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Abstract. The Gudermannian function relates the circular angle to the
hyperbolic one when their cosines are reciprocal. Whereas both such an-
gles are halved areas of circular and hyperbolic sectors, it is natural to
develop similar considerations within the study of a class of curves im-
ages of maps with constant areal speed. After a brief exposition of some
use of the Gudermannian in applied sciences, we proceed to illustrate the
class of curves, called Keplerian curves, which can be parametrised by
a map m = (cosm, sinm) whose areal speed is 1. In the next Sections,
after a detailed study of p-circular and hyperbolic Fermat curves Fp and
F∗

p, we define the p-Gudermannian as the primitive of the derivative of
the p-hyperbolic sine divided by the square of the p-hyperbolic cosine: all
the analogues of the classical identities are proven. Having realised that
such curves correspond to each other by means a homology, we extend
our study to a wide class of Keplerian curves and their homologues; once
again, defined the Gudermannian in an identical manner, all the ana-
logues of classical identities subsist. Below, three examples are detailed.
The last paragraph further extends this consideration, eliminating the
hypothesis that the curves are parametrised by maps with areal speed 1.
The Appendix illustrates integrating techniques for systems defining the
Fermat curves and determining the inverse of their tangent function.
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1. Introduction

The Gudermannian is the mapping gd: R → ]−π
2 , π

2

[
introduced by Christoph

Gudermann (1798–1852):

ϕ = gd ψ :=
∫ ψ

0

du

cosh u
.

It has particular popularity in basic Calculus because it naturally connects
trigonometric functions with hyperbolic ones without referring to complex
unity, since the integral computation yields:

gd ψ = arctan(sinhφ).

The use of the Gudermannian in calculus and applications is detailed in several
contributions of some interest [13,22,25]: it is used in geodesy, in cartography
to study Mercator map projection, (see for instance [24]), in soliton theory [20],
in neural networks [29] and in mathematical statistics, where some probability
density functions are introduced, taking inspiration to the sigmoid shape of
the function [2,14].

The Gudermannian is a strictly increasing bounded function; its inverse,
studied by John Heinrich Lambert (1728–1777), usually denoted “lam” but
here indicated with “dg”, is:

dg ϕ :=
∫ ϕ

0

du

cos u
= arctanh(sinϕ).

We point out that we have chosen here to use the notation “dg” for the inverse
Gudermannian, rather then “gd−1”, to avoid ambiguity and confusion since
throughout the article, with powers minus 1, we mean the reciprocal. Inverse
Gudermannian dg is applied in hyperbolic geometry [28].

The origin of interest in this function most probably stems from the
fact that it appears in the approximate evaluation of elliptic integrals of the
first kind obtained by applying the transformation, inspired by a geometric
argument by John Landen, formalized in modern analytic terms by Adrien
Marie Legendre [18, page 79], see also [30, chapter XVII], which reads as:

F(ϕ0, k0) =
2

1 + k0
F(ϕ1, k1),

where

F(ϕi, ki) =
∫ ϕi

0

du
√

1 − k2
i sin2 u

, i = 0, 1,

are elliptic integrals of the first kind, and where the transformation rules link
moduli and amplitudes:

k1 =
2
√

k0
1 + k0

, sin (2ϕ1 − ϕ0) = k0 sin ϕ0.
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It follows that repeated applications of such transformation rules allow itera-
tive schemes for evaluating elliptic integrals of the first kind as a result of the
facts that 0 < k0 < 1 =⇒ k1 > k0 and ϕ1 < ϕ0 and due to the identity:

F(ϕ0, k0) =
2

1 + k0

2
1 + k1

· · · 2
1 + kn−1

F(ϕn−1, kn−1),

where sequences of moduli kn and amplitudes ϕn are defined from the recur-
rence relationships

kn+1 =
2
√

kn

1 + kn
, sin (2ϕn+1 − ϕn) = kn sin ϕn.

In this situation, ϕn → 1 as n → ∞, and the sequence of the amplitudes is
also convergent, being decreasing and bounded from below by 0 (for details see
section 19.8.16 of [21]). Thus, if ϕ ∈ (0, π/2) denotes the limit of the sequence
of the amplitudes, the starting elliptic integral is evaluated as:

F(ϕ0, k0) = lim
n→∞

n∏

k=1

2
1 + kn−1

F(ϕ, 1).

Hence, the connection with the inverse Gudermannian, as

F(ϕ, 1) =
∫ ϕ

0

du
√

1 − sin2 u
=
∫ ϕ

0

du

cos u
= dg ϕ.

Before the advent of computers, this approach was prevalent in the past to
numerically evaluate elliptic integrals, e.g., [16].

2. Some Premises on the “Keplerian Environment”

We first point out that, unless explicitly mentioned, all the functions f : I → R

and maps g = (xg, yg) considered here, are of class C2. We also add that, as
usual, we indicate by i and j the unit vectors of the Euclidean basis of R2.

The signed area of the oriented parallelogram with sides u,v is computed
by the wedge operation “∧”, defined by setting

u ∧ v := det
[
xu xv

yu yv

]
.

The wedge operator “Λ”, instead, acts about a planar map g : I → R
2 by

producing the real function

Λg := g ∧ g′.

In a previous paper [9], we presented the notion of Keplerian curve (or
k-curve for short) as any simple smooth curve whose tangent lines avoid the
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Figure 1. Keplerian parameter

origin O, that, in addition, contains the point i. The image G of a given map
g : J → R

2 is a k-curve whenever conditions
{
g(s0) = i for a s0 ∈ J,

Λg(t) > 0 for all t ∈ J,
(1)

are satisfied. From these conditions, we infer that the mapping yg/xg, where
is defined, has inverse, being strictly increasing, indeed:

(
yg
xg

)′
=

Λg
x2
g

> 0.

Then, we are led to focus our attention on the family of maps m : K →
R

2, where 0 ∈ K, satisfying the following stronger axioms:
{

Λm(κ) = 1 for all κ ∈ K,

m(0) = i.

For such maps, the parameter κ equals the measure of twice the area swept
by the ray OP , in the movement of the point P = m(κ) along the image
M := m(K), from the starting point i; therefore, any such map will be called
a Keplerian map (or k-map for short) (Fig. 1).

The variable of a Keplerian map will usually be denoted by the Greek
letter κ and the domain with K; however, when a second k-map n intervenes
in the same context, its variable and its domain will be denoted by τ and T .

Every k-curve M is image of a unique k-map m, whose components will
be denoted by cosM and sinM. In this “Keplerian environment”, the tangent
line to M at point (cosM(κ), sinM(κ)) intercepts the axes in (1/ sin′

M(κ), 0),
and (0,−1/ cos′

M(κ)), and therefore, it is consistent to define

secM(κ) :=
1

sin′
M(κ)

, cscM(κ) := − 1
cos′

M(κ)
.
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In addition, we will set

tanM(κ) :=
sinM(κ)
cosM(κ)

,

with inverse κ = arctanM(s). Note that

tan′
M(κ) =

1
cos2M(κ)

.

The most significant achievement in this topic consists of two proposi-
tions, for whose demonstration we refer to [9]; the first shows how the k-map
of a k-curve can be computed by reversing the integral of the wedge of its
some parametrisation; similarly, the second one illustrates that the k-map of
an algebraically defined k-curve is the solution of a specific differential system.

Proposition 1. Let the map g : J → R
2 satisfy conditions (1); then the image

G := g(J) is a k-curve and its Keplerian map is:

mG(κ) := g
(
s(κ)

)
,

where s(κ) is the inverse of the integral:

κ(s) :=
∫ s

0

Λ g(u)du.

Proposition 2. Let the real polynomial p(x, y) satisfy conditions:
⎧
⎪⎨

⎪⎩

p(0, 0) = 0,

p(1, 0) = 1,

xpx + ypy �= 0 whenever p(x, y) = 1;

then the curve P := {p(x, y) = 1} is Keplerian, and its k-map is the solution
mP of the differential system:

⎧
⎪⎨

⎪⎩

x′ = − py

xpx + ypy
, x(0) = 1,

y′ =
px

xpx + ypy
, y(0) = 0.

3. The Keplerian p-Trigonometry

Before going into the salient aspects of our discussion, it is appropriate to
emphasise that trigonometric functions are generalised in the literature similar
to the one we will present here, but with fundamental differences. Referring
to the monograph [17], (for further references, see the bibliography of [9]), the
sine function introduced there is the inverse of the integral

Jp(u) :=
∫ u

0

(1 − tp)−1/pdt,
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while the cosine is defined as cosp := sin′
p . It is worth noting that the sine

function we will consider is based on the inversion of a different integral (see
Appendix equation (1b)): the sine and cosine functions introduced in [17] pa-
rametrize the curve |x|p + |y|p = 1 while our treatment leads to the parametri-
sation of xp + yp = 1. This alternative approach is motivated by the fact that
the functions obtained in this way are used to find eigenvalues of boundary
value problems involving the (p, q)-Laplacian (see [17, Eq. (3.9)]). The differ-
ence also remains concerning the two-parameter integral introduced in [17]
formula (2.15) therein:

Fp,q(x) =
∫ x

0

(1 − tq)−1/p dt.

While it is certainly true that the inversion of Fp,p/(p−1) leads to the same
function sinp we are dealing with, the difference between the two approaches
is about the cosine: in [17] the cosine is “forced” to be the derivative of the sine,
while in our approach it is obtained via the inversion of a second integral, see
Eq. (1a) of the appendix, which is originated by our geometrical construction.

Given a non-zero natural number p ≥ 1, the curves of the pair

Fp := {xp + yp = 1} and F∗
p := {xp − yp = 1, x ≥ y}

are called the p-Fermat curves. The study of the parametrisations of these
curves, commonly known as generalized trigonometry, began in the case p = 3,
with the work of Cayley [7], continued and extended by Dixon [8]. Grammel
[12] first tackled the general case of exponent p. Trigonometric and hyperbolic
functions generated by the Fermat curve have had visibility in the entire math-
ematical community thanks to the contributions of [5,10,23,26,27,35,36].

It is not difficult to prove that the p-Fermat curves are Keplerian; since
they are generalisations of the circle and the (right branch of the) hyperbola,
it is naturally required to define the analog πp of the constant π, and their
counterpart π∗

p ; so:

• when p is even, πp is the the area of the region enclosed by Fp, and π∗
p is

the area of the region bounded by F∗
p and their asymptotes;

• when p is odd, πp denotes the area of the region bounded by Fp and its
asymptote; by symmetry, π∗

p = πp (Figs. 2, 3, 4 and 5).

By the symmetries of the curves Fp and F∗
p, we get

for even p : πp = 4λp, π∗
p = 2λ∗

p, for odd p : πp = π∗
p = λp + λ∗

p,

being λp the area of the region bounded by Fp and positive semi-axes, and λ∗
p

the area of the region bounded by the curve F∗
p, the positive semi-axis and its

asymptote; their value is, see [10]

λp =
1
2p

Γ2( 1p )

Γ( 2p )
, λ∗

p = λp sec π
p . (2)
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Figure 2. F3

Figure 3. F4

Figure 4. F∗
3

For every natural p ≥ 1, the solution tp(κ) =:
(
cosp(κ), sinp(κ)

)
of the

problem
⎧
⎪⎨

⎪⎩

x′ = −yp−1,

y′ = xp−1,

x(0) = 1, y(0) = 0,

(3)

satisfies relations
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Figure 5. F∗
4

(cosp
p + sinp

p −1)′ = p(cosp−1
p cos′

p + sinp−1
p sin′

p) = 0, cosp(0) = 1, sinp(0) = 0,

which implies that it is also the solution to the equivalent system
⎧
⎪⎨

⎪⎩

xp + yp = 1,

xy′ − x′y = 1,

x(0) = 1, y(0) = 0.

(4)

The map tp(κ) =:
(
cosp(κ), sinp(κ)

)
is, therefore, the Keplerian map of the

curve Fp, and it will be called the trigonometric map of Fp and it satisfies
identities (3), (4).

Symmetrically, the Keplerian map of F∗
p is the p-hyperbolic map hp(τ) =:(

coshp(τ), sinhp(τ)
)
, solution of the equivalent problems

⎧
⎪⎨

⎪⎩

xy′ − x′y = 1,

xp − yp = 1,

x(0) = 1, y(0) = 0,

⎧
⎪⎨

⎪⎩

x′ = yp−1,

y′ = xp−1,

x(0) = 1, y(0) = 0,

(5)

satisfying conditions
⎧
⎪⎨

⎪⎩

cosh′
p = sinhp−1

p ,

sinh′
p = coshp−1

p ,

coshp(0) = 1, sinhp(0) = 0.

The actual determination of the p-trigonometric and p-hyperbolic functions
and their inverses depends on the explicit solution of systems (3) and (5).
The historical case p = 3 is detailed in [1,8,33,34]. It is worth noting that,
differently from what is in use, the Dixon’s functions “cm” and “sm” will be
denoted here as “cos3” and “sin3”, while we will maintain the usual notation
for the circular and hyperbolic function related to p = 2.
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4. The p-Gudermannian Functions

Let us now study the curves Fp and F∗
p , the restrictions of Fp and F∗

p to the
open right half plane; the domain Tp of the k-map tp of Fp is

Tp = ]−2λp, 2λp[ for even p, Tp =
]
− sec

(
π
p

)
λp, 2λp

[
for oddp,

while the domain of the k-map hp of F∗
p is

Hp =
]
− sec

(
π
p

)
λp, sec

(
π
p

)
λp

[
for even p,

Hp =
]
−2λp, sec

(
π
p

)
λp

[
for odd p.

The maps t∗
p :=

(
cos−1

p , tanp

)
and h∗

p :=
(
cosh−1

p , tanhp

)
parametrise the

Fermat curves Hp and Fp, respectively (recall that the exponent −1 in our
notation means reciprocal) but if p �= 3, they are not Keplerian maps because:

Λ t∗
p = cosp−3

p �= 1, Λh∗
p = coshp−3

p �= 1.

However, the Proposition 1 allows us to transform t∗
p and h∗

p into the appro-
priate k-maps by composing them with the functions gdp(κ) : Hp → Tp and
dgp(τ) : Tp → Hp, as the inverses of the integrals

κ(τ) :=
∫ τ

0

cosp−3
p (u)du, τ(κ) :=

∫ κ

0

coshp−3
p (u)du, (6)

as stated by the following:

Proposition 3. For every positive natural p, the following equalities hold:
{

coshp(κ) = cos−1
p

(
gdp(κ)

)
,

sinhp(κ) = tanp

(
gdp, (κ)

)
,

(7)

{
cosp(τ) = cosh−1

p (τ)
(
dgp

)
,

sinp(τ) = tanhp(τ)
(
dgp

)
,

(8)

or more concisely:

hp = t∗
p ◦ gdp, tp = h∗

p ◦ dgp .

By the previous proposition, functions gdp and dgp can be consistently
called the p-Gudermannian function and the p∗-Gudermannian function; more-
over, being both bijective, they turn out to be inverse of each other, which leads
us to the following result.

Theorem 4 (The p-Gudermannian functions). For every positive natural p, the
p-Gudermannian function gdp(κ) satisfies the identity:

gdp(κ) =
∫ κ

0

coshp−3
p (u)du,
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Figure 6. The action of functions gdp and dgp on p–k-maps

and, analogously, the p∗-Gudermannian function dgp(τ) satisfies the identity:

dgp(τ) =
∫ τ

0

cosp−3
p (u)du.

The following corollary follows from second identities of (7) and (8) and
from the fact that the function dgp is the inverse of gdp.

Corollary 5. For every positive natural p, the p- and the p∗-Gudermannian
functions satisfy the identities

gdp = arctanhp ◦ sinp = arcsinhp ◦ tanp,

dgp = arctanp ◦ sinhp = arcsinp ◦ tanhp.

Clearly, our function dg2 is the usual Gudermannian function, whose
inverse is known as the Lambertian function, here denoted by “gd”. Finally, it
is worth noting that:

gd1(κ) =
κ

1 + κ
and gd3(κ) = κ.

The direct calculation of the Gudermannian functions associated with the
Fermattian trigonometric functions is immediate or, at least elementary in the
cases p = 1, 2, 3. At the same time, for p ≥ 4, the computational difficulties
become considerable, such as for p = 4 and p = 6, if not insurmountable,
due to the inversion of hyperelliptic integrals, as in the cases p = 5, 7, 11 etc.
(Figs. 6 and 7) However, given that the integration of the differential Eqs. (4)
and (5), the integral quadratures of the inverses are obtained; see Eqs. (1a)
and (1c) of the Appendix, the calculation can still be performed, even without
explicit knowledge, of the cosine, using the integration formula of powers of
the inverse function (see for example [15]):

∫ f(b)

f(a)

(
f inv(x)

)m
dx = sgn(f ′)

∫ b

a

tm f ′(t)dt. (9)
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For the p-Gudermannian, applying (9) to identity (6), we obtain, inte-
grating in hypergeometric terms:

gdp(κ) =
∫ 1

cosp(κ)

up−3

(1 − up)1− 1
p

du =
1
p

Γ2
(

1
p

)

Γ
(

2
p

)

− cosp(κ) 2F1

(
1
p , 1 − 1

p

1 + 1
p

∣
∣
∣
∣
∣
cosp(κ)

)

. (10)

It is interesting to note that in the case of p = 2, identity (10) yields
the usual Gudermannian due to the well-known property of hypergeometric
function 2F1

2F1

(
1
2 , 1

2
3
2

∣
∣
∣
∣
∣
x

)

=
arcsin(

√
x)√

x
.

For p = 3, since the p-Gudermannian reduces to the identity, we obtain an
interesting property of the Dixon function cm = cos3:

u =
1
3

Γ2
(
1
3

)

Γ
(
2
3

) − cos3(u) 2F1

(
1
3 , 2

3
4
3

∣
∣
∣
∣
∣
cos 3

3 (u)

)

.

For dgp, we proceed similarly always using (9):

gdp(τ) =
∫ coshp(τ)

1

up−3

(up − 1)1− 1
p

du =
1
p

∫ 1

cosh−p
p (τ)

(1 − u)
1
p−1 u

1
p−1du

=
1
p

Γ2
(

1
p

)

Γ
(

2
p

) − 1
coshp(τ) 2F1

(
1
p , 1 − 1

p

1 + 1
p

∣
∣
∣
∣
∣

1
coshp

p(τ)

)

.

5. The Gudermannian of a Keplerian Map

At this point, to develop a general idea of Gudermannian function, it is natural
to investigate whether what we found for all Fermat couples can also happen in
a wider family of Keplerian curves. Firstly, we realise that the k-curves of the
pair (Fp,F

∗
p) are obtained from each other by replacing coordinates (x, y) with

(1/x, y/x) in their implicit defining relations, or, equivalently, if parametrically
defined, by setting

g = (xg, yg) ∗�→ g∗ :=
(

1
xg

,
yg

xg

)
.

Note that

Λg∗ = y′
g/x2

g. (11)

The nature and properties of such transformation are introduced in the
following proposition.
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Proposition 6 (The star homology). The involutory geometric transformation
(x, y) ∗�→ (

1
x , y

x

)
is the harmonic homology having centre C := (−1, 0) and axis

L := {x = 1}. Such transformation, hereinafter said the star homology, maps
the left half-plane into itself, and the strip {0 < x ≤ 1} into the half-plane
{1 ≤ x}; its action on lines is

{y = mx + q} ∗�→ {y = qx + m}.

In particular, horizontal lines are mapped into lines through the origin, the
vertical axis being mapped into the improper line.

The above proposition induces us to narrow our attention to k-curves
contained in the right half-plane. The action of the star homology on lines
implies that the star homologue G∗ of a k-curve G = g(I) is a Keplerian one
whenever G has no horizontal tangent. If, in addition, the arc of G with non-
negative abscissa lies on the left of the axis L, such a curve will be called a
tk-curve (“t” for trigonometric) and its Keplerian map - a tk-map - will be
denoted as tG(κ) =

(
cosG(κ), sinG(κ)

)
.

To sum up, the image of a map g : I → R
2 is a tk-curve whenever for

every s ∈ I, it satisfies the following conditions:
⎧
⎪⎨

⎪⎩

Λg(s) > 0,

xg(s) ∈]0, 1],
y′
g(s) �= 0.

Symmetrically, the image of a map h : J → R
2 is a hk-curve (“h” for

hyperbolic), whenever for every t ∈ J it satisfies the following conditions:
⎧
⎪⎨

⎪⎩

Λh(t) > 0,

xh(t) ∈ [1,∞[,
y′
h(t) �= 0.

The Keplerian map - an hk-map - of an hk-curve H will be denoted as hH(κ) =(
coshH(κ), sinhH(κ)

)
.

It is easy to see that the star homologue of a tk-curve G is an hk-curve,
but, in general, the star homologue of its Keplerian map differs from the Ke-
plerian map of its star homologue G∗:

tG∗ �= hG∗ .

The link between the maps tG and hG∗ is provided by Proposition 1 and
identity (11): if gd

G
(κ) denotes the inverse of the integral

τ(κ) :=
∫ κ

0

Λ tG∗(u)du =
∫ κ

0

sin′
G(u)

cos2G(u)
du,

we have

hG∗(τ) = tG∗ ◦ gd
G
(τ);
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then, the function κ = gd
G
(τ) can be consistently defined as the Gudermannian

function of the tk-map tG.
From the fact that the star homology is involutory, we are immediately

led to define the Gudermannian function of the hk-map hG∗ as the inverse
τ = gd

G∗ (κ) of the integral:

κ(τ) :=
∫ τ

0

ΛhG∗∗(u)du =
∫ τ

0

sinh′
G∗(u)

cosh2
G∗(u)

du,

getting

tG(κ) = hG∗∗ ◦ gd
G∗ (κ). (12)

Realising that gd
G
(τ) and gd

G∗ (κ) are inverses of each other, we conclude that

gd
G
(τ) =

∫ τ

0

sinh′
G∗(u)

cosh2
G∗(u)

du, (13a)

gd
G∗ (κ) =

∫ κ

0

sin′
G(u)

cos2G(u)
du. (13b)

Moreover, from identity (12) we can draw

tanG = sinhG∗ ◦ gd
G∗ , tanG ◦ gd

G
= sinhG∗ ,

and finally

gd
G

= arctanG ◦ sinhG∗ .

Now, what has been presented can be condensed into the following statement.

Theorem 7 (The Gudermannian function of a t-Keplerian map). The t-Keplerian
map tG of the tk-curve G and the h-Keplerian map hG of the star homologue
G∗ are linked by equations

hG∗(τ) = tG∗ ◦ gdG(τ), tG(κ) = hG∗∗ ◦ gdG∗(κ)

where

gdG(τ) = arctanG

(
sinhG∗(τ)

)
=
∫ τ

0

sinh′
G∗(u)

cosh2
G∗(u)

du,

(the Gudermannian function of tG)

gdG∗(κ)=arctanhG∗
(
sinG(κ)

)
=

∫ κ

0

sin′
G(u)

cos2G(u)
du.

(the Gudermannian function of hG∗)
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Figure 7. G and G∗

6. Examples

It seems now significant to illustrate through examples how the theoretical
arguments presented can be implemented in practice. In the first example,
we present the trigonometric structure of a parabola, while in the second, we
consider two cubic curves whose trigonometric functions have been obtained
in [9].

6.1. A Parabola

The curve P := {p(x, y) = 0, x ≥ 0}, with p(x, y) := x + y2 − 1, is a tk-curve,
having as a (non-Keplerian) parametrisation the map g(u) := (1−u2, u), with
u ∈ ]−1, 1[. Its star homologue is P∗ = {x−x2 +y2 = 0, x ≥ 1}, parametrised
by the map g∗ :=

(
1

1−u2 , u
1−u2

)
.

The tk-map of P is tP(κ) = g(u(κ)), where u(κ) is the inverse of the
integral

κ(u) =
∫ u

0

Λg(s)ds = u +
1
3

u3,

from which we obtain, by inverting

u(κ) =
3
√√

9κ2 + 4 + 3κ
3
√

2
−

3
√

2
3
√√

9κ2 + 4 + 3κ
.

From Proposition (2) we get

sin′
P =

1
1 + sin2

P

.
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Therefore:

gdP∗(κ) =
∫ κ

0

sin′
P u

cos2P u
du =

∫ κ

0

du

(1 + sin2
P u)(1 − sin2

P u)2

=
∫ sinP(κ)

0

ds

(1 − s2)2
= 1

2 arctanh(sinP(κ)) + 1
2

sinP(κ)
(1 − sinP(κ)2)

.

The differential equation of the hyperbolic sine (i.e., the sine of P∗) is

y′ =
2

1√
1+4y2

+ 1
, y(0) = 0;

in this case, we can express the hyperbolic arcsine, but the sine expression
cannot be made explicit:

arcsinhP(u) =
u

2
+

1
4

arcsinh(2u).

The Gudermannian is computed as follows:

gdP(κ) =
∫ κ

0

sin′
P∗(u)

cos2P∗(u)
du =

∫ κ

0

8
√

1 + 4 sinP∗(u)2
(
1 +
√

1 + 4 sinP∗(u)2
)3 du

=
∫ sinP∗ (κ)

0

4
(
1 +

√
1 + 4s2

)2 ds =

(
1 + 4 sin2

P∗(κ)
)3/2 − 6 sin2

P∗(κ) − 1
6 sin3

P∗(κ)
.

By determining the arctangent in both cases, we can make explicit the al-
ternative representation of the Gudermannian. This is achieved by expressing
the derivative of the tangent in terms of the tangent itself by combining the
general derivation rule of the tangent with the functional laws induced by the
generating curve. In the case of P, we have

tan2
P =

sin2
P

cos2P
=

1 − cosP
cos2P

=⇒ cosP =

√
1 + 4 tan2

P − 1
2 tan2

P

,

which leads to the differential equation of the tangent

tan′
P =

4 tan4
P(√

1 + 4 tan2
P − 1

)2 .

From this, after the appropriate integration, we arrive at the explicit expression
of the arctangent, which confirms the formula for the Gudermannian previously
found:

arctanP(s) =

(
1 + 4s2

)3/2 − 1 − 6s2

6s3
.
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Similarly, for the curve P∗, we represent the derivative of the tangent in terms
of the tangent itself

tan2
P∗ =

sin2
P∗

cos2P∗
=

cos2P∗ − cosP∗

cos2P∗
=⇒ cosP∗ =

1
1 − tan2

P∗
,

and then we use the expression of the derivative of the tangent to deduce its
differential equation

tan′
P∗ =

1
cos2P∗

=
(
1 − tan2

P∗
)2

,

so that the arctangent is, after the relevant integration

arctanP∗(s) =
s + (1 − s2) arctanh(s)

2 (1 − s2)
,

which is compliant with the Gudermannian representation.

6.2. A Couple of Cubics

In [9], we develop the Keplerian trigonometry generated by a couple of cubics:

g(x, y) := x3 − 3xy2 − 1 = 0,

f(x, y) := x3 + 3xy2 − 1 = 0.

Setting H := {g(x, y) = 0, x ≥ 1} and D := {f(x, y) = 0}, we realise
that H is an hk-curve, while D is a tk-curve. Their Keplerian maps hH =
(coshH, sinhH) and tD = (cosD, sinD) are solutions to the systems (Figs. 8
and 9):

{
x′ = 2xy, x(0) = 1,

y′ = x2 − y2, y(0) = 0,
{

x′ = −2xy, x(0) = 1,

y′ = x2 + y2, y(0) = 0.

The star homologues are

H∗ = {g∗(x, y) = 0, x ∈ [0, 1]}, with g∗(x, y) := x3 + 3y2 − 1,

and

D∗ = {f∗(x, y) = 0}, with f∗(x, y) := x3 − 3y2 − 1.
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Figure 8. H∗ andH

By Proposition (2), their Keplerian maps are the solution for systems
⎧
⎪⎨

⎪⎩

x′ = − 2y

1 − y2
, x(0) = 1,

y′ =
x2

1 − y2
, y(0) = 0,

(14a)

⎧
⎪⎨

⎪⎩

x′ =
2y

1 + y2
, x(0) = 1,

y′ =
x2

1 + y2
, y(0) = 0.

(14b)

To determine the functions sinH∗ and sinhD∗ , after obtaining x from the equa-
tions g∗ = 0, f∗ = 0, we replace it in the second equation and get the two
autonomous and separable differential equations in y:

y′ =
(1 − 3y2)2/3

1 − y2
, y(0) = 0,

y′ =
(1 + 3y2)2/3

1 + y2
, y(0) = 0.

The relative arcsine functions are then given by

arcsinH∗(y) =
∫ y

0

1 − u2

(1 − 3u2)2/3
du, (15a)

arcsinhD∗(y) =
∫ y

0

1 + u2

(1 + 3u2)2/3
du. (15b)
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Figure 9. D andD∗

Following an analogous procedure for the cosine functions, we get the
separable differential equations:

x′ = −2
√

3
√

1 − x3

2 + x3
, x(0) = 1,

x′ = 2
√

3
√

x3 − 1
2 + x3

, x(0) = 1.

Therefore inverse cosine functions are

arccosH∗(x) =
1

2
√

3

∫ 1

x

2 + u3

√
1 − u3

du,

arcoshD∗(x) =
1

2
√

3

∫ x

1

2 + u3

√
u3 − 1

du.

The Gudermannian of the curve D can now be computed by combining
identities (13a) and (14a) as

gdD(κ) =
∫ κ

0

sinh′
D∗(t)

cosh2
D∗(t)

dt =
∫ κ

0

dt

1 + sinh2
D∗(t)

.

Changing variable sinD∗(t) = σ, and recalling the inverse sine property given
by (15b) we arrive at

gdD(κ) =
∫ sinhD∗ (κ)

0

dσ

(1 + 3σ2)2/3
. (16)
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The integral (16) is expressible in terms of an elliptic integral of the first kind
using the variable transformation:

σ =

√
u3 − 1

3
=⇒ arctanD(t) =

√
3

2

∫ (1+3t2)1/3

1

du√
u3 − 1

.

This last integral is provided by [6, entry 240.00], so that:

arctanD(t) =
4
√

3
2

F

(

arccos

(√
3 + 1 − (1 + 3t2)1/3

√
3 − 1 + (1 + 3t2)1/3

)

, sin π
12

)

. (17)

In this case, it is possible to solve for t, obtaining the explicit representation
of the tangent by inverting the elliptic integral of the first kind: we divide this
operation in two steps; first, we invert the elliptic integral in (17), obtaining:

(1 + 3t2)1/3 =

√
3 + 1 − (√3 − 1

)
cn
(

2κ
4√3

, sin π
12

)

1 + cn
(

2κ
4√3

, sin π
12

) ,

and then solve for t = tan2
D κ:

tan2
D κ =

1
3

⎛

⎜
⎝

⎛

⎝

√
3 + 1 − (√3 − 1

)
cn
(

2κ
4√3

, sin π
12

)

1 + cn
(

2κ
4√3

, sin π
12

)

⎞

⎠

3

− 1

⎞

⎟
⎠ .

Finally, it is not difficult to obtain the expression of the Gudermannian, using
the fundamental trigonometric identity induced by D∗ i.e. 1 + 3 sin2

D∗(κ) =
cos3D∗(κ), we arrive at:

gdD(κ) =
4
√

3
2

F

(

arccos

(√
3 + 1 − cosD∗(κ)√
3 − 1 + cosD∗(κ)

)

, sin π
12

)

.

To represent the Gudermannian of H, we proceed in a completely anal-
ogous way to the one just illustrated; we have:

gdH(κ) =
∫ κ

0

sin′
H∗(t)

cos2H∗(t)
dt =

∫ κ

0

dt

1 − sin2
H∗(t)

=
∫ sinH∗ (κ)

0

dσ

(1 − 3σ2)2/3
.

Here the change of variable is sinH∗(t) = σ with the inverse sine property (15a).
This last integral is related to the H arctangent: reasoning as previously we
arrive at:

tanh′
H =

(
1 − 3 tanh2

H

)2/3
,

so that:

arctanhH(t) =
∫ u

0

ds

(1 − 3s2)2/3
. (18)
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The way to calculate integral (18) is similar to those seen previously: in
this case, the transformation of variables that reveals the “elliptic” nature of
these integrals is:

s =

√
1 − u3

3
=⇒ arctanhH(t) =

√
3

2

∫ 1

(1−3t2)1/3

du√
1 − u3

,

then entry 244.00 of [6] solves the problem:

arctanhH(t) =
4
√

3
2

F

(

arccos2

(√
3 − 1 + (1 − 3t2)1/3

√
3 + 1 − (1 − 3t2)1/3

)

, cos π
12

)

,

while the Gudermannian of H is:

gdH(κ) =
4
√

3
2

F

(

arccos2

(√
3 − 1 + cosH∗(κ)√
3 + 1 − cosH∗(κ)

)

, cos π
12

)

.

Finally we can also retrive the expression tanhH:

tan2
H κ =

1
3

⎛

⎜
⎝1 −

⎛

⎝
1 − √

3 +
(√

3 + 1
)
cn
(

2κ
4√3

, cos π
12

)

1 + cn
(

2κ
4√3

, cos π
12

)

⎞

⎠

3
⎞

⎟
⎠ .

7. The Intimate Geometric Structure

In conclusion, we dedicate a few more lines to expose the intimate structure
of what has been treated in previous pages.

Given a (not necessarily Keplerian) map u : I → R
2, u(s) =:(

cosu(s), sinu(s)
)

with image U, we set consistently tanu(s) := sinu(s)
cosu(s)

. Suppose
now the map u satisfy conditions.

⎧
⎪⎨

⎪⎩

u(0) = (1, 0),
Λu(s) > 0 for all s ∈ I,

sin′
u(s) �= 0 for all s ∈ I,

and let v a (not necessarily Keplerian) map which parametrizes the star ho-
mologue V := U∗, fulfilling conditions similar to those above (Fig. 10).

Given a point P = u(s) and its homologue P ∗ = v(t), let us consider the
lines L := OP , and M := OP ∗, and set

∗P := L ∩ L∗, ∗P := M ∩ M∗.

By the properties of homology seen in theorem (6), we immediately deduce
the identities:

{
x∗P = tanu s = sinv t,

x∗P = tanv t = sinu s.
(19)
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Figure 10. The star homology

Note that functions sinu, sinv, tanu and tanv have inverses arcsinu, arcsinv,
arctanu and arctanv, by which, from identities (19) we obtain:

s = arctanu(sinv t) = arcsinu(tanv t), t = arctanv(sinu s) = arcsinv(tanu s).

We can, therefore define the Gudermannian functions relating to the maps u
and v as:

gduv := arctanu ◦ sinv = arcsinu ◦ tanv, gdvu := arctanv ◦ sinu = arcsinv ◦ tanu,

obtaining:

s = gduv t, t = gdvu s.

In this broader framework, however, only noteworthy results are found
when the maps considered share analytical/geometric properties of some sig-
nificance, as those analysed in the previous sections, for which Λm = 1.

As a first instance, let us consider the case when both U and V have polar
map u(θ) := ru(θ)t2(θ), v(φ) := rv(φ)t2(φ), which gives us

∗P = tan θ = rv(φ) sin ϕ, P∗ = tan ϕ = ru(θ) sin θ,

obtaining

θ = arctan
(
rv(φ) sin φ

)
, φ = arctan

(
ru(θ) sin θ

)
.
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If, for example, U,V are the circle and the hyperbola, then ru(θ) = 1, rv(φ) =
1√

cos(2φ)
, and

θ = arctan
(

sin φ√
cos 2φ

)
.

Note that completely symmetrical considerations can be developed in case
of hyperbolic polar presentation of curves, that is, in the case where curves are
expressed in term of the hyperbolic map h2(t); in this situation, as example,
the arc of the circle in the first quadrant is the image of the map u(s) :=

1√
cosh(2s)

h2(s), and

s = arctanh
(

sinh t√
cosh 2t

)
.
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Appendix: Computations Related to Generalised Trigonometry

We will illustrate the integrating techniques for systems (3) and (5) and the
determination of the inverse of the tangent, given its relevance to the deter-
mination of the Gudermannian. We will provide the computations from p = 4
although, to the best of our knowledge, explicit representations of trigonomet-
ric functions of order four have not been provided in the literature, it should
be mentioned that the OEIS Encyclopedia of Integer Sequences [32], the coeffi-
cients of the power series of these functions and explicit formulæ are available:
A153301 report the sine, A153300 the cosine.

As customary, K(k) stands for the complete elliptic integral of the first
kind, with modulus k and sn, cn, dn, sd denote the Jacobi elliptic functions:
for details, we refer to [6].

When p = 2, we have of course t2 = (cos, sin), h2 = (cosh, sinh), while
for p = 1 t1(κ) = (1−κ, κ), h1(τ) = (1+τ, τ). In the Cayley–Dixon case p = 3,
[7,8]:

t3 = (cm, sm), h3 =
(

1
cm , sm

cm

)
,

where cm = cos3 and sm = sin3 are the Dixon elliptic functions [1,8]. As seen in
this situation, the trigonometric and hyperbolic functions are closely related.
It is worth recalling that using the Jacobian elliptic functions of modulus
k3 = sin π

12 , and setting

s(u) := sn
(

3√4
4√3

u, k3

)
, c(u) := cn

(
3√4
4√3

u, k3

)
, d(u) := dn

(
3√4
4√3

u, k3

)
,

the following identities are achieved (for details, see [1,8,11,27,33]):

cm(u) =
2 4
√

3 d(u) s(u) − (1 − c(u))2

(1 − c(u))2 + 2 4
√

3 d(u) s(u)
,

sm(u) =
3
√

2 (1 − c(u))2 + 3
√

2
√

3
(
1 − c(u)2

)

(1 − c(u))2 + 2 4
√

3 d(u) s(u)
.

To integrate systems (3) and (5), following the procedure given in [9], it
is convenient to separate both systems into two individual equations, one for
sine and the other for cosine. In the trigonometric case, we have

{
x′′ = (1 − p)xp−1 (1 − xp)

p−2
p ,

x(0) = 1, x′(0) = 0,
{

y′′ = (1 − p) yp−1 (1 − yp)
p−2
p ,

y(0) = 0, y′(0) = 1,
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where the left equation is for the sine and the right for the cosine. The hyper-
bolic case reads as

{
x′′ = (p − 1)xp−1 (xp − 1)

p−2
p ,

x(0) = 1, x′(0) = 0,
{

y′′ = (p − 1) yp−1 (1 + yp)
p−2
p ,

y(0) = 0, y′(0) = 1,

In this way, the inverse of the generalised trigonometric and hyperbolic func-
tions are available:

arcosp(x) =
∫ 1

x

(1 − up)
1−p

p du, (1a)

arcsinp(y) =
∫ y

0

(1 − up)
1−p

p du, (1b)

arcoshp(x) =
∫ x

1

(up − 1)
1−p

p du, (1c)

arcsinhp(y) =
∫ y

0

(1 + up)
1−p

p du, (1d)

For simplicity, we work in the first quadrant, so assuming 0 ≤ x ≤ 1, 0 ≤
y ≤ 1.

When p = 4, Eq. (1b) defines the sin4 function around the origin:

u =
∫ y

0

ds

4
√

(1 − s4)3
. (2)

The integral in the right-hand side of (2) is indeed elliptic, in fact the change
of variable 1 − s4 = (1 + z4)−1 provides:

∫ y

0

ds

4
√

(1 − s4)3
=
∫ y

4√1−y4

0

dz√
1 + z4

. (3)

The integral in the right-hand side of (3) is evaluated as
∫ s

0

dξ
√

1 + ξ4
=

1
2

F
(

arccos
1 − s2

1 + s2
,

1√
2

)
. (4)

The integral (4) does not appear in the Byrd handbook, although entry 263.50
therein is very similar. The proof of (4), inspired by [19, Lemma 2.1] starts
with the variable’s change:

1 − ξ2

1 + ξ2
= cos η, =⇒ ξ =

√
1 − cos η

1 + cos η
= tan

η

2
,
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which yields
∫ u

0

dξ
√

1 + ξ4
=

1
2

∫ arccos 1−u2

1+u2

0

dη
√

cos4 η
2 + sin4 η

2

.

Now, recalling that:

sin4 η

2
+ cos4

η

2
=
(
sin2 η

2
+ cos2

η

2

)2
− 2 sin2 η

2
cos2

η

2
,

we can write:

cos4
η

2
+ sin4 η

2
= 1 − 1

2
sin2 η.

This proves (4). To make the function sin4 explicit, we need, first, to invert
the integral calculated in (4):

∫ u

0

dξ
√

1 + ξ4
= t ⇐⇒ u =

√√
√
√
√

1 − cn
(
2t, 1√

2

)

1 + cn
(
2t, 1√

2

) =
sn
(
2t, 1√

2

)

1 + cn
(
2t, 1√

2

) .

Subsequently, recalling the upper extreme of integration in the right-hand side
of (3), the function sought is determined by solving concerning y

y
4
√

1 − y4
=

sn
(
2t, 1√

2

)

1 + cn
(
2t, 1√

2

) .

From the latter, after a not inconsiderable amount of algebraic work, which
we omit here, we arrive at:

sin4(t) =
sn
(
2u, 1√

2

)

√
2 dn

(
2u, 1√

2

)(
1 + cn

(
2u, 1√

2

)) . (5)

It must be said that these representations are not referable to the entire fun-
damental period interval [−π4, π4]. First, it is worth noting that, in this case,
we can express the period in terms of the real period of the Jacobi elliptic
function, which is not surprising because 1√

2
is an elliptic singular modulus,

i.e., the solution to the equation

K′(k)
K(k)

=
√

n

with n positive integer, and it is well known, see [31] and [3, page 138] that in
this case, the complete elliptic integral of the first kind K( 1√

2
) is expressible

in terms of the Euler Gamma function: in our case, the simplest, since n =
1, we have π4 = 2K( 1√

2
). We have that the representation (5) is valid for
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[−π4
2 , π4

2 ] = [−2λ4, 2λ4] = [−K( 1√
2
),K( 1√

2
)], while in [−π4, π4] \ [−π4

2 , π4
2 ] it

is necessary to change the sign. Notice that, from (2) follows:

λ4 =
1

8
√

π
Γ2( 14 ).

The situation is entirely analogous to the case of circular functions; in this
case, [0,K( 1√

2
)] represents the first quadrant.

To determine the cosine function, we start with the complementary inte-
gral (1a), which for p = 4 reads as:

u =
∫ 1

x

ds

4
√

(1 − s4)3
=
∫ 1

0

ds

4
√

(1 − s4)3
−
∫ x

0

ds

4
√

(1 − s4)3
.

It follows that the integration and subsequent inversion follow those seen in
the case of sine and lead to the following representation of cosine:

cos4(u) =
sn
(
2u, 1√

2

)

√
2 dn

(
2u, 1√

2

)(
1 − cn

(
2u, 1√

2

)) , (6)

which is valid for u ∈ [0, 2K( 1√
2
)]. By similar reasoning, we see that the

expression (6) defining cosine is correct in [0, π4] = [0, 4λ4] = [0, 2K
(

1√
2

)
]

and in [−π4, 0] a change of sign is again needed.
Similarly, the hyperbolic sine case is dealt with by specialising at p = 4,

the formula (1d) leading to:

t =
∫ y

0

du

4
√

(1 + u4)3
.

This integral is indeed elliptic; in fact the change of variable 1+u4 = (1−z4)−1

implies the identity:
∫ y

0

du

4
√

(1 + u4)3
=
∫ y

4√1+y4

0

dz√
1 − z4

. (7)

The integral in the right-hand side of (7) is tabulated in Byrd entry 214.0,
which reads as:

∫ u

0

dz√
1 − z4

=
1√
2

F

(

arcsin

( √
2 |u|√

1 + u2

)

,
1√
2

)

.

It follows that the inversion process of the integral (7) leads, in this case, to,
assuming y > 0:

y
4
√

1 + y4
=

1√
2

sn
(√

2 t, 1√
2

)

dn
(√

2 t, 1√
2

) .
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Solving for y, taking the positive determination after recalling the definitions
and properties of the Jacobian elliptic functions, the most concise representa-
tion of the hyperbolic sine of order four is:

sinh4(t) =
1

4

√
4 ds4

(√
2 t, 1√

2

)
− 1

, (8)

being ds = dn
sn . The period, expressed in “elliptic” terms in this case is 4√

2

K
(

1√
2

)
.

It is worth noting that when p = 4, the inverse tangent function is related
to the hyperbolic arc lemniscate sine function (see, for instance, [4]):

arctan4(u) =
∫ u

0

dv√
1 + v4

=
1
2

F
(

arccos
1 − u2

1 + u2
,

1√
2

)
.

Moreover, recalling (8) we have:

gd4(s) = arctan4(sinh4(s))

=
1
2

F

⎛

⎝arccos
2 − sd2

(√
2u, 1

2

)√
4 − sd4

(√
2u, 1

2

)

2 − sd4
(√

2u, 1
2

) ,
1√
2

⎞

⎠ ;

the branch of F∗
4 with nonnegative abscissa is mapped by:

cosh4(u) =
√

2

4

√
4 − sd4

(√
2 u, 1√

2

) , sinh4(u) =
sd
(√

2 u, 1√
2

)

4

√
4 − sd4

(√
2 u, 1√

2

) .
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