.60  2.57  0.75  0.78  0.12 
Rn  6.82  6.50  12.64  2.72  2.64  0.71  0.83  0.84  0.10 
ET0  5.44  6.50  9.61  0.94  0.98  0.23  0.83  0.83  0.09  
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App. Fig. 1. Daily soil water depletion and ET0 simulated with CFTW using global and local input for FR-Gri in 2006 and US-Ne3 in 2006 and 2007.  
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App. Fig. 2. Modelled daily soil water depletion using CFTW with global and local input data.  
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App. Fig. 3. Modelled transpiration reduction factor expressing crop water stress using CFTW with global and local input data.  
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App. Fig. 4. The barplot shows the site-specific contribution factors to improved model performance for the bias for actual evapotranspiration ETa.  
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App. Fig. 5. The barplot shows the site-specific contribution factors to improved model performance for the RMSE for actual evapotranspiration ETa.  
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App. Fig. 6. Comparison of CFTWglobal vs. CFTWlocal for periods of water stress during the irrigation periods applied for the different management scenarios. The 
values display the difference between no irrigation management and the irrigation scenarios. A negative value therefore indicates a reduction of the period exposed 
to water stress. Each point represents one management intervention defined by irrigation rate and irrigation interval. 
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App. Fig. 7. Comparison of CFTWglobal vs. CFTWlocal for IWR during the irrigation periods applied for the different management scenarios. The values display the 
difference between no irrigation management and the irrigation scenarios. Each point represents one management intervention defined by irrigation rate and 
irrigation interval. 
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ElKhidir, H.A.M., Eugster, W., Ewenz, C.M., Ewers, B., Famulari, D., Fares, S., 
Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., 
Galvagno, M., Gharun, M., Gianelle, D., Gielen, B., Gioli, B., Gitelson, A., Goded, I., 
Goeckede, M., Goldstein, A.H., Gough, C.M., Goulden, M.L., Graf, A., Griebel, A., 
Gruening, C., Grünwald, T., Hammerle, A., Han, S., Han, X., Hansen, B.U., 
Hanson, C., Hatakka, J., He, Y., Hehn, M., Heinesch, B., Hinko-Najera, N., 
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