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Abstract 

Background Antimicrobial resistance has been identified as a major threat to global health. The pig food chain 
is considered an important source of antimicrobial resistance genes (ARGs). However, there is still a lack of knowledge 
on the dispersion of ARGs in pig production system, including the external environment.

Results In the present study, we longitudinally followed one swine farm located in Italy from the weaning phase 
to the slaughterhouse to comprehensively assess the diversity of ARGs, their diffusion, and the bacteria associated 
with them. We obtained shotgun metagenomic sequences from 294 samples, including pig feces, farm environment, 
soil around the farm, wastewater, and slaughterhouse environment. We identified a total of 530 species-level genome 
bins (SGBs), which allowed us to assess the dispersion of microorganisms and their associated ARGs in the farm 
system. We identified 309 SGBs being shared between the animals gut microbiome, the internal and external farm 
environments. Specifically, these SGBs were characterized by a diverse and complex resistome, with ARGs active 
against 18 different classes of antibiotic compounds, well matching antibiotic use in the pig food chain in Europe.

Conclusions Collectively, our results highlight the urgency to implement more effective countermeasures to limit 
the dispersion of ARGs in the pig food systems and the relevance of metagenomics-based approaches to monitor 
the spread of ARGs for the safety of the farm working environment and the surrounding ecosystems.
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Background
The spread of antimicrobial resistance through the 
planet microbiomes is a global concern that poses a 
risk to the entire biome, including plants, animals and 
humans, particularly for what concern the possible risk 
of horizontal-transfer to pathogens or potential patho-
gens, as passenger in the microbiome ecosystem [55]. 
Such resistance is generated by genes called antibiotic 
resistance genes (ARGs), which are present in micro-
bial genomes and ensure survival when exposed to anti-
microbial molecules. The spread of ARGs across the 
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planet microbiomes can occur through several mech-
anisms, such as: (i) direct transmission of antibiotic 
resistant bacteria (ARB) between different ecosystems, 
(ii) horizontal gene transfer of ARGs between differ-
ent microbiome components, as promoted by mobile 
genetic elements [10, 26], and/or vertical transmission 
process [27]. It is clear that, the overuse of antibiot-
ics in anthropic systems in past years has favored the 
selection of ARB and ARGs, as well as their subsequent 
spread across all planet biomes, with animal farming 
being a hotspot of evolution and resistance spread [29]. 
For this reason, the use of antibiotics in animal farm-
ing was prohibited for growth promotion purposes in 
Europe in 2006, and since then antibiotics can only be 
used for veterinary purposes such as metaphylaxis, 
prophylaxis, and medication to protect animal wellbe-
ing [30, 32].

Concerns about the spread and dissemination of ARB 
and ARGs to environmental biomes are relevant in the 
pig system, where antibiotic administration has histori-
cally been widespread, especially in the early stages of 
pig’s life [4, 5]. Indeed, a large multi-country study of 9 
European countries showed that most antibiotics, espe-
cially penicillins and polymixins, are routinely adminis-
tered to weaners (69.5% of total TIDDDvet, defined as 
the time a pig is treated with antibiotics) and then fol-
lowed by suckling piglets (22.5% of total TIDDDvet [12, 
45]). Piglets exhibit a pre-existing resistance pattern 
from birth that reflects their environment, encompass-
ing resistance to tetracyclines, β-lactams, and aminogly-
cosides [7]. Despite that, a decrease in the abundance of 
antimicrobial resistance carried by these animals with 
age has been observed, irrespective of the geographic 
area [17]. For these reasons, pigs can act as reservoirs 
of ARB and ARGs throughout their lives, posing a sig-
nificant health risk to the surrounding environment and 
the associated biome [32, 40]. To the best of our knowl-
edge, the environmental spread of antibiotic resistance 
from pig farms is mainly due to the use of pig manure 
as a soil fertilizer, and the discharge of farm wastewaters 
into the environment, to fertilize soils prior to crop pro-
duction [16, 32, 46]. Some studies, such as those by Teng 
et al. [51] and Gao et al. [19], showed up to 5 years of soil 
contamination with ARB when fertilized with “contami-
nated” manure. Residues of antibiotics and ARB have also 
been found in slaughterhouses, where animals arrive at 
the end of the production cycle, just before being placed 
on the market [46]. For all these reasons, it is becoming 
increasingly urgent to monitor the spread of antimicro-
bial resistance in the pig food production cycle in order 
to prevent environmental contamination and for the 
selection of more effective antibiotic therapy to keep ani-
mal health in the food production system.

In this scenario, and in the context of the project “Con-
trolling Microbiomes Circulations for Better Food Sys-
tems” (CIRCLES, https:// circl espro ject. eu/), funded by 
the European Union’s Horizon 2020, we evaluated the 
presence and distribution of microorganisms and ARGs 
in two pig farming systems in Italy, in a longitudinal set-
ting during a commercial production process. To this 
end, a food system metacommunity-based approach 
was implemented. The reconstruction of metagenome-
assembled genomes (MAGs), from the food system 
microbiomes (i.e. fecal, air, boots, soil, water, wastewater 
and slaughterhouse environment) allowed the best reso-
lution for ARGs assessment in the pig food system, track-
ing the circulation of species-level genomes and their 
associated ARGs from the pig gut to the internal and 
external farm environments and to the slaughterhouse. 
Our results indicate the dispersal of microorganisms and 
their associated antibiotic resistance genes from the pig 
food system to the external environment and even to the 
final stage of meat production, suggesting the importance 
of metagenomics-based community assessment for a sys-
tematic evaluation of the risks associated with the spread 
of antimicrobial resistance in this food system.

Results
SGBs‑level characterization of microbiomes in the pig food 
system
A total of 294 samples were processed for DNA extrac-
tion and shotgun metagenomic sequencing. Specifically, 
two production chains originating from the same farrow-
ing unit were sampled longitudinally at 5 timepoints, fol-
lowing the entire rearing cycle of two groups of pigs (see 
Additional file  4: Table  S1). The two production chains 
consisted of a common farrowing unit, subsequently split 
into two weaning units and two final growing-finishing 
units. A total number of 199 fecal samples from pigs; 
18 swabs from workers boots and 10 air samples from 
the farm, representing the internal farm ecosystem; and 
9 water sample from the watering place, 8 wastewater 
sample from the lagoon and 36 soil samples from the 
surrounding area, representing the external farm envi-
ronment. In addition, a total of 14 swab samples from 
various surfaces in the slaughterhouse were collected 
at the end of the rearing cycle and during the slaugh-
ter phase for each pig group. An overview of the study 
design and sampling during the pig production cycles is 
shown in Fig. 1 & Additional file 4: Table S2.

A total of 2.02 billion paired-end raw reads were gen-
erated, with an average of 6.9 million reads per sample. 
From the 294 metagenomes, we were able to recon-
struct 2,704 high-quality MAGs, considering only 
those with more than 50% completeness and less than 
5% contamination, with a total median per sample of 9 
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MAGs (median of MAGs based on sample type: 10 pig 
gut, 8 workers’ boot, 2 air, 8 water, 11 wastewater, 1 soil 
and 1 slaughterhouse ecosystems) and a binning effi-
ciency of 40.47%. The MAGs were then dereplicated 
into 530 SGBs, considering 95% similarity as the mini-
mum threshold for clustering MAGs together (see Meth-
ods section for further details and Additional file  4: 
Table S3). We then mapped these 530 SGBs against pre-
viously explored MAGs (> 7000) from the available pig 
gut microbiome [6, 20, 23] and the SGBs from > 150,000 
human gut microbiome (GM) MAGs, including different 
individuals, spanning age, geography, and lifestyle [38]. In 
total, 367 SGBs (69%), clustered with at least one known 
reference genome (the full list of known SGBs is reported 
in Additional file 4: Table S4), while the remaining frac-
tion of SGBs (163 SGBs, 31%), showed > 5% genetic dis-
tance to any SGBs of the databases and were considered 
as unknown genomes never detected before.

After taxonomic profiling, 29 bacterial phyla were 
identified within the dataset of metagenomic samples 
(Fig. 2A), where we observed a similar profile in terms of 
most abundant phyla for pig gut microbiome (mean rela-
tive abundance, Bacillota 64%–Bacteroidota 29%), boots 
swabs (Bacillota 76%–Bacteroidota 18%), air (Bacil-
lota 65%–Bacteroidota 26%) and wastewater (Bacillota 
33%—Bacteroidota 27%), but with a different relative 
abundance. While, in the other ecosystems we observed a 
different microbiota profile, with soil samples dominated 
by Actinomycetota at 52% and Pseudomonadota at 28%, 
and water and slaughterhouse environmental samples 

dominated by Pseudomonadota at 71% and 99%, respec-
tively. At the species level (SGBs), the pig gut microbi-
ome was mostly dominated by Lactobacillus amylovorus, 
Cryptobacteroides sp000431015 and Limosilactobacil-
lus reuteri (mean relative abundance, 14%, 4% and 3%, 
respectively). The samples from the internal farm envi-
ronment (air, boot soles) showed almost the same most 
abundant species, such as L. amylovorus and L. reuteri 
(18% and 4%, respectively), with the addition of a known 
pig-derived species Aerococcus urinaeequi (4%) [33]. The 
microbiomes from the external environment (drink-
ing water, wastewater and soil) were mainly dominated 
by f_Nitrososphaeraceae;s_TA-21 sp014523595, Novo-
sphingobium sp015657645 and Methanothrix soehn-
genii (6%, 3% and 2%, respectively). On the other hand, 
the slaughterhouse environment was characterized by 
Pseudomonas cremoris, f_Rhodocyclaceae;s_SFHR01 
sp004555545 and Novosphingobium sp015657645 (57%, 
33% and 6%, respectively).

The SGBs microbiome structures in the two produc-
tion chains, including those of the pig gut, the internal 
and external environment, and the slaughterhouse, were 
then compared by principal coordinates analysis (PCoA) 
using the Bray–Curtis distance (Fig.  2B). According to 
our results, the different ecosystems clustered separately, 
regardless of the farm (permutation test with pseudo-
F ratio, p-value = 0.001) except for the air and boot sole 
samples, which showed an almost comparable micro-
bial layout (p > 0.05). Focusing on alpha diversity, we 
observed significantly lower values in the microbiome of 

Fig. 1 Schematic representation of the study design and the number of samples collected at each timepoint in each farm. The microbiome of pig 
and farm environmental samples (including pig gut, soil surrounding the farm, air inside the farm, animal drinking water, wastewater, workers boot 
soles and slaughterhouse environment) were collected at 5 different timepoints during the rearing cycle in two different Italian farms labeled as H 
& L. T1: farrowing unit, piglets from birth to 24 days; T2: start of the weaning phase; T3: end of the weaning phase; T4: start of the growing-finishing 
phase; T5: end of the growing-finishing phase. The numbers within the icons indicate the number of samples collected
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Fig. 2 Composition of pig gut, farm environment, and slaughterhouse environment microbiomes. A Taxonomic classification of species-level 
genome bins (SGBs), represented as relative abundance at the phylum level across samples (pig gut microbiomes, soil surrounding the farm, air 
within the farm, animal drinking water, wastewater, workers boot soles and slaughterhouse environment). B Principal Coordinate Analysis based 
on the Bray Curtis distances between the SGB profiles of the different samples. The percentage of variance in the dataset explained by each 
axis is reported within the graph (permutation test with pseudo-F ratio, p-value = 0.001). C Alpha diversity boxplots based on Shannon index, 
Simpson index and observed features (number of SGBs). A statistically significant variation (Kruskal–Wallis test, p-value < 0.001) of alpha diversity 
among microbial ecosystems was found with all metrics. Sample groups marked with different letters are statistically significant different (Wilcoxon 
rank-sum test, p < 0.05). Sample groups are colored according to the color legend within the PCoA plot
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soil around the farms, water and slaughterhouse samples 
compared to the other ecosystems (Wilcoxon rank-sum 
test, p < 0.05) (Fig. 2C).

SGBs potential dispersion across the farm system
We assessed the extent to which SGBs were dispersed 
across the pig fam system, including the animal gut and 
the internal/external farm environments and the slaugh-
terhouse. To do this, we first mapped the metagenomic 
reads to our collection of 530 SGBs and then selected the 
shared species between the different farm ecosystems 
(Fig.  3). The SGB profile for each sample, expressed as 
genome copies per million reads, is shown in Additional 
file 4: Table S5. Three hundred nine out of the 428 SGBs 
being detected in the pig gut microbiome were widely 
distributed across the entire set of samples analyzed, 
including samples collected inside and outside the farm 

system (Fig.  4A). Most of these 309 SGBs (179, 60%) 
were assigned to the Bacillota phylum (Fig.  4B). At the 
family level, 135 out of 309 SGBs (43%) were assigned to 
host-associated families, as Lachnospiraceae (40 SGBs), 
Oscillospiraceae (38 SGBs), Bacteroidaceae (36 SGBs) 
and Ruminococcaceae (21 SGBs) (Fig.  4C). Specifically, 
regarding the distribution of these pervasive 309 SGBs in 
the farm system, almost all of them have been detected 
in the internal farm environment, 308 and 307 SGBs 
being detected in farm air and boot soles samples as well, 
respectively. Interestingly, focusing on the external envi-
ronments, we observed a differential distribution of the 
309 pervasive SGBs, according to the different external 
ecosystems. In particular, 96 SGBs were detected in the 
external soil samples, 209 in watering places and 291 in 
the wastewaters. Finally, for each of the external ecosys-
tem, we specifically accounted for the pervasive SGBs 

Fig. 3 Distribution of all species-level genome bins across pig gut, farm environment, and slaughterhouse environment. Heatmap based 
on the abundance of species-level genome bins (SGBs) expressed as genome copies per million reads in each sample (grouped by color legend, 
top right). Samples include pig gut microbiome, soil surrounding the farm, air inside the farm, animal drinking water, wastewater, workers boot 
soles and slaughterhouse environment collected at different timepoints from the two farms (H & L). T1: farrowing unit, piglets from birth to 24 days; 
T2: start of the weaning phase; T3: end of the weaning phase; T4: start of the growing-finishing phase; T5: end of the growing-finishing phase
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being assigned to well know host associated taxa, as taxa 
possibly deriving from the animal gut (Additional file 4: 
Table  S6). Accordingly, in the external soil samples we 
have been able to detect 24 pervasive SGBs belonging to 
host associated taxa, 85 in the watering places and 132 
in the waste waters, being the external farm ecosystem 
more contaminated by putative pig gut microbiome com-
ponents. Finally, 11 core SGBs were detected as microbial 
species shared between almost all ecosystems, including 
the pig gut microbiome, the internal (boot soles and air) 
and external farm environment (soil, wastewater, and 
water from watering places) and including the slaughter-
house environment, highlighting the potential spread of 
these SGBs throughout the farm chain (only 1 was not 
shared with soil samples). These 11 SGBs were assigned 
to the genera Propionicimonas, Syntrophosphaera, Meth-
ylocystis, Sideroxydans, Pseudomonas (not identified 
at species level), and the species Perlucidibaca aquat-
ica, Bacteroides pyogenes, Escherichia coli, R. SFHR01 

sp004555545, Novosphingobium sp015657645 and Acido-
vorax sp001411535.

To increase the accuracy of the SGBs potential disper-
sion patterns across the farm system, we applied Strain-
PhlAn3 [54]. As StrainPhlAn3 works on single nucleotide 
polymorphisms, it was only possible to use the tool with 
the SGBs that were most represented in our samples. We 
therefore checked the strain sharing for those SGBs that 
had simultaneously at least 1 marker and verified that the 
same marker was present in at least 5 samples. According 
to our findings, a total of 281 unique SGBs were shared 
between pigs and the different environments consid-
ered in this study, some of which were shared between 
pigs and multiple environments (air, soil, wastewater). 
Specifically, 14 SGBs were recognized as the same strain 
shared between the pig gut microbiome and the inter-
nal or external farm environment (Additional file  1: 
Fig. S1). Of these 14 unique SGBs, 10 were found to be 
shared between pig and air microbiomes: Clostridium 

Fig. 4 Sharing of species-level genome bins across pig gut and farm ecosystems with their taxonomic assignment. A UpSet plots showing 
the distribution of species-level genome bins (SGBs) across pig farm ecosystems (including pig gut, soil surrounding the farm, air inside the farm, 
animal drinking water, wastewater, workers boot soles and slaughterhouse environment). Taxonomic assignment of the 309 shared SGBs 
(highlighted in the UpSet plot by an asterisk) between pig gut, internal farm, and external farm ecosystems at the phylum (B) and family level (C)
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sp000435835, Prevotella sp002251435, Mitsuokella jala-
ludinii, Bariatricus sp004560705, UBA2868 sp004552595 
(family Lachnospiraceae), Phil1 sp004558525 and PeH17 
sp004556165 (order Christensenellales), CAG-177 
sp003514385 (family Acutalibacteraceae), L. reuteri and 
UBA4334 sp900316975 (family Bacteroidaceae). Seven 
were shared between pig and wastewater microbiomes: 
UBA1712 sp018056665 and UBA2868 sp004552595 
(family Lachnospiraceae), C. sp000435835, Methano-
brevibacter smithii, CAG-177 sp003514385 (family 
Acutalibacteraceae), Turicibacter sp001543345, Soda-
liphilus sp004557565. Three were common to air, waste-
water, and pig microbiomes: C. sp000435835, CAG-177 
sp003514385 (family Acutalibacteraceae) and UBA2868 
sp004552595 (family Lachnospiraceae). The normalized 
phylogenetic distance (nGD) values between the shared 
bacterial strains are reported in Additional file 4: Table S7 
and S8.

Dispersion of antimicrobial resistance determinants 
across the farm system
To assess the occurrence of antimicrobial resistance 
across the farm system, we first determined the presence 
of ARGs in the 309 previously detected pervasive SGBs, 
shared between the pig gut microbiome and the internal 
and external farm environments, 11 of which ben also 
deleted in slaughterhouse. For this purpose, we built a 
customized ARG catalog, based on the ORFs annotated 
as ARGs and retrieved from the assembled sequences 
using the PathoFact pipeline [9]. From a total of 5 million 
dereplicated ORFs (at 90% sequence similarity), 50,302 
were assigned to ARGs and then refined to 682 ORFs, 
retaining only ORFs with a “strict” or “perfect” match 
(Additional file  3). Within the customized ARG catalog 
we identified 5% and 4% of the ORFs co-located respec-
tively with phage and plasmid sequences, highlighting 
the potential of mobilityof these genes within our dataset.

We found that the 309 SGBs shared among the pig gut, 
internal farm (air or boot soles) and external farm (water, 
wastewater or soil) ecosystems contained 176 ARGs, 
which contributed to resistance against 18 different 
classes of antibiotic compounds (Fig. 5, Additional file 4: 
Table S9). In particular, resistance to nitroimidazole, mul-
tidrug (ARGs active against multiple antibiotic classes), 
glycopeptide antibiotics, tetracycline, phosphonic acid 
antibiotic (Fosfomycin), phenicol, antimicrobial peptide 
(general class and bacitracin), elfamycin, beta-lactam, 
amynoglicoside:aminocoumarin, diaminopyrimidine 
classes were the most represented (prevalence within 
the shared SGBs > 60%). On the other hand, resistance 
to other antibiotic compounds, such as macrolide-lin-
cosamide-streptogramin (MLS), sulfonamide, aminocou-
marin, fluoroquinolone, and nucleoside antibiotic classes, 

were the least common (prevalence within the shared 
SGBs < 50%; Fig. 5). In addition, 12 of the 176 ARGs were 
observed in at least 232 SGBs (75% of the shared SGBs), 
potentially representing the core resistome. This core was 
active against several antibiotic classes such as bacitracin 
(bacA), elfamycin (Ecol_EFTu_PLV), fosfomycin (Ctra_
murA_FOF), glycopeptide antibiotics (vanRG, vanRB), 
multidrug (efrA, Ecol_gyrA_FLO), nitroimidazole (msbA), 
antimicrobial peptide (PmrF), phenicol (Chlorampheni-
col_Florfenicol_resistance), and tetracycline (tetB(P)) 
(Fig.  6). None of these core ARGs were predicted to be 
on plasmid or phage sequences. When focusing on the 11 
SGBs also shared with the slaughterhouse environment, 
we found 107 ARGs conferring resistance to 17 different 
classes of antibiotic compounds (tetracycline, sulfona-
mide, phenicol, antimicrobial peptide, nitroimidazole, 
multidrug, MLS, glycopeptide, fosfomycin, fluoroqui-
nolone, elfamycin, diaminopyrimidine, beta-lactam, baci-
tracin, aminoglycoside:aminocoumarin, aminoglycoside, 
and aminocoumarin). Interestingly, these antimicrobial 
resistances were highly represented in all 11 SGBs, with a 
prevalence > 50% (Fig. 7A), and 18 of the 107 ARGs were 
even more widely distributed (prevalence > 75%). These 
18 genes were vanRG, vanI (conferring resistance to gly-
copeptides), ugd (resistance to antimicrobial peptides), 
TolC, poxtA, evgA, Ecol_gyrA_FLO and adeF (multid-
rug resistance), tetB(P) (resistance to tetracycline), sul3 
(resistance to sulfonamide), msbA, (resistance to nitroim-
idazole), mdtC and mdtA (resistance to aminocoumarin), 
Hinf_PBP3_BLA (resistance to beta-lactams), Ecol_
EFTu_PLV (resistance to elfamycin), Ctra_murA_FOF 
(resistance to fosfomycin), Chloramphenicol_Florfenicol_
resistance (resistance to phenicol) and bacA (resistance 
to bacitracin) (Fig. 7B). In particular, the vanRG ARG, a 
transcriptional activator of the OmpR-family, presented 
a variant annotated on a reference ORF co-located on a 
plasmid sequence. After the evaluation of the contigs car-
rying this ARG within the 11 SGBs, we highlighted that 
in 2 SGBs, the ARG was also co-located with a plasmid 
sequence, suggesting its possible horizontal mobility. 
Finally, when we verified the presence of these 18 ARGs 
in our samples, we found that they were present in 100% 
of the samples, proving their ubiquitous distribution, but 
they were generally present with a significantly lower 
abundance (in terms of RPKMs) in the soil and slaugh-
terhouse environment compared to all other ecosys-
tems (Wilcoxon rank-sum test, p < 0.05; Additional file 2: 
Fig. S2).

Discussion
In this study, we longitudinally followed two pig produc-
tion chains located in Italy from the suckling phase to the 
slaughterhouse to evaluate bacterial and ARG dispersion 



Page 8 of 15Scicchitano et al. Animal Microbiome            (2024) 6:17 

across the farm system, up to external environment. We 
found that several ARB (i.e., SGBs) and ARGs circulation 
in the farm system, with a relevant fraction, possibly of 
animal origin, dispersing to the external environment.

Specifically, we generated 530 SGBs from 294 micro-
biome samples, spanning 7 different ecosystems (i.e., pig 
gut microbiome, soil surrounding the farm, air within 
the farm, animal drinking water, wastewater, workers 
boot soles and slaughterhouse environment), with 367 
SGBs assigned to previously characterized genomes and 
163 (30%) representing new candidate species. When 
considering the SGBs dispersion pattern across the pig 
food system, 309 pervasive SGBs have been detected 
to be shared with both internal and external farm envi-
ronment. Interestingly, these SGBs distributed differ-
ently across the external farm environments, with 24 
SGBs being detected in the external soil samples, 85 in 
the watering places and 132 in the waste waters. Inter-
estingly, among the 309 pervasive SGBs, 135 SGBs were 
belonging to host-associated taxa (e.g., Oscillospiraceae, 
Lachnospiraceae, Bacteroidaceae and Ruminococcaceae) 
[3], suggesting the possible animal origin. According to 

our finding, the great majority of these putative pervasive 
pig microbiome components were reaching waste waters 
(132 SGBs), while only 32 SGBs have been detected in 
the external soil. Taken together, these data suggest the 
contamination of waste waters as the possible main route 
of dispersion of host associated species from the farm 
system. Among the most prevalent pervasive SGBs of 
putative animal origin being detected in the wastewaters 
SGBs assigned to Prevotella, Gemmiger and Blautia gen-
era have been detected. Finally, 11 pig gut components 
were defined as core SGBs, being detected in all ecosys-
tems analyzed, including different surfaces of the slaugh-
terhouse. Such SGBs included bacteria belonging to the 
genera Propionicimonas, Syntrophosphaera, Methylocys-
tis, Sideroxydans, and Pseudomonas that were not iden-
tified at the species level, and the species P. aquatica, B. 
pyogenes, E. coli, R. SFHR01 sp004555545, Novosphingo-
bium sp015657645 and A. sp001411535. The genera Syn-
trophosphaera and Pseudomonas contain some bacterial 
species with anaerobic propensity, but in particular, one 
of the identified species, B. pyogenes, is a well-known 
anaerobic component of the pig gut microbiome.

Fig. 5 Occurrence of antibiotic resistance within the shared species-level genome bins. Presence/absence of antibiotic classes against which 
antibiotic resistance genes (ARGs) are active within the 309 species-level genome bins (SGBs) shared between pig gut, internal farm and external 
farm microbiomes. MLS: macrolide-lincosamide-streptogramin
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Our data on the dispersion routes of SGBs across the 
pig farm system suggest a possible route of dispersion 
of pig gut components to surrounding environmental 
microbiomes, particularly trough the contamination of 
waste waters and raises important concerns about the 
spread of antimicrobial resistance, which can be rapidly 
transferred from pig gut components to the agricultural 
field, exposing farmers and rural residents to resistance 
determinants, with important implications for human 
health.

Indeed, according to our findings, the 309 SGBs shared 
between the pig gut microbiome and the external envi-
ronment showed a diverse and complex resistome, with 
a structure well matched to the most commonly used 
antibiotics in the pig food chain in Europe (i.e. penicil-
lins, third- and fourth generation cephalosporins, qui-
nolones, aminoglycosides, polymyxins, and macrolides) 
[39, 41]. This confirms the relevant impact of antibiotic 
use in food-producing animal systems in shaping the 
gut resistome structure of farmed animals. Interestingly, 
among the resistance genes detected in these 309 SGBs, 
the vast majority conferred resistance to antimicrobial 

classes listed as “critically important or highly impor-
tant” by the World Health Organization [47]. Specifi-
cally, 14 of the 18 ARGs belonging to the core resistome 
of the 309 SBGs and/or widely distributed (> 75%) in 
the 11 core SGBs, conferred resistance to antimicrobial 
classes defined as “critically important for human health”, 
such as vanI, vanRG and vanRB (conferring resistance 
to glycopeptide antibiotics), PmrF and ugd (resistance to 
antimicrobial peptides), Ctra_murA_FOF (resistance to 
fosfomycin compounds), Hinf_PBP3_BLA (resistance to 
beta-lactam compounds), and TolC, msbA, poxtA, Ecol_
gyrA_FLO, efrA, evgA and adeF conferring resistance to 
multiple antibiotic classes. Indeed, resistance to these 
antibiotics has been found in pathogens of high clinical 
relevance, such as carbapenem-resistant Acinetobacter, 
Enterobacteriaceae and Pseudomonas aeruginosa, and 
vancomycin-resistant Enterococcus faecium  [14, 15, 28]. 
In addition, one of these 14 ARGs was identified near to a 
plasmid sequence within two of the 11 widely occurrence 
SGBs. This ARG potentially mobile enclosed a transcrip-
tional activator of the OmpR-family (vanRG), a response 
regulator that is part of a two-component regulatory 

Fig. 6 Occurrence of the core resistome within the 309 shared species-level genome bins. Presence/absence plot of antibiotic resistance genes 
(ARGs) showing a prevalence higher than 75% across the 309 species-level genome bins (SGBs) shared between pig gut, internal farm, and external 
farm ecosystems (classes of antibiotics against which antibiotic resistance genes are active are represented by color legend)
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system that determines vancomycin degradation [50, 64]. 
This suggests that this ARG can be mobilized between 
different bacteria by horizontal gene transfer, creating 
the conditions for the risk of transmission to clinically 
relevant bacteria in the worker’s microbiome that are 
hazardous to human health. When we focused on the 11 
core SGBs that can spread from the pig farm to the exter-
nal environment and slaughterhouse, one of them was 
assigned to a multidrug-resistant E. coli, a pathogen that 
can colonize the pig and human gut [22] depending on 
the strain. This E. coli-assigned SGB was found to carry 
all ARGs present in the core resistome of the 11 shared 
SGBs, with some of these ARGs conferring resistance to 
antimicrobial classes defined as “critically important for 
human health”, such as glycopeptide antibiotics, antimi-
crobial peptides, fosfomycin compounds, and beta-lac-
tam compounds. It is noteworthy that E. coli belongs to 
bacteria carrying ARGs defined by De Angelis et  al. [8] 
with the acronym ESKAPEEc, which are responsible for 
a significant percentage of severe infections in hospitals 
(up to 75–80% of all bacterial isolates causing blood-
stream infections) [11, 42]. Such ESKAPEEc list also 
includes E. faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, P. aeruginosa, 
and Enterobacter [44]. Therefore, the presence of E. coli 
within the SGBs distributed in all ecosystems analyzed 
is a red flag for pig farm management and highlights the 

importance of monitoring the spread of resistance from 
the farm, especially that encoded by bacteria that are also 
pathogenic to humans.

Conclusions
Overall, our study adds new details to the existing liter-
ature on the risk of ARGs and multidrug resistant bac-
teria dispersion in the farm system [16, 19, 40, 51]. The 
added value is the use of metagenomics and analysis of 
pig gut microbiome, together with the characterization 
of the microbiome from the soles of workers’ boots, air, 
wastewater, water and soil around farms. Monitoring 
the behavior of ARGs and multidrug resistant bacteria 
in the farm environments, including antibiotic resistant 
pathogens that pose a threat to human health, is even 
more important in pig farms, as pig manure and waste-
water are commonly used as soil fertilizer, a procedure 
that could further increase the dispersion of these ele-
ments to the external environment. Subsequent research 
will prioritize the investigation of mobile elements to 
monitor the possible transfer of resistance determinants 
from commensal to pathogenic bacteria. Furthermore, an 
analysis of the worker’s microbiome in relation to their 
farm exposure duration could be conducted in associa-
tion with a longitudinal study could be designed to assess 
the impact of diverse production cycles over several years 
and to monitor the management practices concerning 

Fig. 7 Occurrence of the core resistome within the 11 shared species-level genome bins. A Presence/absence plot of antibiotic classes 
against which antibiotic resistance genes (ARGs), within the 11 species-level genome bins (SGBs) shared between pig gut, internal farm, external 
farm, and slaughtering ecosystems, are active. B Presence/absence plot of ARGs showing a prevalence higher than 75% across the 11 SGBs, classes 
of antibiotics against which antibiotic resistance genes are effective are represented by color legend
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manure and discharges. These additional considerations 
could improve the assessment of the potential dispersion 
of bacterial taxa and their associated ARGs within the pig 
farm and beyond into the surrounding environment.

Materials and methods
Animals, sample collection and processing
The trial was conducted in 1 commercial farm in the 
North Italy, with pigs raised in-door. Specifically, 96 pig-
lets (17 days of age) from 24 litters were chosen from the 
same farrowing unit. At weaning (28  days of age), the 
piglets were equally allocated into two different wean-
ing units (48 each) based on their body weight (BW) and 
litter of origin. These units were labeled as H and L. At 
the end of the weaning phase, piglets from weaning unit 
L were subsequently moved to the growing-finishing unit 
L, while piglets from weaning unit H were moved to the 
growing-finishing unit H.

Animal feces and surrounding environment were sam-
pled during the rearing cycle, while at the slaughterhouse 
only the environment was sampled, for a total of 294 
samples. Sampling was performed at five different time-
points between October 2019 and June 2020, as shown in 
Additional file 4: Table 1.

Specifically, a total of 199 feces were collected into two 
sterile 50-mL tubes by stimulating the rectum ampulla 
with sterile cotton swabs. The samples were then trans-
ported to the laboratory on dry ice. Soil was collected 
from 4 different areas surrounding the pig farm, at a 
depth of 10  cm using a 50-mL sterile tube [34], thus 
being able to collect the portion of soil where there was 
a higher probability of the presence of bacteria from the 
farm because the microbiome of soil surface it’s too much 
affected by atmospheric agents. Two liters of drinking 
water were collected in sterile bottles at the beginning of 
the water pipe at each timepoint. The water was trans-
ported to the laboratory and filtered onto cellulose mixed 
ester 0.22 µm pore-size filters (MF-Millipore, Darmstadt, 
Germany) through a vacuum filtration system. Bioaerosol 
was collected by sampling the air within the farm using 
a pump connected to a filter, set at a flow rate of 2–8 L/
min over approximately 6 h. The filter was then removed 
and placed in a sterile tube. From the manure lagoon, 
4 samples of wastewater were collected using a sterile 
50-mL tube. Overshoe samples were collected using a 
sterile swab rubbed onto the operators’ boots after walk-
ing inside the pig farm. Finally, 40 samples from slaugh-
terhouse environment were collected through sterilize 
swabs. In particular, 20 samples for each pig production 
chain were sampled from conveyor belt surfaces, floor 
and slaughterhouse walls. All samples were immediately 
transported to the laboratory and stored at -80 °C if not 
processed immediately. All sampled categories with the 

corresponding quantity are reported in Additional file 4: 
Table S2.

DNA extraction and shotgun metagenomic sequencing
DNA was extracted using different commercial kits 
depending on the matrix source, namely the DNeasy 
PowerWater kit (Qiagen, Hilden, Germany) for water, 
the FastDNA SPIN Kit for Soil (MP Biomedicals, Santa 
Ana, Ca, USA) following the manufacturer’s instruction 
for feces, and the DNeasy PowerSoil kit (Qiagen) for all 
other samples.

A total of 294 samples (199 pig fecal samples, 36 soil 
samples, 10 air samples, 9 water samples, 8 wastewater 
samples, 18 boot swab samples, 14 slaughterhouse envi-
ronmental samples resulting from the pooling of the 
40 collected swabs based on the environmental origin) 
were collected and processed for shotgun metagenomic 
sequencing. DNA was quantified using the QUBIT fluor-
imeter (Invitrogen, Waltham, MA, USA) and DNA librar-
ies were prepared using the QIAseq FX DNA library kit 
(Qiagen). Briefly, DNA samples were fragmented to a 
450/500-bp size, end-repaired, and A-tailed using the 
FX enzyme mix and the thermal cycle instructions pro-
vided by the manufacturer. DNA samples were then 
incubated with DNA ligase and Illumina adapter bar-
codes for 15 min at 20 °C to perform adapter ligation. A 
purification step using Agencourt AMPure XP magnetic 
beads (Beckman Coulter, Brea, California, USA) was fol-
lowed by a 10-cycle PCR for samples containing less than 
100 ng of DNA. DNA libraries were additionally purified 
and then pooled at an equimolar concentration of 4 nM. 
Final libraries were sequenced on an in-house Illumina 
NextSeq platform, located at the University of Bologna 
sequencing facility, using a 2 × 150 bp paired-end proto-
col to obtain > 3 Gb per sample.

Species‑level genome bins (SGBs) definition and ARG 
identification
Reads were filtered following the standard operative pro-
cedures of the Human Microbiome Project [53], adapting 
the procedures to pig samples when necessary.

As a first operation step, host DNA was removed from 
the raw reads of the pig samples using the bmtagger soft-
ware, with the Sus scrofa genome as a reference (RefSeq 
assembly accession: GCF_000003025.6). Reads were then 
quality trimmed, ensuring a minimum quality score of 20, 
and length truncated using trimBWAstyle [52]. Dupli-
cates were identified and eliminated using the Picard tool 
EstimatedLibraryComplexity (v. 1.71). Next, high-qual-
ity reads were assembled using megahit (v. 1.2.9) with 
default settings. The resulting assembly files from the pig 
samples were utilized to create a curated gene catalog 
using the PathoFact pipeline (v 1.0) [9], the first version 
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of the catalog was additionally revised using the RGI tool 
(v. 6.0.2) [1] to retrieve only open reading frames (ORFs) 
with “perfect” and “strict” matches, based on the CARD’s 
curated bit-score cut-offs automatically computed by the 
tool. Additionally, the metawrap binning module (metaw-
rap v. 1.3.2) was employed to construct MAGs from each 
sample. Only MAGs with completeness over 50% and 
contamination lower than 5% were retained, assessed 
through the checkm lineage_wf workflow [37]. Further 
refinement was carried out by dereplicating the high-
quality MAGs into species-level genome bins (SGBs) 
using the dRep dereplicate command (v. 3.2.2) with the 
following parameter “–ignoreGenomeQuality -pa 0.9 -sa 
0.95 -nc 0.30 -cm larger -centW 0”. Taxonomic classifica-
tion of SGBs was performed using the gtdbtk classify_wf 
workflow with default parameters (Chaumeil et al., 2020). 
The abundance of SGBs in each sample was quantified 
using the metawrap quant_bins module (metawrap v. 
1.3.2) and to annotate the genomes, prokka (v. 1.14.6) 
was employed using the previously curated ARG catalog 
described above, as the priority database for annotation. 
For unannotated ORFs, prokka (v. 1.14.6) uses addi-
tional databases such as UniProtKB and hidden Markov 
model profiles, including combined_Toxin, dbCAN-
fam-HMMs, HAMAP, and Virulence_factor. Finally, all 
GFF files generated by prokka were concatenated and 
the presence or absence of annotated ORFs in each SGB 
was determined using Roary with the parameters -i 90 
-cd 25 -e -g 1,000,000. The PathoFact annotation of each 
gene cluster calculated by Roary was extracted from the 
concatenated GFF file using the locus_tag reference in 
the presence/absence table. This presence/absence table 
of the ARGs within the SGBs was also used to assess the 
abundance of ARGs within the samples, by multiplying 
it with the matrix of the SGBs abundance across sam-
ples. Also, the co-localization of vanRG gene with plas-
mid sequences was assessed using PlasFlow tool (v. 1.1) 
[24] with default parameters, retrieving the full contigs 
sequences of the 11 core SGBs where the ARG was found.

Additionally, the SGBs obtained were compared, using 
MinHash sketches implemented in the mash tool (v. 2.3), 
with 4930 SGBs from > 150,000 human gut microbiome 
MAGs, including different individuals, spannning age, 
geography, and lifestyle [38] and a total of 7489 genomes 
from two of the most recent studies based on MAGs 
regarding the pig gut microbiome [6, 20, 23], to under-
stand if they were already known identified genomes.

Detection of strain‑sharing events
To gain a deeper understanding of the potential shar-
ing of microbiome components between pig and envi-
ronmental metagenomes, we performed a strain-level 
population structure analysis using StrainPhlAn3 [2] as 

previously described in the work by Valles-Colomer et al. 
[56]. Specifically, we performed the analysis on the most 
abundant SGBs, i.e. those that are represented by at least 
5 MAGs and whose abundance was > 5 GCMs in at least 
one pig individual. Then, we constructed a custom SGB 
marker database for each species under investigation. 
This was done by selecting core genes specific to each 
SGB from the output of the Roary tool. Core genes were 
defined as genes present exclusively in the examined SGB 
and absent in the rest of the dataset. Then MAGs within 
each SGB were fragmented into 150-nucleotide frag-
ments and aligned against their corresponding core genes 
using bowtie2 (v. 2.3.4.3) with the "–sensitive" option. A 
core gene was considered a valuable marker gene for an 
SGB if it was mapped by at least 90% of the MAGs, cov-
ering more than 50% of the gene’s length.

To investigate strain sharing, strain-level phylogenies 
were reconstructed using bowtie2 (–sensitive option) 
and StrainPhlAn3, with the parameters "–marker_in_n_
samples 1 –phylophlan_mode accurate". Additionally, a 
parameter called "–sample_with_n_markers" was set to 
retain only samples with at least 10 marker genes.

To identify instances of strain sharing, we first set 
SGB-specific normalized phylogenetic distance (nGD) 
thresholds. These thresholds effectively separated the dis-
tributions of nGD values for strains retained within the 
same pig group (indicating the same strain) from those 
of different pig group (indicating different strains) in our 
pig samples. The nGD values were calculated as leaf-to-
leaf branch lengths normalized by the total tree branch 
length in the phylogenetic trees generated by Strain-
PhlAn3, which were constructed based on marker gene 
alignments. The nGD thresholds were defined by maxi-
mizing Youden’s index and limiting at 5% the fraction of 
unrelated individuals to share the same strain as a bound 
on a false discovery rate.

Biostatistics
All statistical analyses were performed using the R 
software (v. 4.2.0, www.r- proje ct. org) with the pack-
ages vegan (v. 2.6-2) [36], RcppAlgo (v. 2.6.0) [63], xlsx 
(v. 0.6.5) [13], ggVennDiagram (v. 1.2.2) [18], ggplot2 
(v. 3.4.0) [61], ComplexUpset (v. 1.3.3) [31], RColor-
Brewer (v. 1.1-3) [35], gplots (v. 3.1.3) [58], viridis (v. 
0.6.2) [48], reshape2 (v. 1.4.4) [60], tidyverse (v. 1.3.2) 
[62], and hrbrthemes (v. 0.80) [43]. The vegdist func-
tion (method = "bray”) was used to calculate beta diver-
sity while the diversity function was used to calculate 
alpha diversity. Both functions are included in the 
vegan package. Separation of data in principal coordi-
nate analysis (PCoA) was assessed using a permutation 
test with pseudo-F ratios (adonis function in the vegan 
package). The Wilcoxon rank-sum and Kruskal–Wallis 

http://www.r-project.org
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tests were used to assess differences in alpha diver-
sity and ARGs abundance (in terms of RPKMs) dis-
tributions between groups. P-values were adjusted 
using p.adjust by method = "fdr" of the function in R. 
Adjusted p-values ≤ 0.05 were considered statistically 
significant.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s42523- 024- 00305-8.

Additional file 1: Fig. S1. Schematically representation of bacterial 
strains cooccurrence across pig feces and other environments. Colored 
dots represent SGBs identified as the same strain between samples. As 
highlighted, three strains are in common with more than one environ-
ment and pig feces. The others are exclusively shared between pig gut 
microbiome and only one environmental sample.

Additional file 2: Fig. S2. Abundance of the 18 shared ARGs within all 
ecosystems. Description of data: Boxplots based on the abundance of 
the 18 shared ARGS, expressed as genome copies million reads, all ARGs 
showed a significant variation in terms of abundance among all microbial 
ecosystems (Kruskal-Wallis test, p-value < 0.001). Sample groups marked 
with different letters are statistically significant different (Wilcoxon rank-
sum test, p < 0.05).

Additional file 3. Antibiotic resistance genes catalog. Antibiotic resistance 
genes open reading frames within our metagenome samples.

Additional file 4. Supplementary Tables S1–S9.
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