
A&A, 682, A72 (2024)
https://doi.org/10.1051/0004-6361/202348305
c© The Authors 2024

Astronomy
&Astrophysics

AMICO galaxy clusters in KiDS-DR3: Cosmological constraints
from the angular power spectrum and correlation function

M. Romanello1,2 , F. Marulli1,2,3 , L. Moscardini1,2,3 , G. F. Lesci1,2 , B. Sartoris4,5 , S. Contarini1,2,3 ,
C. Giocoli1,2,3 , S. Bardelli2, V. Busillo6,7,8 , G. Castignani1,2 , G. Covone6,7,8 , L. Ingoglia1 , M. Maturi9,10 ,

E. Puddu7, M. Radovich11 , M. Roncarelli2, and M. Sereno2,3

1 Dipartimento di Fisica e Astronomia “A. Righi” – Alma Mater Studiorum Università di Bologna, Via Piero Gobetti 93/2,
40129 Bologna, Italy
e-mail: massimilia.romanell2@unibo.it

2 INAF – Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, Via Piero Gobetti 93/3, 40129 Bologna, Italy
3 INFN – Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
4 Universitäts-Sternwarte München, Fakultät für Physik, Ludwig-Maximilians-Universität München, Scheinerstrasse 1,

81679 München, Germany
5 INAF – Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, 34143 Trieste, Italy
6 Dipartimento di Fisica “E. Pancini”, Università di Napoli Federico II, C.U. di Monte SantAngelo, Via Cintia, 80126 Napoli, Italy
7 INAF – Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy
8 INFN – Sezione di Napoli, Via Cintia, 80126 Napoli, Italy
9 Zentrum für Astronomie, Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany

10 ITP, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
11 INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy

Received 18 October 2023 / Accepted 21 November 2023

ABSTRACT

We study the tomographic clustering properties of the photometric cluster catalogue derived from the third data release of the Kilo
Degree Survey (KiDS), focusing on the angular correlation function and its spherical harmonic counterpart: the angular power spec-
trum. We measured the angular correlation function and power spectrum from a sample of 5162 clusters, with an intrinsic richness
of λ∗ ≥ 15, in the photometric redshift range of z ∈ [0.1, 0.6]. We compared our measurements with theoretical models, within the
framework of the Λ cold dark matter cosmology. We performed a Markov chain Monte Carlo (MCMC) analysis to constrain the
cosmological parameters, Ωm and σ8, as well as the structure growth parameter, S8 ≡ σ8

√
Ωm/0.3. We adopted Gaussian priors on

the parameters of the mass-richness relation, based on the posterior distributions derived from a previous joint analysis of cluster
counts and weak-lensing mass measurements carried out on the basis of the same catalogue. From the angular correlation function,
we obtained Ωm = 0.32+0.05

−0.04, σ8 = 0.77+0.13
−0.09, and S8 = 0.80+0.08

−0.06, which are in agreement, within 1σ, with the 3D clustering result based
on the same cluster sample and with existing complementary studies on other data sets. For the angular power spectrum, we checked
the validity of the Poissonian shot noise approximation, also considering the mode-mode coupling induced by the mask. We derived
statistically consistent results, in particular, Ωm = 0.24+0.05

−0.04 and S8 = 0.93+0.11
−0.12; while the constraint on σ8 alone is weaker with respect

to the one provided by the angular correlation function, σ8 = 1.01+0.25
−0.17. Our results show that the 2D clustering from photometric

cluster surveys can provide competitive cosmological constraints with respect to the full 3D clustering statistics. We also demonstrate
that they can be successfully applied to ongoing and forthcoming spectrometric and photometric surveys.

Key words. cosmological parameters – large-scale structure of Universe

1. Introduction

The spatial properties of the large-scale structure (LSS) of the
Universe have been recognized as key cosmological probes.
According to the Λ cold dark matter (ΛCDM) model, galaxy
clusters are the largest gravitationally bound systems that emerge
from the cosmic web of LSS (e.g. Kaiser 1984). They trace
peaks in the large-scale matter density field, produced by gravi-
tational infall and the hierarchical merging of dark matter halos
(Bardeen et al. 1986; Tormen 1998; Despali et al. 2016). Since
their growth is related to the expansion rate of the Universe and
to the underlying distribution of matter, cluster statistics rep-
resent a powerful tool for understanding the structure forma-
tion process, constraining the neutrino mass (e.g. Marulli et al.

2011; Villaescusa-Navarro et al. 2014; Roncarelli et al. 2015),
and investigating the nature of dark matter and dark energy (e.g.
Mantz et al. 2008; Vikhlinin et al. 2009; Marulli et al. 2012;
Sartoris et al. 2016; Costanzi et al. 2019; Moresco et al. 2021;
Lesci et al. 2022a,b) as well as that of gravity itself (e.g.
Marulli et al. 2021).

Despite the fact that cluster catalogues usually contain a
lower number of objects with respect to galaxy catalogues, cos-
mology with clusters presents a series of key advantages. Galaxy
clusters are hosted by the most massive virialised halos, so
they are highly biased tracers, that is, they are more clustered
than galaxies (e.g. Mo & White 1996; Moscardini et al. 2001;
Sheth et al. 2001; Hütsi 2010; Allen et al. 2011; Moresco et al.
2021). Furthermore, thanks to their lower peculiar velocities,
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galaxy clusters are relatively less affected by nonlinear dynam-
ics at small scales; in particular, by the effect of incoherent
motions within virialised structures that generates the so-called
fingers-of-God effect (e.g. Jackson 1972; Veropalumbo et al.
2014; Sereno et al. 2015; Marulli et al. 2017). The impact of
redshift-space distorsion (RSD) is thus reduced, allowing us to
simplify theoretical assumptions in the modelling of their clus-
tering signal.

Over the past few years, cluster catalogues have been con-
structed from observations at several wavelengths (Allen et al.
2011), for example, by exploiting the X-ray emission from
the diffuse intracluster medium (ICM; Rosati et al. 2002;
Böhringer et al. 2004; Pacaud et al. 2016) and the millimeter
Sunyaev–Zel’dovich effect produced by the inverse Compton
scattering between the hot ICM electrons and the cosmic
microwave background (CMB) photons (Vanderlinde et al.
2010; Planck Collaboration VIII 2011), as well as the opti-
cal and near-infrared (IR) starlight emission from galaxies
(Eisenhardt et al. 2008; Bellagamba et al. 2018). The impor-
tance of this multiwavelength approach relies on the possibility
to relate different observables, accessible with spectro-
photometric observations, to the total mass of clusters, mostly
composed of dark matter. The existence of a so-called mass-
observable scaling relation (Okabe et al. 2010; Allen et al. 2011;
Giodini et al. 2013; Sereno & Ettori 2015; Bellagamba et al.
2019; Sereno et al. 2020; Giocoli et al. 2021) represents a use-
ful link between the theoretical mass function and the distribu-
tion of clusters in the space of survey observables and gives us
the opportunity to predict the effective bias of the cluster sample
(e.g. Branchini et al. 2017; Lesci et al. 2022b).

In recent decades, the cosmic distribution of the LSS has been
investigated in a progressively more accurate and precise way.
Typically, measurements of clustering are based on some cosmo-
logical assumption for the redshift-distance relation and require
an appropriate reconstruction of the position of cosmic struc-
tures, which can be provided by spectroscopic redshift surveys,
such as the Sloan Digital Sky Survey (SDSS; see Tegmark et al.
2004) or, more recently, the Baryon Oscillation Spectroscopic
Survey (BOSS; see Tojeiro et al. 2012) and the Dark Energy
Spectroscopic Instrument Legacy Survey (DESI; see Hang et al.
2021). However, spectroscopic surveys are time-consuming thus,
in a given amount of observational time, they have a series of
limitations in terms of sky coverage and numbers of detected
objects. On the other hand, ongoing and future photometric sur-
veys, such as the Kilo Degree Survey (KiDS; see de Jong et al.
2017; Kuijken et al. 2019), Dark Energy Survey (DES; see
Dark Energy Survey Collaboration 2016), Hyper Suprime-Cam
(HSC) Subaru Strategic Program (HSC-SSP; see Aihara et al.
2018), Vera C. Rubin Observatory Legacy Survey of Space
and Time (LSST; see LSST Dark Energy Science Collaboration
2012) and Euclid mission (Laureijs et al. 2011; Scaramella et al.
2014; Amendola et al. 2018; Euclid Collaboration 2022) will
allow us to cover a wider area, imaging also faint sources
at high z.

One of the most powerful tools of modern cosmology is the
analysis of the two-point correlation function. The simplest and
historically first point-process statistics to be applied are: the
two-point angular correlation function in the configuration space
and its harmonic-space counterpart, namely, the angular power
spectrum (Hauser & Peebles 1973; Peebles 1973). In principle,
these two statistics bring on the same cosmological information,
although in practice they have different sensitivities to different
scales, due to the finite sizes of real catalogues and, thus, the lim-
ited range of scales that can be probed. One of their fundamen-

tal advantages with respect to the full 3D study is that we can
measure the clustering signal from the angular position alone,
without any cosmological assumption in converting redshifts to
distances (Asorey et al. 2012; Salazar-Albornoz et al. 2014).

The aim of this work is to perform a cosmological analy-
sis based on the catalogue of galaxy clusters identified by the
Adaptive Matched Identifier of Clustered Objects (AMICO; see
Bellagamba et al. 2018) algorithm from the third data release of
the Kilo Degree Survey (KIDS-DR3), presented in Maturi et al.
(2019). Here, the availability of photometric redshift measure-
ments allows us to divide the catalogue into shells and to per-
form a “tomographic” study, which can provide independent
constraints relative to the 3D reconstruction.

The current analysis has been performed with the
CosmoBolognaLib (Marulli et al. 2016)1, a set of free soft-
ware C++ and Python libraries that we used to manage cluster
catalogues, to measure their statistical quantities and to perform
the Bayesian inferences. This work is part of a series of papers
aimed at exploiting distant clusters in KiDS for both cosmolog-
ical (Bellagamba et al. 2019; Giocoli et al. 2021; Ingoglia et al.
2022; Lesci et al. 2022a,b; Busillo et al. 2023) and astrophysical
studies (Radovich et al. 2020; Puddu et al. 2021).

The paper is organised as follows. In Sect. 2, we present the
AMICO KiDS cluster catalogue. In Sects. 3 and 4, we describe
the methods used to measure and model the cluster angular cor-
relation function and power spectrum, respectively. In Sect. 5,
we discuss the results of the cosmological analysis. Finally, in
Sect. 6 we give our conclusions.

2. Data: AMICO KiDS-DR3 catalogue

KiDS is a European Southern Observatory (ESO) public opti-
cal imaging survey, obtained with the OmegaCAM wide-field
imager (Kuijken 2011) mounted on the 2.6 m Very Large Tele-
scope (VLT) Survey Telescope (VST), at the Paranal Obser-
vatory. This work is focused on its third release, KiDS-DR3
(de Jong et al. 2017). The DR3 covers a total area of 438 deg2

over two fields, one equatorial (KiDS-N) and the other near the
South Galactic Pole (KiDS-S), with aperture photometry in the
u, g, r, and i bands down to the limiting magnitudes of 24.3, 25.1,
24.9, and 23.8, respectively. A final effective area of 377 deg2

(Maturi et al. 2019), displayed by the pixelated KiDS-DR3 foot-
print binary mask presented in Fig. 1 (Hildebrandt et al. 2017),
which can be found on the KiDS website2, was obtained after
rejecting all regions affected by satellite tracks, within halos
produced by bright stars and within secondary or tertiary halo
masks used for the weak lensing analysis (de Jong et al. 2015;
Kuijken et al. 2015).

As discussed in Maturi et al. (2019), clusters were
detected thanks to the application of the AMICO algorithm
(Bellagamba et al. 2018), which identifies galaxy overdensities
by exploiting a linear matched optimal filter. The cluster detec-
tion process relies only on the angular coordinates, magnitudes,
and photometric redshifts of galaxies, avoiding a colour-based
selection related to the red-sequence of clusters.

The complete sample contains 7988 objects, with a signal-
to-noise ratio (S/N) > 3.5, in the redshift range z ∈ [0.10, 0.80].

1 https://gitlab.com/federicomarulli/CosmoBolognaLib,
V6.1. The new likelihood functions to model the angular correlation
function and power spectrum will be released in the upcoming version
of the libraries.
2 https://kids.strw.leidenuniv.nl/DR3/lensing.php
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Fig. 1. KiDS-DR3 footprint binary mask (Hildebrandt et al. 2017), pixelated with Healpix (Górski et al. 2005), with a resolution given by Nside =
512. The top and the middle panels cover the extension of KiDS-N, while the bottom panel refers to KiDS-S. Clusters are distributed within the
unmasked area (yellow). Small holes and irregularities reflect the presence of severe incompleteness and substantial photometric degradation, due
to satellite tracks, stars etc.

We limit the current study to z ∈ [0.10, 0.60] because our model
is based on the mass-richness scaling relation estimated from
the stacked weak-lensing analysis presented in Bellagamba et al.
(2019) and Lesci et al. (2022a), which has been calibrated in
this photo-z range. The cluster detection algorithm returns an
unbiased redshift estimate with respect to the input photometric
catalogue, but it is sensitive to the photo-z bias of the under-
lying galaxy population, discussed in de Jong et al. (2017) for
the KiDS survey. Thus, as suggested by Maturi et al. (2019),
we correct the estimated cluster redshifts with the relation z =
zest−0.02(1 + zest).

The mass proxy for the scaling relation used in this paper is
the intrinsic richness provided directly by AMICO, defined as
the sum of the membership probabilities:

λ∗j =

Ngal∑
i=1

Pi( j) with
{

mi < m∗(z j) + 1.5
ri( j) < R200(z j),

(1)

where Pi( j) is the probability assigned by AMICO to the ith
galaxy of being a member of a given detection, j; ri( j) is
the distance of the ith galaxy from the centre of the jth clus-
ter; R200(z j) is the sphere radius in which the mean density is
200 times the critical density at redshift z j; and m∗ is a func-
tion of redshift representing the typical magnitude used in
the Schechter function of the cluster model employed by the
AMICO algorithm (Maturi et al. 2019). Thus, for a given detec-
tion the intrinsic richness represents the expected number of vis-
ible galaxies, under the condition expressed in Eq. (1). Accord-
ing to this definition, it is a nearly redshift-independent quan-
tity because the threshold m∗ + 1.5 is well below the mag-
nitude limit of the galactic sample, in the considered redshift
interval. For our analysis, we selected clusters with λ∗ ≥ 15,
which ensures a purity higher than 97% and a completeness
higher than 50% over the whole sample (Maturi et al. 2019).

Finally, to perform a tomographic analysis, we split our cat-
alogue in three different redshift bins. Thinner shells preserve
clustering information along the line of sight and are closer to a
full 3D study (Asorey et al. 2012; Salazar-Albornoz et al. 2014;
Balaguera-Antolínez et al. 2018), but they reduce the projected
number density of clusters and, thus, the accuracy and the pre-
cision of the measurements (Salazar-Albornoz et al. 2014). The
redshift bin width was chosen to be five times larger than the
maximum photometric error, while we increased the amplitude
of the first redshift shell to improve the statistics. The final sam-
ple contains 5162 clusters, 1019 in z ∈ (0.10, 0.30], 2072 in
z ∈ (0.30, 0.45], and 2071 in z ∈ (0.45, 0.60].

3. Angular correlation function of AMICO KiDS-DR3
catalogue

In this section, we describe the methods used to measure and
model the angular correlation function.

3.1. Angular correlation function estimator

The joint probability of finding two clusters in the solid angle
elements δΩ1 and δΩ2, at a distance θ is given by:

δP(θ) = n2
Ω[1 + w(θ)]δΩ1δΩ2, (2)

where nΩ is the mean number of clusters per unit solid angle.
Thus, the angular correlation function w(θ) represents the excess
probability of finding a pair of objects separated by the angular
distance θ, relative to that expected from a random distribution.
We measured the observed angular correlation function using the
Landy & Szalay (1993, LS) estimator:

wLS(θ) =
DD(θ) + RR(θ) − 2DR(θ)

RR(θ)
, (3)
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Fig. 2. Angular correlation function measured in three redshift bins:
z ∈ (0.10, 0.30] (blue circles), z ∈ (0.30, 0.45] (black squares),
z ∈ (0.45, 0.60] (red triangles). Error bars are estimated as the
diagonal terms of the jackknife covariance matrix. The dashed lines
represent the model computed with cosmological parameters by
Planck Collaboration VI (2020, Table 2, TT, TE, and EE+lowE). The
solid lines show the median of the model distribution computed from
the combined posterior of our cosmological analysis, while the shaded
regions highlight the 68% confidence levels.

where DD(θ), RR(θ), and DR(θ) are the number of data-data,
random-random, and data-random pairs in the angular bin θ ±
∆θ/2, respectively. The measurement is performed in eight
logarithmically-spaced bins, between 10−20 and 200 arcmin,
with a conservative angular separation which takes into account
the maximum virial cluster size in every redshift bin (for the

lower limit) and the angular scale of the survey (for the upper
limit). The results are shown for each redshift bin in Fig. 2,
where they are also compared to the model presented in Sect. 3.2
and to the result of the cosmological analysis of Sect. 5.2, where
we also provide a discussion about the excess of clustering
detected in the last redshift bin.

We constructed the random catalogue by randomly extract-
ing the angular (RA, Dec) cluster coordinates within the survey
observational tiles, using the same masks adopted in Maturi et al.
(2019). To limit shot noise effects, our random catalogue is
30 times larger than the original one. The covariance matrix is
estimated through the jackknife method (Norberg et al. 2009).
Specifically, for each redshift slice, we projected our catalogue
onto the celestial sphere, using the equal-area Healpix pixeli-
sation scheme (Górski et al. 2005, see Sect. 4.1), with a low-
resolution Nside = 128, that is, corresponding to a pixel side of
27 arcmin. Clusters belonging to the same pixel are considered
part of a unique region. Therefore, the exact number of regions
depends on the quantity of clusters available in each redshift bin
and is of the order of 1000. This allows us to estimate the covari-
ance matrix with different NJK measurements of the angular cor-
relation function, obtained after removing one region at a time.

3.2. Angular correlation function model

On linear scales, the cluster density field, δcl(x), is related to the
dark matter density field, δDM(x), through a scale-independent
bias, bcl(z):

δcl(x) ≡
ncl(x) − n̄cl

n̄cl
= bcl(z)δDM(x), (4)

which implies that in the Fourier space, P(k) = b2
clPDM(k), where

ncl(x) is the cluster density, n̄cl is its mean value and PDM(k) is
the linear dark matter power spectrum. We employed the fit-
ting formulae provided by Eisenstein & Hu (1998), which in
the angular range of our w(θ) and C` analyses produce consis-
tent results to those provided by CAMB (Lewis et al. 2000) and
CLASS (Lesgourgues 2011; Blas et al. 2011). Given the nor-
malised selection function φi(z) in the ith photometric redshift
bin (see Sect. 3.3), we can project the density field onto the celes-
tial sphere, in a given direction n̂ on the sky:

δi
cl(n̂) =

∫
dzφi(z)δi

cl(x). (5)

The angular correlation function at a given separation θ is the
projection of the 3D spatial correlation function, ξ(s):

wi j(θ) =

∫ ∫
dz1dz2φ

i(z1)φ j(z2)ξ(s), (6)

where s =
√

r2(z1) + r2(z2) − 2r(z1)r(z2) cos θ and r(z) is the
comoving distance at redshift z. In this work, we assume the
plane-parallel approximation and we parameterise the linear
power spectrum in redshift space as:

P(k, µ) = (beff + fµ2)2PDM(k), (7)

where f ≡ d ln D
d ln a is the linear growth rate, µ is the cosine of the

angle between k and the line of sight and beff is the effective bias,
namely, the halo bias weighted with the halo mass function (see
Sect. 3.4). The Fourier transform of the power spectrum gives
us the 3D correlation function, which can be expressed in terms
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of multipoles ξl(s) and Legendre polynomials Pl(µ) (Hamilton
1992):

ξ(s, µ) = ξ0(s) + ξ2(s)P2(µ) + ξ4(s)P4(µ) + O(s4). (8)

We keep only the monopole because it includes most of the
information (Salazar-Albornoz et al. 2014; García-Farieta et al.
2020). It can be written as a function of the real-space correla-
tion function, ξDM(r):

ξ0(s) =

[
b2

eff +
2
3

beff f +
1
5

f 2
]
ξDM(r). (9)

3.3. Redshift selection function model

Photometric redshifts have larger uncertainties than spectro-
scopic ones. Because of photo-z errors, cluster photometric red-
shift distributions can be different from the true redshift distri-
butions, thus we need to account for the conditional probability
of having a cluster at the true redshift, z, given the observed red-
shift, zphot.

In Eqs. (5) and (6), we consider the radial selection function
as the normalised cluster distribution in a given redshift bin ∆zi.
In other words, it represents the probability of including a cluster
in the corresponding photometric shell, depending on the selec-
tion characteristics of our study, namely on the binning strategy
(Asorey et al. 2012). Our photometric volume-limited survey is
selected by the top-hat window function:

W(zphot) =

{
0 zphot ≤ zi

min or zphot > zi
max

1 zi
min < zphot ≤ zi

max
, (10)

where zmin and zmax represent the lower and the upper limits of
our photometric redshift interval, respectively. Including objects
into redshift shells of a given redshift width ∆zi allows us to
“integrate out” the effect of photo-z errors (Bykov et al. 2023).
The conditional probability of detecting a cluster in a sample
selected with this window function, namely, our normalised red-
shift distribution, is obtained with the following convolution
(Budavári et al. 2003; Crocce et al. 2011; Hütsi et al. 2014):

φi(z) = φ(z|W) = φ(z)
∫ ∞

0
dzphotW(zphot)P(zphot|z), (11)

where φ(z) is the true underlying full redshift distribution:

φ(z) =

dN
dz∫

dz dN
dz

=
1
N

dN
dz
, (12)

and P(zphot|z) is a Gaussian distribution, as derived by Lesci et al.
(2022a,b) from the mock catalogues described in Maturi et al.
(2019), whose mean is z, while the standard deviation is equal
to:

σz = σz,0(1 + z), (13)

with σz,0 = 0.02. An estimate of the true redshift distribution can
be then obtained as follows:

dN
dz

= Ωsky
dV

dzdΩ

∫ ∞

0

dn(M, z)
dM

dM
∫ ∞

0
dλ∗P(λ∗|M, z), (14)

where Ωsky is the survey area in rad2. Here, the cosmological
dependence is provided by dV

dzdΩ
, the derivative of the comov-

ing volume, by dn(M,z)
dM , the halo mass function modelled with the

functional form by Tinker et al. (2008), and by P(λ∗|M, z), where

λ∗ is the intrinsic richness. The latter integral convolves the theo-
retical mass function, taking into account the shape of the mass-
observable scaling relation of the cluster sample (Lesci et al.
2022a):

P(λ∗|M, z) =
P(M|λ∗, z)P(λ∗|z)

P(M|z)
, (15)

where P(λ∗|z) is a cosmology-independent power-law with an
exponential cut-off calibrated from mock catalogues (Lesci et al.
2022a), P(M|z) is a normalisation factor computed as the inte-
gral of the numerator, P(M|λ∗, z) is modelled as a log-normal
distribution, in which the mean is given by the mass-observable
scaling relation and the root mean square is a free parameter of
the model:

P(log M|λ∗, z) =
1

√
2πσintr

exp
− x2(M, λ∗, z)

2σ2
intr

 · (16)

Here,

x(M, λ∗, z) = log
M

1014 M� h−1 −

α + β log
λ∗

λ∗piv
+ γ log

E(z)
E(zpiv)

 ,
(17)

where E(z) ≡ H(z)/H0. We set λpiv = 30 and zpiv = 0.35,
which represent the central values of intrinsic richness and red-
shift in the ranges covered by the whole sample, as found by
Bellagamba et al. (2019). The intrinsic scatter is modelled with
two free parameters, σintr,0 and σintr,λ∗ , as follows:

σintr = σintr,0 + σintr,λ∗ log

 λ∗λ∗piv

 · (18)

Finally, we need to compute the cluster redshift distribution
in a given redshift bin, accounting also for the probability of
measuring λ∗obs given the true intrinsic richness, λ∗, and mod-
elling the selection effects and the incompleteness of the sam-
ple. This requires a further convolution in the intrinsic richess
bin ∆λ∗i = ∆λ∗(∆zi), with a Gaussian P(λ∗obs|λ

∗). We considered
an uncertainty of 17% on λ∗obs, as in Lesci et al. (2022a,b). In
Fig. 3, we show the KiDS-DR3 photometric redshift distribution
and the complete number counts model, expressed by:

dN
dzi = Ωsky

dV
dzdΩ

∫ ∞

0
dM

dn(M, z)
dM

∫ ∞

0
dλ∗P(λ∗|M, z)

×

∫
∆zi

dzphotP(zphot|z)
∫

∆λ∗i

dλ∗obsP(λ∗obs|λ
∗).

(19)

3.4. Effective bias of the cluster sample

Under the assumption that clusters trace the locations of the
large-scale dark matter halos, we adopt a simple linear rela-
tion between dark matter and cluster power spectra: b2

cl =
P(k)/PDM(k). While, in general, the bias is expected to be
a function of scale, at large linear scales it can be consid-
ered as a scale-independent quantity (e.g. Estrada et al. 2009;
Manera & Gaztañaga 2011; Sawangwit et al. 2011). On the
other hand, the evolution of both dark matter and cluster cluster-
ing leads to a bias which is a function of halo mass and redshift
(Estrada et al. 2009).

Following the approach of Lesci et al. (2022b), we assume a
constant bias, neglecting any redshift evolution within the broad
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Fig. 3. Normalised redshift distributions. The histograms represent
φ(zphot), from the photometric cluster catalogue, while φ(ztrue|W) is
predicted from Eq. (11), using the theoretical halo mass function
model by Tinker et al. (2008), with cosmological parameters provided
by Planck Collaboration VI (2020, along with Table 2, TT, TE, and
EE+lowE), then convolved with our photometric window function, W.
The shaded areas indicate the limits of our photometric redshift bins.

photometric shell. The effective bias is derived theoretically, as
the average over the number of clusters, Ni, in the photometric
sample:

bi
eff =

1
Ni

Ni∑
j=1

∫ ∞

0
dz

∫ ∞

0
dλ∗

∫ ∞

0
dMb(M, z)P(M|λ∗, z)

× P(z|zphot, j)P(λ|λobs, j),

(20)

where b(M, z) is the halo bias, according to the model presented
in Tinker et al. (2010).

4. Angular power spectrum of AMICO KiDS-DR3
catalogue

In this section, we describe the methods used to measure and
model the angular power spectrum.

4.1. Pixelated density map

For every different redshift bin, we generate a cluster density
map by projecting the catalogue objects onto the celestial sphere,
using the Healpix pixelisation (Górski et al. 2005), with a res-
olution of Nside = 512, which ensures a pixel size of approx-
imately 7 arcmin, comparable with the minimum angular scale
exploited in the w(θ) analysis. The density contrast, δcl,I , in each
pixel I is given by:

δcl,I =
ncl,I

n̄cl
− 1, (21)

where ncl,I is the cluster number density in the Ith pixel and n̄cl
is its mean, computed in the unmasked area of the survey. The

pixelisation procedure smooths information on scales smaller
than the pixel size, i.e. ` > 1500, which is, in our case, well
above the maximum value of ` used in our analysis. Different
observational effects, like stellar density, air-mass, sky flux, and
reddening might introduce biases in the galaxy photometry, if
not taken into account (Loureiro et al. 2019). This could lead
to biases in the cluster detection, thus in the clustering statis-
tics. In any case, regions affected by these effects are already
excluded, since we estimate the cluster density in the unmasked
field only, given by the KiDS-DR3 footprint binary mask. Fur-
thermore, as Maturi et al. (2019) imposed the strict magnitude
cut at r = 24 (note: the limit in the r band for KiDS-DR3 is
24.9; see Sect. 2), corresponding to the depth of the shallowest
tile, the mean cluster count does not depend on the sky posi-
tion (Lesci et al. 2022b). For these reasons and following, for
example Branchini et al. (2017), clusters are counted as single
objects, thus no weighting scheme has been applied to account
for their selection effects. In Fig. 1, we show the KiDS-DR3
footprint mask, degraded from a resolution of Nside = 2048 to
Nside = 512, keeping the 377 deg2 survey area, which yields to a
final unmasked sky fraction of fsky ≈ 0.9%. The irregular geome-
try of KiDS-DR3 survey is reflected in the large number of small
holes contained in the mask. Thus, we avoid any apodisation of
the mask, which would lead to a significant modification in the
shape and to a non-trivial loss of area (White et al. 2022).

4.2. Angular power spectrum estimator

The angular power spectrum of clusters in a given redshift bin,
i, can be measured from the harmonic decomposition of the
observed density field. The pixelated density contrast, being
defined on a 2D sphere, can be expanded in a series of spher-
ical harmonics:

δi
cl(n̂) =

∞∑
`=0

m=+`∑
m=−`

ai
`mY`m(n̂), (22)

where Y`m are the spherical harmonics, computed at the direction
on the sky, n̂ ≡ (θ, ϕ), a`m, are the harmonic coefficients, defined
by:

ai
`m =

∫
dn̂ δi

cl(n̂)Y∗`m(n̂) '
Npix∑

I

δi
cl,IY

∗
`m(θI , ϕI)∆ΩI , (23)

the symbol ∗ indicates the complex conjugation operator, while
∆ΩI is the area of the Ith pixel. In this analysis, we used
the angular power spectrum estimator introduced by Peebles
(1973) and Hauser & Peebles (1973). For a partial sky survey,
the masked density contrast is related to the full-sky field through
a binary mask function, δ̃cl(n̂) = M(n̂)δcl(n̂); thus, the measured
pseudo-C` in Fig. 4, named Ki j

`
, is corrected for the sky fraction

and defined as follows:

Ki j
`

=
1

w2
`

 1
fsky(2` + 1)

m=∑̀
m=−`

|ai
`ma∗ j

`m| −
∆Ω

Ncl
δ

i j
K

 , (24)

where w` is the Healpix pixel window function, which removes
the effect of the pixelisation, depending on the parameter Nside.

The case i = j refers to the auto power spectrum, while i , j
to the cross power spectrum between different redshift bins. We
removed the shot noise contribution from the measured power
spectrum, which accounts for the unclustered part of the mea-
sure, given by a discrete distribution of point-like sources. In a
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Fig. 4. Angular power spectrum measured in three redshift bins:
z ∈ (0.10, 0.30] (blue circles), z ∈ (0.30, 0.45] (black squares),
and z ∈ (0.45, 0.60] (red triangles). Error bars are estimated as
the diagonal terms of the jackknife covariance matrix. The dashed
lines represent the model computed with cosmological parameters by
Planck Collaboration VI (2020, Table 2, TT, TE, and EE+lowE). The
solid lines show the median of the model distribution computed from
the combined posterior of our cosmological analysis, while the shaded
regions highlight the 68% confidence levels.

first approximation, it depends only on the ratio ∆Ω
Ncl
δ

i j
K , where

δ
i j
K is the Kronecker delta, equal to zero in the cross-correlation

case. Possible deviations from this term are further investigated
in Sect. 4.3. Due to the limited size of our cluster catalogues, the
shot noise becomes the dominant part of the total signal at angu-

lar scales: ` & 100−150, i.e. θ . 1.8−1.2 deg, depending on the
redshift bin.

As the KiDS-DR3 catalogue does not cover the full-sky,
spherical harmonics no longer provide a complete orthonormal
basis to expand the angular overdensity field (Camacho et al.
2019). Thus, the measured power spectrum at multipole `
depends on an underlying range of multipoles `′ (Blake et al.
2007). This mode-mode coupling determines a power transfer
between different multipoles and it is summarised in R``′ , the
so-called mixing matrix, which depends only on the geome-
try of the angular mask. The ensemble average of the mea-
sured power spectrum is related to the theoretical one through
(Balaguera-Antolínez et al. 2018):

〈Ki j
`
〉 =

1
fsky

∑
`′

R``′C`. (25)

The mixing matrix is equal to an identity matrix in full-sky sur-
veys, where fsky = 1. Starting from the survey window function,
R``′ can be expressed in terms of the Wigner 3 j symbols:

R``′ =
2`′ + 1

4π

∑
`′′

(2`′′ + 1)W`′′

(
` `′ `′′

0 0 0

)2

, (26)

where:

W` =

+∑̀
m=−`

|I`m|2

(2` + 1)
, (27)

and I`m represents the spherical harmonic coefficient of the
mask, given by:

I`m =

∫
∆Ω

Y∗`m(n̂)dn̂ '
Npix∑

I

Y∗`m(θI , ϕI)∆ΩI . (28)

We estimate the mixing matrix using the publicly available
code NaMaster (Alonso et al. 2019), which provides a general
framework for the pseudo-C` analysis. The convolution function
R`∗`′ is shown in Fig. 5. It is peaked at `∗, while it has a drop at
different multipoles, depending on the survey area and geome-
try. In this sense, the mixing matrix gives us an indication about
the size of ∆` bands used to bin the measurements. Indeed, with
∆` = 25 we can keep most of the clustering signal, reducing
both the effect of the window function, the size of the covariance
matrix and the correlation between different bands (Blake et al.
2007; Balaguera-Antolínez et al. 2018; Loureiro et al. 2019).

For each bin we compute the weighted average:

Ki j
∆`

=

∑
`∈∆`(2` + 1)Ki j

`∑
`∈∆`(2` + 1)

· (29)

After the convolution with the mixing matrix, the theoretical
C` is averaged with the same weights. As shown in Fig. 4, the
redshift interval 0.45 < z ≤ 0.60 reveals the same excess of
clustering detected in the w(θ) measurement (see Sect. 3.1). We
offer a more in-depth discussion on this aspect in Sect. 5.2. We
restricted our analysis to the range 10 < ` < 175. Although,
in principle, a cautious limit for the maximum reachable scale
is linked to the sky fraction through the relationship `min =
π/(2 fsky) (Bernal et al. 2019), in practice, the effect of the partial
sky coverage is already corrected by Eq. (25). This allows us to
extend our analysis to larger scales which contain valuable cos-
mological information and to choose the lower limit according
to the validity of the Limber approximation, while the upper is a
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Fig. 5. Normalised elements of the mixing matrix R``′ , centred in three
different multipoles `∗ = 100, 150, 200. The functions decrease as we
move away from `∗. Their value give us a quantitative amount of the
correlation between different multipoles, induced by the mask. The gray
shaded regions indicate the bin width ∆` = 25 of our analysis.

conservative value that accounts for the impact of the shot noise
(Balaguera-Antolínez et al. 2018), beyond which the clustering
signal can be considered negligible.

The analytical error estimation adopted in Blake et al.
(2007), Thomas et al. (2011), Balaguera-Antolínez et al. (2018),
and Camacho et al. (2019) contains contributions from the cos-
mic variance and the shot noise, with a boost factor of

√
fsky

(Blake et al. 2007; Thomas et al. 2011). It is based on the
assumption that the coefficients a`m are Gaussian-distributed,
while the effect of the angular window function is modelled by
the parameter fsky (Blake et al. 2007; Balaguera-Antolínez et al.
2018), resulting in a diagonal covariance matrix. These approx-
imations do not hold in our case, due to the irregular shape of
the KiDS-DR3 survey, which introduces a non-negligible cor-
relation between different multipoles, resulting in an error leak
towards other ` modes and in a reduction of the diagonal errors
(Crocce et al. 2011). Thus we estimated random errors directly
from the dataset, using jackknife resampling. In practice, we
divided our binary mask in NJK = 400 non-overlapping regions,
removing one of them at a time. The cluster density field and
the survey area used for the angular power spectrum measure-
ments are then updated, for every realisation, by multiplying the
original Healpix map by the new mask.

4.3. Shot noise correction

The quantity measured with Eq. (24) is the sum of two con-
tributions: the signal and the shot noise. The latter represents
the unclustered part of the power spectrum caused by the dis-
creteness of the cluster distribution. The Poisson sampling of
point-like sources contributes to the auto-correlation at null sep-
aration, in real space, which brings to a constant power spectrum
in harmonic space (Paech et al. 2017), equal to ∆Ω

Ncl
δ

i j
K . How-

ever, when dealing with real data, this simple relation may

not always hold. We verify the validity of the analytical rela-
tion for the shot noise in two steps. First, we check the power
spectrum of 100 density maps derived from random cluster posi-
tions within the unmasked regions, considering the same num-
ber of cluster as in the real AMICO-KiDS catalogue. We find
that the coupling with irregular mask merely increases the dis-
persion of the shot noise power spectrum around its theoreti-
cal prediction, with respect to full-sky surveys, without altering
its mean value. Second, we expect deviations from the Pois-
sonian shot noise due to halo exclusion and nonlinear effects
(Giocoli et al. 2010; Baldauf et al. 2013). The exclusion simply
consists in the fact that clusters cannot overlap, namely, the dis-
tance between clusters cannot be smaller than the sum of their
radii, R (Baldauf et al. 2013; Paech et al. 2017). In other words,
the cluster-cluster real-space correlation function ξcc(r) = −1,
for r < R, which means that the probability of finding another
cluster is zero (Baldauf et al. 2013). The exclusion introduces
a mass-dependent deviation from the Poissonian shot noise,
since objects with different mass occupy different fractions of
the sampling volume, while the nonlinear clustering effectively
increases the noise term (Paech et al. 2017).

To test the robustness of the Poissonian shot noise hypothesis
at the angular scales of our interest, we need a practical way to
disentangle the signal and noise. Following Ando et al. (2018),
Makiya et al. (2018) and Ibitoye et al. (2022), we first randomly
divided the catalogue into two submaps, δ1,cl and δ2,cl, both of
which contain roughly the same number of clusters. Then we
build the half-sum, HS = 1

2 (δ1,cl + δ2,cl), and the half-difference
density fluctuation maps, HD = 1

2 (δ1,cl − δ2,cl). By construc-
tion, the former contains both signal and noise, while in the
latter, the signal cancels out, leaving only the shot noise con-
tribution. Since the division of the catalogue into subsets is a
random process, the estimated HD map and its power spectrum
CHD
` slightly change for different realisations (Ando et al. 2018).

Thus we averaged over 100 realisations, finding that the shot
noise approximation holds in every redshift bin for all the multi-
poles considered in our analysis. In Fig. 6 we show the ensamble
average of CHS

`
and CHD

` power spectra and the comparison with
the Poissonian shot noise. Due to the very low number of clusters
in our redshift bins, following Loureiro et al. (2019) we included
an extra shot noise term, such that Cth,i

∆`
→ Cth,i

∆`
+Si. The Si nui-

sance parameters are forward-modelled at the likelihood level,
allowing them to vary within a Gaussian prior given by a mean
equal to zero and the same standard deviation of CHD

` , as shown
in Table 1.

4.4. The angular power spectrum model

The angular power spectrum is modelled from the spatial power
spectrum through a projection kernel, which takes into account
the redshift evolution and radial selection effects. Its exact com-
putation is given by (Padmanabhan et al. 2007; Thomas et al.
2011; Asorey et al. 2012; Camacho et al. 2019):

Ci
` =

2
π

∫
dk k2PDM(k)

[
Ψi
`(k) + Ψ

i,r
`

(k)
]2
. (30)

The kernel function Ψi
`(k) describes the mapping of k to ` in real

space and is defined as:

Ψi
`(k) =

∫
dz b(z)φi(z)D(z) j`(kr(z)), (31)

where φi(z) and b(z) are computed with Eqs. (11) and (20),
respectively, j`(x) is the spherical Bessel function and D(z)
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Fig. 6. Shot noise estimation over 100 realisations. Blue dots, black squares and red triangles represent the angular power spectrum of the half-sum
(HS) maps, which contain the contribution of both signal and noise, in our three redshift bins (panels from left to right). The purple pentagons
show instead the angular power spectrum of the half-difference (HD) maps, which provides a direct estimation of the shot noise, with their average
(purple dashed line) and their standard deviation (purple shaded band) in agreement with the theoretical Poissonian value (cyan solid line).

Table 1. Parameters, prior and posterior mean, and percentiles of the cosmological analyses.

Parameter Description Prior w(θ)−C` Posterior w(θ)−C`

Ωm Total matter density parameter [0.1, 0.7] 0.32+0.05
−0.04−0.24+0.05

−0.04

σ8 Amplitude of the power spectrum on the scale of 8 h−1 Mpc [0.3, 1.5] 0.77+0.13
−0.09−1.01+0.25

−0.17

S8 ≡ σ8(Ωm/0.3)0.5 Structure growth parameter – 0.80+0.08
−0.06−0.93+0.11

−0.12
Ωb Baryon density parameter G(0.0486, 0.0017) –
ns Primordial spectral index G(0.9649, 0.0210) –
h ≡ H0/(100 km s−1 Mpc−1) Normalised Hubble constant G(0.7, 0.1) –
α Normalisation of the mass-richness scaling relation G(0.04, 0.04) –
β Slope of the mass-richness scaling relation G(1.72, 0.08) –
γ Redshift evolution of the mass-richness scaling relation G(−2.37, 0.40) –
σintr,0 Normalisation of σintr G(0.18, 0.09) –
σintr,λ∗ λ∗ evolution of σintr G(0.11, 0.20) –
S1 Extra shot noise bin 1 – G(0.0, 4.2 × 10−6) –
S2 Extra shot noise bin 2 – G(0.0, 2.0 × 10−6) –
S3 Extra shot noise bin 3 – G(0.0, 2.2 × 10−6) –

is the linear growth factor, normalised such that D(0) = 1
(Camacho et al. 2019). The second term incorporates the linear
Kaiser effect (Padmanabhan et al. 2007; Asorey et al. 2012), i.e.
the enhancement in 3D power spectrum due to cluster peculiar
velocities:

Ψi,r(k) =

∫
dzφi(z) f (z)D(z)

[
2`2 + 2` − 1

(2` + 3)(2` − 1)
j`(kr(z))

−
`(` − 1)

(2` − 1)(2` + 1)
j`−2(kr(z))

−
(` + 1)(` + 2)

(2` + 1)(2` + 3)
j`+2(kr(z))

]
.

(32)

Cluster peculiar velocities are smaller with respect to galaxy
ones, thus, they only have a minor effect in our broad redshift

selection function, and RSDs are erased by the radial projection
(Padmanabhan et al. 2007). In particular, for ` � 0, the term
Ψi,r tends to zero, so that the total window function reduces to
Eq. (31) (Padmanabhan et al. 2007; Thomas et al. 2011). How-
ever, since the evaluation of spherical Bessel functions is still
quite computationally demanding, we make use of the Limber
approximation (Limber 1953):

Ci j
`

= bi
effb j

eff

∫ ∞

0
dzφi(z)φ j(z)PDM

` + 1
2

r(z)
, z

 H(z)
r2(z)c

, (33)

where H(z) is the Hubble parameter and the photo-z effects
are included through the radial selection function, φ(z)
(Asorey et al. 2012), see Sect. 3.3. Here we underline that
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Fig. 7. Theoretical angular power spectrum for our three redshift bins. The Limber approximation is represented with a dotted line, while the exact
computation is presented in Eqs. (31) and (32) with a dashed line. The convolution with the mixing matrix is shown, respectively, with a solid line
(Limber approximation, i.e. the model used in our analysis), and with a dot-dashed line (exact computation). After the mode-mode coupling, the
Limber approximation deviates only for ` . 10, i.e. for the angular range already excluded from our analysis (gray shaded region).

PDM(k, z) = PDM(k)D(z)2 is strictly valid only in linear theory
(Blake et al. 2007).

Finally, there are two ways to consider the mode-mode cou-
pling induced by the mask. We can solve the linear system
in Eq. (25). This requires us to bin the pseudo-C` into even
more larger bandpowers, since it is computationally expensive
and unstable to deconvolve the effect of the mixing matrix
from our noisy data (Andrade-Oliveira et al. 2021). For this rea-
son, we decide to include the angular selection directly at the
level of the likelihood analysis, choosing the forward mod-
elling (Balaguera-Antolínez et al. 2018; Loureiro et al. 2019;
Xavier et al. 2019).

In Fig. 7 we show how redshift-space distortions and partial
sky convolution can alter the shape of the angular power spec-
trum. In particular, the effect of the Limber approximation can be
noted only for ` . 10, namely, for multipoles that have already
been excluded from our analysis. On the other hand, modifi-
cations due to the mixing matrix affect much smaller scales
(` . 150); thus, we need to properly include them in our model.

5. Cosmological analysis

5.1. Likelihood

The analyses of the angular correlation function and power spec-
trum are performed through Bayesian statistics. We estimate
the set of cosmological parameters in Table 1, which enter the
model, m, by adopting a Gaussian likelihood:

Lk ∝ exp(−χ2
k/2), (34)

in the kth redshift bin, where:

χ2
k =

N∑
i=1

N∑
j=1

(µd
i − µ

m
i )(k)C−1

i, j,(k)(µ
d
j − µ

m
j )(k), (35)

where N is the number of angular bins, µ is the correlation statis-
tic involved, namely, angular correlation function or power spec-
trum and the superscripts d and m refer to the quantities obtained
from the data and computed with the model, respectively. C−1

i, j,(k)
is the inverse of the covariance matrix in the kth redshift bin,
estimated directly from the data for NJK jackknife resamplings
(for example Norberg et al. 2009):

Ci, j =
NJK − 1

NJK

NJK∑
`=1

(µ`i − µi)(µ
`
j − µ j), (36)

with expectation values µi =
∑Nres
`=1 µ

`
i /NJK. We neglected the cor-

relations between different redshift slices, so that the total likeli-
hood is simply given by the product of the individual likelihoods,
Lk.

5.2. Cosmological results

The Bayesian analysis was performed by adopting uniform pri-
ors on both Ωm and σ8, for which the cluster clustering is more
sensitive, while we assumed Gaussian priors around the mean
values from Planck Collaboration VI (2020, Table 2, TT, TE,
and EE+lowE) for the baryon density, Ωb, the primordial spec-
tral index, ns, and the normalised Hubble constant, h. The latter
are not constrained by the clustering information contained in
our measurements; indeed, when we repeated the analysis with
flat priors in the same interval, we simply find that their poste-
rior distributions cover the full range of the priors, without any
significant impact on S8. We also used Gaussian priors for α, β,
γ, σintr,0 and σintr,λ∗ , the parameters of the mass-richness scaling
relation, whose medians and standard deviations are taken from
the posterior distribution of the cluster counts and weak lensing
joint analysis, as derived by Lesci et al. (2022a). The full list of
parameters is summarised in Table 1.
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Fig. 8. Cosmological constraints in the Ωm−σ8 plane, with 68% and 95% confidence intervals, obtained considering angular power spec-
trum (green contours) and correlation function (purple contours). Our findings are compared to the cosmological constraints derived from
Planck Collaboration VI (2020) (top left) and from the same KiDS-DR3 cluster catalogue (bottom left), in particular: the number counts and
3D correlation function analyses presented in Lesci et al. (2022a,b). Right: summary plot containing the 1D marginalised posteriors for the struc-
ture growth parameter, S8.

In Fig. 8, we show the results of the Markov chain Monte
Carlo (MCMC) cosmological analysis, in the Ωm−σ8 plane.
For the angular correlation function, we find Ωm = 0.32+0.05

−0.04
and σ8 = 0.77+0.13

−0.09 as the medians, namely, the 16th and
the 84th percentiles of the marginalised 1D posterior distribu-
tions. The constraint on the structure growth parameter, S8 =
0.80+0.08

−0.06, is presented in Fig. 9 as our main outcome, and
compared with several previous studies available in the liter-
ature. In particular, we find a 1σ agreement with cosmolog-
ical constraints from Wilkinson Microwave Anisotropy Probe
(WMAP, Hinshaw et al. 2013, Table 3, WMAP-only, Year 9)
and Planck (Planck Collaboration VI 2020, Table 2, TT, TE,
and EE+lowE). An equivalent level of agreement is found
also with the number counts analysis presented in Lesci et al.
(2022a) using the same AMICO KiDS-DR3 cluster sample,
in Costanzi et al. (2019), based on SDSS-DR8 cluster data, in
Bocquet et al. (2019) with the 2500 deg2 South Pole Telescope –
Sunyaev–Zel’dovich (SPT–SZ) survey data and with constraints
from cosmic shear in DES Year 3 (Amon et al. 2022; Secco et al.
2022), HSC Year 3 (Dalal et al. 2023; Li et al. 2023) and KiDS-
DR4 (Asgari et al. 2021). Instead, we note a 1σ tension with
S8 from cluster abundances and weak lensing in DES Year 1
data (Abbott et al. 2020), probably related to richness-dependent
effects, since it significantly reduces when their sample is limited
to clusters with λ∗ ≥ 30.

Concerning the “cluster clustering”, our main achievement
shows the competitiveness of the 2D correlation function with
respect to its 3D counterpart. Indeed, the current study provides
more constraining power than the 3D correlation case discussed
in Lesci et al. (2022b), where the measurement of ξ(r) is per-
formed within two redshift bins: 0.1 ≤ z ≤ 0.3 and 0.35 ≤ z ≤
0.6. This is partially due to the slightly larger sample consid-
ered, with 228 more clusters, and highlights the importance of
the tomographic strategy adopted in photometric redshift sur-
veys, for which several parameters, such as the bin width, the
photometric redshift error, and the number density of detections,
need to be balanced, as discussed in Sect. 2. Our tighter con-
straints are also confirmed by repeating the full MCMC analysis
over 1000 bootstrap resampling, with replacement, which yields
Ωm = 0.33+0.04

−0.04, σ8 = 0.75+0.11
−0.08 and S8 = 0.79+0.08

−0.05, in excellent
agreement with our findings.

The angular power spectrum analysis includes an extra shot
noise parameter for each redshift bin, with a Gaussian prior
derived with the methodology described in Sect. 4.3. As shown
in Fig. 8 the angular correlation function and the angular power
spectrum produce statistically consistent results, although the
latter exhibits a much lower constraining power, with wider con-
straints (in particular) on σ8. This is probably due to the relative
importance of the shot noise, which equals the signal contribu-
tion even at sub-degree scales and prevents us from extending
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Fig. 9. Comparison of the constraints on S8, given by the poste-
rior median, the 16th and the 84th percentiles. From top to bot-
tom: Angular cluster clustering in the AMICO KiDS-DR3 catalogue
obtained in this work (black dot); 3D cluster clustering from Lesci et al.
(2022b, purple dot); cluster counts from Lesci et al. (2022a, orange dot),
Costanzi et al.(2019, green dot) and Bocquet et al. (2019, magenta dot);
cosmic shear from Amon et al. (2022); Secco et al. (2022, coral dot),
Li et al. (2023, pink dot), Dalal et al.(2023, cyan dot) and Asgari et al.
(2021, pale green dot); CMB results from Planck Collaboration VI
(2020, blue dot) and Hinshaw et al. (2013, red dot).

our angular range to ` & 175. We found Ωm = 0.24+0.05
−0.04, in excel-

lent agreement with Ωm = 0.24+0.03
−0.04 presented in Lesci et al.

(2022a) with number counts, using the same cluster catalogue,
and σ8 = 1.01+0.25

−0.17, which yield S8 = 0.93+0.11
−0.12, consistent

within 1σ with both WMAP and Planck constraints. As shown
in Sartoris et al. (2016) and Garrel et al. (2022), the combination
of cluster clustering with the more constraining cluster number
counts is particularly important since it can highly improve the
parameter estimation accuracy both in the ΛCDM Ωm−σ8 plane
and in the dynamical dark energy w0−wa plane. The full list of
parameters, with prior intervals, the medians, the 16th and the
84th percentiles of the marginalised posterior distributions are
shown in Table 1.

Finally, we perform some tests to confirm the robustness
of our results. First, we verify that our findings are stable
if we adopt the halo mass function parameters provided by
Despali et al. (2016) in the model of the cluster redshift distribu-
tion. Second, we focus on the inspection of Figs. 2 and 4, which
reveals an excess of clustering in the redshift range 0.45 < z ≤

0.60, common both to w(θ) and C`, with respect to the model
median prediction. This tension is marginal at 2σ and has a
negligible impact on the overall conclusion. We check our con-
straints by repeating the entire MCMC analysis, in the first and
second redshift bins only. We found consistent results, but with a
larger uncertainty due to the lower statistics, since we excluded
approximately the 40% of the clusters. In particular, the exclu-
sion of the third bin causes a general broadening of the posterior
distributions, with a slight shift for Ωm, to values of 0.25+0.07

−0.04 and
0.34+0.07

−0.05, for angular power spectrum and correlation function,
respectively. These results are fully consistent with our expec-
tations. We underline that the excess of clustering appears to
be independent of the selection effects, since it remains even
if we select more massive clusters with λ∗ ≥ 20, for which
both the purity and the completeness are higher (Maturi et al.
2019). The underestimation in the model might stem from a mis-
match between the recovered and the true cluster masses derived
from weak lensing calibration, which propagates in the effec-
tive bias of the cluster sample. Alternatively, inaccuracies in the
cluster selection function, especially at higher redshifts where
the cluster redshift distribution deviates more from the theoret-
ical one, could also contribute. However, these systematics are
not fundamentally inconsistent with our findings, as we show
when repeating the analysis without the last redshift bin, as well
as with previous cosmological results obtained in Lesci et al.
(2022a,b), using number counts and 3D clustering. We aim to
improve the investigation of this aspect by exploiting the larger
statistics offered by the KiDS-DR4 (Kuijken et al. 2019) data.

6. Conclusions

In this paper, we present the cosmological constraints derived
from the angular clustering properties of the KiDS-DR3 cluster
catalogue. The sample of clusters, which has been constructed
with the AMICO algorithm, consists of 5162 galaxy clusters
with intrinsic richness λ∗ ≥ 15. Using a tomographic approach,
we measured the angular correlation function and power spec-
trum in three different photometric redshift bins, z ∈ (0.10, 0.30],
z ∈ (0.30, 0.45], and z ∈ (0.45, 0.60], whose widths were selected
in order to balance the statistics and the photometric errors. For
the angular power spectrum, we verified that the Poissonian shot
noise approximation holds in every redshift bin and for all the
multipoles considered in our study.

We modelled the clustering signal, taking into account the
effects of the photometric errors on the redshift selection func-
tion and considering the mass-richness scaling relation from
the weak lensing analysis by Lesci et al. (2022a), to estimate
the effective bias and the redshift distribution of the cluster
sample. For the first time, we found cosmological constraints
from the angular correlation function and power spectrum of a
photometric-redshift cluster catalogue. From the MCMC anal-
yses, we obtained Ωm = 0.32+0.05

−0.04, σ8 = 0.77+0.13
−0.09 and S8 =

0.80+0.08
−0.06 for w(θ), and Ωm = 0.24+0.05

−0.04, σ8 = 1.01+0.25
−0.17, and

S8 = 0.93+0.11
−0.12 for C`. Both exhibit a 1σ agreement with the

literature results reported in Fig. 8, which includes different
cosmological probes like CMB, cluster number counts and clus-
ter clustering. From a comparison with Lesci et al. (2022b), our
work has shown that the 2D clustering from a photometric-
redshift survey can provide competitive constraints with respect
to the full 3D clustering, with the advantage that our findings
are cosmological independent, since they rely on the cluster
angular positions alone, without any cosmological assumption
in converting redshifts to distances. Indeed, from the angular
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correlation function we derived tighter uncertainties based on the
same AMICO KiDS-DR3 cluster catalogue, but with a slightly
larger sample. This fact reveals the importance of the tomo-
graphic strategy adopted in order to fully exploit the cosmo-
logical information contained in the cluster catalogue. On the
other hand, the angular power spectrum has yielded a wider pos-
terior, particularly with regard to the parameter σ8, and it does
not allow us to cover the full angular range explored with w(θ),
due to the relative importance of the shot noise.

We tested the the robustness of our study with respect to
the parameterisation of the halo mass function presented in
Despali et al. (2016). Moreover, we detected an excess of clus-
tering in the redshift range 0.45 < z ≤ 0.60, which does not
depend on the selection in richness, since it remains even if we
consider only clusters with λ∗ ≥ 20. However, this tension is
marginal at 2σ and does not affect our results, which are stable
even if we exclude the third redshift bin, restricting our redshift
range to (0.10, 0.45].

We expect more stringent constraints from the analyses of
KiDS-DR4 (Kuijken et al. 2019), which covers an area of approx-
imately 1000 deg2 and includes the photometry of the VISTA
Kilo-degree INfrared Galaxy survey (VIKING; see Edge et al.
2013), as well as that of the final KiDS-DR5 (Wright et al.
2023), which will contain data from the full 1350 deg2 of the
KiDS/VIKING footprint. These data will allow us to better inves-
tigate the differences, behaviours, and benefits of these two com-
plementary statistics, as well as their combination with number
counts and other independent cosmological probes. In the future,
we expect an extensive use of the angular clustering of galaxy
clusters within the next-generation photometric redshift surveys,
for example Euclid (Laureijs et al. 2011; Scaramella et al. 2014;
Amendola et al. 2018; Euclid Collaboration 2022), which will
allow us to constrain the parameters of the dark energy equation
of state, leading to significant advances in the field of the obser-
vational cosmology.
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