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Abstract: Nowadays, as the cyber-threat landscape is evolving and digital assets are proliferating and
becoming more and more interconnected with the internet and heterogeneous devices, it is fundamental
to be able to obtain a sensible measure of the security of devices, networks, and systems. Industrial
cyber–physical systems (ICPSs), in particular, can be exposed to high operational risks that entail damage
to revenues, assets, and even people. A way to overcome the open question of measuring security is
with the use of security metrics. With metrics it is possible to rely on proven indicators that benchmark
systems, identify vulnerabilities, and show practical data to assess the risk. However, security metrics
are often proposed with specific contexts in mind, and a set of them specifically crafted for ICPSs is
not explicitly available in the literature. For this reason, in this work, we analyze the current state of
the art in the selection of security metrics and we propose a systematic methodology to gather, filter,
and validate security metrics. Then, we apply the procedure to the ICPS domain, gathering almost
300 metrics from the literature, analyzing the domain to identify the properties useful to filter the metrics,
and applying a validation framework to assess the validity of the filtered metrics, obtaining a final set
capable of measuring the security of ICPSs from different perspectives.

Keywords: cyber–physical systems; cybersecurity; industrial cyber–physical systems; industrial
networks; security metrics

1. Introduction

In recent years, as technology advances, the growing importance and criticality of
cybersecurity have become undeniable. The escalating cyber-threat landscape leverages
ubiquitous digital technology and global interconnectivity, raising concerns for people’s
well-being, damaging the economy, and putting national security at risk; enacting robust
cybersecurity measures is a priority.

A major issue regarding this topic is understanding what security policies to imple-
ment and which of them are working efficiently: to find the best decisions, it is important
to perform activities such as risk assessment and performance evaluation and periodically
generate reports, intending to reach a continuous improvement in decision making. Se-
curity metrics play an essential role in this process. They are quantitative or qualitative
measurements, produced over time, and used to evaluate and assess various aspects of
security in computer systems. Nowadays, security metrics are widely used in organiza-
tions to deal with risk management, compliance, and regulation, e.g., ISO 27004 [1] and
NIST 800-55 [2]. Most of the standards refer in particular to policies for organizations and
procedures rather than quantifying the security of systems themselves. As of now, many
initiatives, such as the European Cybersecurity Act [3], strive to reach a standardized set
of security metrics for the evaluation of systems as an enabler of comparative analysis
between different systems: this opens new challenges regarding pinpointing the properties
and features to factor in the different assessment types.

Electronics 2024, 13, 1208. https://doi.org/10.3390/electronics13071208 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071208
https://doi.org/10.3390/electronics13071208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0002-3218-6703
https://orcid.org/0000-0003-1767-7256
https://orcid.org/0000-0002-0101-2551
https://orcid.org/0000-0002-5560-9871
https://orcid.org/0000-0002-6669-8072
https://orcid.org/0000-0002-3962-5513
https://doi.org/10.3390/electronics13071208
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071208?type=check_update&version=2


Electronics 2024, 13, 1208 2 of 17

To formulate a standard set of security metrics we need to tailor them to the specific
context, define a way to collect them, and then validate the effectiveness, efficiency, and
feasibility of each of them.

To better understand the effectiveness of a validated set of security metrics and show
tangible preliminary results, we chose a real use-case scenario, industrial cyber–physical
systems (ICPSs), in which to perform a systematic approach to collect, filter, and validate
metrics that can be used in practice.

Given their complexity, ICPSs necessitate an increasing reliance on automation in-
volving the intelligent and self-governing operation of individual subsystems and their
coordination at the infrastructure level. Algorithms play a crucial role in activating and
configuring components, as well as facilitating their connectivity and interaction with
the physical world. In making decisions, functional requirements, system and network
parameters, and sensor measurements are taken into consideration, as security properties
should be. Here, security metrics find their essential role, to drive those configurations
towards a more secure state: in this scenario, it is not enough to evaluate every single
component separately but there is the need to evaluate the overall system, so the metrics
should take into account the communication and collaboration that physical devices and
logical components establish with each other. Therefore, we can identify the need to use
only the metrics that are applicable and meaningful for ICPSs. In this domain, threats in-
clude spoofing identity, tampering with data, repudiation of origin, information disclosure,
elevation of privilege, and denial of service (DoS).

For this reason, in this work, we analyze the current state of the art in the selection
of security metrics and we propose a methodology to gather, filter, and validate security
metrics. Then, we apply the procedure to the ICPS domain, gathering 291 metrics from the
literature, analyzing the domain to identify the properties useful to filter the metrics, and
applying a validation framework to assess the validity of the filtered metrics, obtaining a
final set capable of measuring security from different perspectives.

This paper proceeds hereinafter with an illustration of the state of the art in the
literature about security metrics, with particular reference to their application in ICPSs. The
third section describes the selection criteria we followed to collect a set of metrics available
in the literature based on a variation of the classification and selection strategy. We applied
the systematic criteria as detailed in the fourth section, which presents the phases, based on
the validation and filtering approaches, that we followed to derive a set of security metrics
for ICPSs. Finally, the fifth section discusses the outcomes of our process and its limitations,
before the sixth and final section presents the conclusions of this study.

2. State of the Art

Defining standard security metrics is not straightforward, and this is confirmed by Philip-
pou et al. [4], who criticize the works we mentioned in the Introduction [1,2]. They argue that
there is a lack of proper contextualization and alignment with business objectives and, to answer
this, they suggest a new strategy. Hence, they demonstrate how the proposed method offers
more precise and suitable outcomes, albeit with the drawback of demanding significant effort
to establish a clear and traceable connection between metrics and business objectives.

As contextualization depends on the considered domain, several studies have exten-
sively delved into specific areas. For instance, Wang et al. [5] concentrate on network
security metrics and assess the advantages and disadvantages of each metric. On the other
hand, Longueira-Romero et al. [6] undertake a rigorous filtering process to identify metrics
suitable for embedded systems applications. Initially, more than 200 metrics were consid-
ered, and from this pool, 169 metrics were selected for evaluation utilizing criteria such
as SMART [7] and PRAGMATIC [8], along with characteristics drawn from the work of
Savola et al. [9]. The focus was primarily on assessing the comparability, cost effectiveness,
measurability, repeatability, and reproducibility of each metric.

On the other hand, some research has adopted a survey approach, such as Pendleton
et al. [10], which compares various proposals in system security. This survey measures the
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effectiveness of security metrics in terms of vulnerabilities, severity of attacks, and defense
mechanisms’ strength. The findings underscore significant gaps between the research outcomes
available and the desired properties of metrics. Although specific sub-fields, such as security
conformance metrics for managing industrial automation control systems, provide clear defini-
tions of desirable metric properties, as outlined in Hauet’s commentary of the ISA99/IEC62443
standard [11], a need for greater clarity in defining such properties still remains.

The first rough selection of suitable metrics is arguably the most complex and tricky
phase since there are no standards to perform it. In the literature, there are some proposals
on how to address this task, such as:

• Classification and selection: Used by Sultan et al. [12] and Morrison et al. [13], defines
a classification of the metrics coherent with the domain, then selects them to cover all
the security aspects that are required.

• Automatic generation: Used by Ani et al. [14], i.e., a framework that generates specific
security metrics after a preliminary study that analyzes the context and the security
objectives of that field.

• Multivocal literature review (MLR): Used by Fernandez et al. [15], that consists of
exploring the academic and gray literature, using the snowballing process and filtering
them with a multi-step approach.

Context significantly affects the impacts of security metrics. Even similar applications
such as traditional biometric systems and wearable biometric systems can have different be-
havior, as shown in [16], for example, due to variations in relevant threats and vulnerabilities.

To assist in identifying suitable metrics, it is important to follow a proper breakdown
of metrics into their categories of technical domains. The classification can follow various
criteria, but a prevalent approach in the literature, as also referenced in [10], classifies
technical metrics into four distinct types:

• Defense metrics: These metrics assess the strength and effort required to implement
defense mechanisms within a system. They encompass the evaluation of preventive,
reactive, and proactive defenses, as explored in [17].

• Vulnerability metrics: These metrics gauge system vulnerabilities, encompassing
user vulnerabilities, interface-induced vulnerabilities, and software vulnerabilities.
Examples include password vulnerabilities, attack surface [18], and software vul-
nerabilities, as documented by the Common Vulnerability Scoring System (CVSS)
(https://nvd.nist.gov/vuln-metrics/cvss, accessed on 19 March 2024).

• Attack metrics: These metrics quantify the strength of performed cyberattacks. Unlike
the previous categories that assess the security level via configuration and device
analysis, attack metrics concentrate on measuring and analyzing cyberattacks and
threats. They are crucial for risk assessment, evaluating the success of security mea-
sures, and guiding resource allocation. Examples include network bandwidth used
by a botnet for launching denial-of-service attacks, the occurrence of obfuscation in
malware samples, or the runtime complexity of packers measured in the number of
layers or granularity [19].

• Situation metrics: Focusing on the security state of a system, situation metrics are time-
dependent and dynamically evolve based on attack–defense interactions. Examples
include metrics based on the frequency of security incidents or those related to in-
vestment in security improvement [20]. They are further categorized into data-driven
metrics, such as the network maliciousness metric [21], and model-driven metrics,
such as the fraction of compromised computers.

The evaluation of a metric is outlined in a study conducted by Ahmed et al. [22],
which considers the following aspects:

• The measurability of properties that should be consistently accessible.
• The feasibility and potential for automated data collection, taking into account associ-

ated costs.
• The methodology for quantifying the metric, such as using cardinal numbers or percentages.

https://nvd.nist.gov/vuln-metrics/cvss
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• The establishment of units for measurement.

According to Savola et al. [9], good metrics should give a simple answer, such as a
score. An example of this approach is the CVSS, a published standard and open framework
that “provides a way to capture the principal characteristics of a vulnerability and produce a
numerical score reflecting its severity” (https://www.first.org/cvss/, accessed on 19 March
2024), with a calculator available on the website. The score is a result of the combination of
various factors that depends on qualities intrinsic to a vulnerability, e.g., the skills required
to exploit it; qualities that can change over the lifetime of a vulnerability, e.g., if patches
are available; or even qualities that depend on the context, such as impact on physical and
financial assets.

Moreover, Yee et al. [23] propose conditions that can be used to design and test security
metrics’ soundness, improving a method they previously suggested. Furthermore, they
demonstrate that the aggregation of sound security metrics results in a new metric that
also respects the conditions and, thus, remains sound. The set of these conditions is called
CSSM (Conditions for Sound Security Metrics) and is based on the verification of three
properties of the evaluated metric:

• Well-defined, i.e., it measures components of the security level and is meaningful,
objective, unbiased, and complete, to not miss any aspects of the definition needed to
be effective as well as not to be too expensive to evaluate;

• Progressive, i.e., the metric expresses a value or set of values that coherently evolve
together with the actual level of security so that progress towards an acceptable value
of the metric is an indicator of improved security level;

• Strongly or weakly reproducible, i.e., it can be used in different environments and still
produce comparable results.

The threat landscape characterizing cyber–physical systems (CPSs) is peculiar. In
the literature, some recent studies have shown a growing interest in adopting metrics
to measure security, showing that to choose what properties should be measured, the
convergence of physical and cyber components must be taken into account: cyber threats
can have tangible, real-world consequences, and the interconnectedness, also involving
public infrastructure, amplifies the attack surface and the potential impact of attacks.

One model to summarize threats in CPS is STRIDE [24]: spoofing identity, tampering
with data, repudiation of origin, information disclosure, denial of service, and elevation
of privilege. Key aspects to address include understanding the possible consequences of
attacks, determining the peculiar properties of CPS and the consequences that differ from
traditional systems, and finding and testing security mechanisms applicable to CPS.

Still, the application of such models to define metrics in CPS is in its early stages. For
example, in the work by Aigner et al. [25], a thorough suitability evaluation of whether the
selected metrics meet the conditions posed by CPS was conducted. The results indicate that
while the metrics cover nearly all desired features, none of them fully address the entirety of the
challenges proposed. The main concern stems from the fact that the analyzed metrics primarily
focus on the specific elements of the system without adequately considering the emerging
properties that arise from their composition, such as dependencies and side effects within
system of systems contexts. Consequently, the emphasis remains primarily on vulnerabilities
and attacks, overlooking important aspects of the CPS’s overall security posture.

Other than context constraints, some security metrics were proven to be inadequate
for their intended objectives, as shown in Yee et al. [26]. They either evaluate incorrect
factors or fail to incorporate a sufficient number of relevant factors, consequently resulting
in baseless and irrational conclusions. These problems can also arise from subjective rather
than objective assessments, inaccurate estimates that cannot be reproduced, and distortions
of actual measurements that lead to erroneous conclusions. To avoid those problems we
need an adequate strategy for designing and testing security metrics.

https://www.first.org/cvss/
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3. Selection Methodology

As a result of our analysis of related works, we claim that effective metrics for CPS
are needed but not available. In this section, we outline our proposed methodology for the
systematic collection, selection, and validation of security metrics tailored for the specific
subdomain comprising industrial cyber–physical systems. By restricting the domain, we can
achieve the goal of selecting solid metrics, yet we strive to keep the process general enough
to be extended to any CPS. We explain the approach with an algorithmic-style description
(Algorithm 1) highlighting the steps that lead to the final set of security metrics ready to be
used.

The underlying logic is also depicted in Figure 1, which provides a summary of the
steps of the algorithm, individually detailed hereinafter.

Objective

Obtain a set of security
metrics applicable and
effective for a specific

domain

Classification and
filtering

Classify metrics and
filter them based on the
properties of the domain

Validation

Check the validity each
metric with the 3

condition of CSSM

Gather the metrics from
different sources in

literature

Classify metrics according
to their properties

Analyze the domain to
identify the specific

proprierties

Filter the metrics based on
the proprierties obtained
from the domain analysis

Check the Well-Defined
 condition.

Check the Progressive
condition.

Check the Reproducible
condition.

Collection

Analyze literature
collect an initial sect of

security metrics

Merge equivalent metrics

Figure 1. A graphical summarizationof our objective with the several steps required for the achieve-
ment of the set of security metrics for a specific domain.
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Algorithm 1 An algorithmic view on the procedure to obtain the filtered and validated set
of security metrics.

1: procedure OBTAINING-METRICS
2: ▷ collection:
3: fullMetricsSet← analyzeLiterature()
4: f ullLength← length of fullMetricsSet
5: ▷ classification:
6: N← 0
7: while N ≤ fullLength do
8: classify(fullMetricsSet[N].
9: N ← N + 1.

10: end while
11: ▷ filtering:
12: properties← domainAnalysis()
13: N← 0
14: reductionSet1 is an empty Set
15: while N ≤ fullLength do
16: if fullMetricsSet[N] respects proprierties then
17: reductionSet1.add(fullMetricsSet[N])
18: end if
19: N ← N + 1.
20: end while
21: ▷ validation:
22: firstLength← length of reductionSet1
23: N← 0
24: reductionSet2 is an empty Set
25: while N ≤ firstLength do
26: if reductionSet1[N] respects CSSM then
27: reductionSet2.add(reductionSet1[N])
28: end if
29: N ← N + 1.
30: end while
31: ▷ merge:
32: secondLength← length of reductionSet2
33: Ni← 0
34: Nj← 0
35: finalSet is an empty Set
36: while Ni ≤ secondLength do
37: while Nj ≤ secondLength do
38: if i! = j then
39: if reductionSet2[Ni] is equivalent to reductionSet2[Nj] then
40: mergedMetric = mergeMetrics( reductionSet2[Ni], reductionSet2[Nj])
41: finalSet.add(mergedMetric)
42: end if
43: end if
44: Nj← Nj + 1.
45: end while
46: Nj← 0.
47: Ni← Ni + 1.
48: end while
49: end procedure
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The first step of our methodology targets an extensive review of the existing literature
to collect a comprehensive set of security metrics. We aim to encompass a wide spectrum of
metrics, considering both quantitative and qualitative indicators, similar to the approaches
presented in Section 2. This initial phase serves as the foundation for building a diverse
pool of potential metrics.

Next, the metrics undergo a meticulous classification; from the literature analysis,
we derive a set of relevant properties that are crucial for categorizing security metrics.
These properties are discerned by pinpointing the relevant requirements in the context
of (I)CPS security. The goal is to extract key features that will be the foundation for a
nuanced classification.

We structure our classification with attributes that are drawn from previous works,
mainly Villarrubia et al. [27] and Savola et al. [28], that propose taxonomies for security
metrics. The selected attributes are:

• A name, that represents in a few words the meaning of the metric.
• A definition, that describes the metric and what it measures.
• A meaning, that summarizes the objective measurement of the metric and why it is useful.
• A weakness, that shows requirements, possible problems, or critical issues related to

the metric, e.g., needing external support to calculate the metrics.
• A scope, that represents the field in which the metric is focused, e.g., network, device,

user, organizations, system, etc.
• A result type, that can be quantitative if the metric gives a result in a numerical form or

qualitative if the result is in a descriptive and discrete form (e.g., bad, normal, good).
• An automation field, that divides metrics into automatic, where the computation can

be performed in an automatic way, or manual, where humans are required.
• A measurement field, that could be dynamic if the metric changes at runtime or static

if the metric only changes with a new configuration.
• A construction, that can be modeled if the metrics need a model to be computed, i.e.,

an attack graph [29], or measured if it represents a simple calculation that can be
directly executed without models.

To restrict the outcome of the selection process, it is essential to conduct a detailed
analysis of the application domain for each metric. In this step, we define a set of properties
that describe metric usability and their relevance according to the intricacies of the domain.

To achieve reliability, effectiveness, and real-world applicability, the selected metrics
then undergo validation using the CSSM. This robust validation framework ensures that the
chosen metrics not only meet theoretical expectations but also demonstrate practical utility
and reproducibility while ensuring convergence of values when we reach a supposedly
secure condition. In summary, we claim that our proposed selection approach can output
useful and relevant metrics by combining width, from the extensive literature analysis, and
depth, from the tailored definition of criteria and robust validation of the results.

4. Application: Metrics Selection for ICPSs

To gather a comprehensive collection of security metrics specifically tailored for ICPSs,
we applied the proposed methodology within this specific context. Our collaboration with
domain experts proved invaluable, as their expertise facilitated the meticulous maintenance
of accurate and consistent selections throughout the process. We made available publicly
(https://doi.org/10.5281/zenodo.10142113, accessed on 19 March 2024) the initial dataset,
the final metric set, and all the reduction steps.

4.1. Metrics Classification

In the cited work by Longueira-Romero et al. [6], before filtering the metrics for a
set applicable only in the embedded systems field, the authors followed a variation of the
search and selection strategy presented in Section 2:

https://doi.org/10.5281/zenodo.10142113
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• Initially, they chose the data sources for the metrics, resulting in conference proceed-
ings and academic journals from IEEE Xplore, Elsevier, AMC Digital Library, Springer,
and Google Scholar search engine.

• Then, they gathered the metrics and labeled them with definition, scale, scope, au-
tomation, and measurement attributes.

• Finally, they filtered the metrics.

We decided to start the basis of our set of metrics with the dataset presented in their
work before the reductions that they specifically applied for ES, which allowed us to ini-
tialize our set with more than 500 metrics taken from different sources in the literature
[10,30–32]. We then extended their discovery work by further exploring the literature and
integrating the dataset. We searched over online databases such as IEEE Xplore, Elsevier,
AMC Digital Library, and Springer, as well as conference proceedings and academic jour-
nals, including Google Scholar search engine, to gather security metrics. Our search terms
encompassed keywords like “security metric”, “icps” and “assessment” in addition to
relevant synonyms. Our inclusion criteria prioritized papers focusing on security measure-
ments or metrics, with a preference for surveys on collecting security metrics, and those
primarily concerned with measuring security. Using tools such as the search engine Scholar
with 14 more metrics from Boyer et al. [33] and 29 from Bhol et al. [34]. After pruning
repeated entries or not-referenced ones, we counted a total of 278 security metrics.

We decided to start the basis of our set of metrics with the dataset presented in their
work before the reductions that they specifically applied for ES, which allowed us to
initialize our set with more than 500 metrics taken from different sources in the literature
[10,30–32]. We then extended their discovery work by further exploring the literature and
integrating the dataset. Our search terms encompassed keywords like “security metric”,
“security assessment”, “icps” and “cps” in addition to relevant synonyms searched over
online databases such as IEEE Xplore, Elsevier, AMC Digital Library, and Springer, as well
as conference proceedings and academic journals, including Google Scholar search engine.
Our inclusion criteria prioritized papers containing security metrics with a definition
sufficiently clear to be applied in real use-case scenarios. We finally gather 14 metrics
from Boyer et al. [33] and 29 from Bhol et al. [34]. After pruning repeated entries or
not-referenced ones, we counted a total of 278 security metrics.

4.2. Domain Analysis

We structured our dataset by classifying metrics with the most common attributes
present in the literature, shown in Section 2. Classifying metrics according to certain
characteristics enables us to choose them according to criteria that depend on the context.
In our case, we refer to the domain of ICPSs, so it is necessary to study their intrinsic
characteristics before proposing a set of metrics that fully capture the security issues that
may arise.

ICPSs are composed of interconnected cyber and physical components that monitor
and manage physical processes. They are responsible for the safety and operations of the
industrial process, which implies the management of heterogeneous hardware and software.
They include devices such as sensors, actuators, Supervisory Control And Data Acquisition
(SCADA) systems, human–machine interfaces (HMIs), and dedicated subsystems such
as programmable logic controllers (PLCs) [35]. This heterogeneity obviously translates
into system complexity, which implies more effort to manage and prevent anomalies. In
addition, ICPS networks employ a wide range of protocols, depending on the specific
objectives of each system. Real-time constraints and legacy hardware are two of the
most important challenges that industrial protocols are specifically made to address. The
Purdue Enterprise Reference Architecture [36] is the reference networking architecture
for ICPS systems, adopted in the ANSI/ISA-95 standard [37], and divides ICPS networks
into three logical segments: the lower layer is the manufacturing zone, also known as
operational technology (OT), while the upper constitute the enterprise zone, also referred
to as information technology (IT), with a demilitarized zone of convergence between them.
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The OT network includes hardware and software used to monitor and manage industrial
equipment, assets, processes, and events. On the other side, the traditional information
technology (IT) network contains workstations, databases, and other typical machines used
to manipulate information. From this perspective, IT systems’ main concerns are about
the confidentiality and integrity of the data, while for the OT part, availability is instead
fundamental since it can guarantee human safety and fault tolerance [38].

4.3. Metrics Filtering

Starting from the domain analysis of ICPSs and the attributes of each metric, we
established the following inclusion criteria for metrics filtering:

• The definition of the metric must be applicable to IT or OT networks, components,
protocols, and devices.

• The meaning attribute of the metric must explicitly declare an objective measure-
ment related at least to one of the security properties of confidentiality, integrity,
or availability.

• The weakness attribute of the metrics must be related to problems, issues, or require-
ments that can be resolved inside the ICPS domain.

• The scope attribute must be of the type “network”, “device”, “system”, or “user”.

To match the aforementioned inclusion criteria, we performed two reduction steps
of the original dataset. In the first reduction, we filtered only metrics that have as scope
“network”, “device”, “system”, or “user”. Then, for every metric within those scopes, we
carefully checked the other three inclusion criteria, resulting in a second reduction.

To provide a demonstration of the second reduction, we consider the two metrics
shown in Table 1. The first one is the “infection rate” [39]: this metric is denoted by the
average number of hosts that can be infected per unit of time by one infected host during
the early stage of worm propagation. We consider this metric applicable to our case study
because measuring the spreading of malware is crucial [40] in evaluating the cybersecurity
level of an industrial system, in particular for the IT network. On the other hand, the
“ISP badness metric” [41] does not match our target, because its definition (as reported in
Table 1) does not regard to any extent IT or OT components.

Table 1. Example metrics that match or do not match the first three inclusion criteria (IC) regarding
the second reduction step.

Metric Definition Ref. Match IC

Infection Rate
Average number of computers that can be infected by a
compromised computer (per time unit) at the early
stage of spreading

[39] Yes

ISP badness metric

Quantifies the effect of spam from one ISP or
autonomous system on the rest of the Internet
comparing the “spamcount” with its
“disconnectability”

[41] No

As the final objective of our project is to have a set of metrics that are actually usable in
real experiments, we decided to not limit our filtering merely to the selection of metrics that
are domain-relevant but to go beyond that and find only metrics that are valid and feasible
to use in ICPSs. For this reason, we applied the CSSM framework to every metric that
we filtered in the previous reduction, checking if they respect all the three requirements
(well-defined, progressive, and reproducible), explaining the verification process attended
and the reasons that led to the specific outcome. Yee et al. [23] suggest evaluating the
completeness condition of a metric in a team where everyone has the “big picture” in mind
and can share and compare opinions; thus, we evaluated the metrics individually in the
research group and then compared ideas collectively.
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To explain this step, let us dive into four validation examples, as shown in Table 2:
even though they are all usable in our use-case scenario, three of them do not respect one
requirement of the CSSM and only one passes all the tests. The first one is “vulnerability
lifetime”, i.e., the amount of time that a vulnerability remains in the system. This metric
does not pass the well-defined (WD) condition because it is not always possible to find
the exact moment the vulnerability enters the system. Meneely et al. [42] argue that
what is referred to in the literature as vulnerability-contributing commits (VCCs), which
are repository commits that lead to the introduction of a vulnerability after release, do
not always guarantee to rightly reflect the security posture of the analyzed system, as
demonstrated in Alexopoulos et al. [43]. The second one is the “network maliciousness
metric”, which measures the amount of blacklisted IP addresses in a network. This metric
does not pass the progressive (P) condition since the amount of blacklisted IPs does not
necessarily indicate the security level of the system. The third one is “worst-case loss”,
which measures the maximum dollar value of the loss that could happen in the system.
This metric does not pass the reproducible (R) condition because the way to assess this
amount is just an estimation based on various factors that are not deterministic, and thus,
not reproducible in different systems with comparable results. The last one is “VEA-
bility”. This metric is based on the aggregation of the CVSS scores on a certain network
configuration and passes all the conditions: it is a complete measure of the security of the
system, it is a score that converges to a secure level and it is based on a standardized and
reproducible assessment.

Table 2. Example metrics that respect (V) or not (X) the three CSSM conditions: well-defined (WD),
progressive (P), and reproducible (R).

Metric Description Ref. WD P R

Vulnerability lifetime Measures how long it takes to patch a
vulnerability since its disclosure [10] X

Network maliciousness metric Estimates the fraction of blacklisted IP
addresses n a network [21] V X

Worst-case loss

Maximum dollar value of the
damage/loss that could be inflicted by
malicious personnel via a
compromised control system

[33] V V X

VEA-bility
Aggregating scores from CVSS for the
overall system, identifying all the
(well-known) vulnerabilities on hosts

[44] V V V

Lastly, the final reduction involved a confirmation that there were no overlapping
metrics among the set of metrics. To ensure this, we considered equivalent metrics that
share the same objective and concept, other than the same attributes: scope, result types,
automation, measurement, construction, and type. Then, we merged equivalent metrics to
obtain the final set: the resulting metrics prove to be valid, as the CSSM still applies, thanks
to the rule demonstrated in Yee et al. [23] that states that “an additive aggregate security
metric is sound if all of the security metrics that are sums are sound”.

4.4. Results

In this section, we present the results of our work: the security metrics that have
successfully gone through all stages of our meticulous selection and validation process. We
outline the characteristics and properties of the validated metrics, providing a foundation
for their practical application in the realm of ICPS.

Figure 2 delineates the distribution of security metrics across distinct categories,
namely, vulnerability, attack, defense, and situation, at the beginning and after the stage
of filtering and validation. This visualization offers insights into the evolution of metric
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categories throughout the process of selection, highlighting the adaptability and relevance
of each category as metrics progress through successive steps.

We begin our selection process with a total of 278 security metrics, deleting entires
that are not useful or not valid after each step; the results are shown in Figure 3. As we can
observe, the 3-step CSSM validation prunes the majority of not-valid entries with the first
well-defined condition check: this can be explained by the fact that several metrics that are
found not to satisfy the progressive and reproducible conditions are also not well-defined
in the first place.

0%

10%

20%

30%

40%

50%

60%

70%

Vulnerability Defense Situation Attack User

Distribution of metrics for every reduction

Inital Set After Filtering After Validation

Figure 2. Percentage of security metrics of different categories after every step of our approach of
filtering and validation.

After the validation, we collected a total of 32 security metrics that represented our
final set. To understand the quality of evaluation of our metrics combined together, we
evaluated which aspects of confidentiality, integrity, and availability (CIA) were taken into
account: 87.5% of our metrics covered all the three aspects of CIA, whereas the remaining
12.5% covered only one aspect. Table 3 shows this result: a list of all the metrics that we
found, with the aspects of CIA that they cover. These metrics demonstrated resilience and
applicability across the specified criteria, positioning them as reliable indicators of security
within the context of our research.

A final representation of our results is shown in Figure 4: in the initial set, the parti-
tioning between static and dynamic metrics was not balanced; however, as we performed
each step of the filtering and validation process, the difference in quantities between static
and dynamic security metrics improved, reaching an almost balanced partitioning.
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Figure 3. Number of security metrics after every step of our approach of filtering and validation with
CSSM (well-defined WD, progressive P, reproducible R).
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Figure 4. Percentage of dynamic and static security metrics after every step of our approach of
filtering and validation.
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Table 3. The list of the final set of security metrics that we obtained as a result of the collection, filtering, and validation for the ICPS domain. The “X” in the CIA
columns indicates that the relative property is considered.

Name Scope Result Auto Measure Construction Type Ref. C I A

Attack impact network qualitative manual static model vulnerability [45] X X X
Attack surface network quantitative auto static model vulnerability [18] X X X

Component test count device quantitative auto dynamic measure situation [33] X X X
Cost metric network quantitative auto dynamic measure defense [10] X X X
d1-Diversity network quantitative auto static model defense [46] X X X

Data transmission exposure network quantitative auto dynamic measure situation [33] X
Defense depth network quantitative auto static model vulnerability [33] X X X

Detection mechanism deficiency count system quantitative auto static measure defense [33] X X X
Historically exploited vulns metric device quantitative auto static measure vulnerability [10] X X X

Incident rate network quantitative auto static measure situation [10] X X X
Intrusion detection capability metric network quantitative auto dynamic measure defense [47] X X X

k-zero-day-safety metric system quantitative auto static model vulnerability [48] X X X
Mean of attack path lengths network quantitative auto static model defense [30] X X X

Mean effort-to-failure (METF) device quantitative manual dynamic model situation [30] X X X
Mean time-to-compromise (MTTC) network quantitative manual dynamic model vulnerability [10] X X X

Median of path lengths network quantitative auto static model defense [30] X X X
Minimum password strength user quantitative auto dynamic measure user [33] X

Moving target defense evaluation network qualitative manual dynamic model defense [49] X X X
Network compromise percentage network quantitative auto dynamic model vulnerability [30] X X X

Number of attack paths network quantitative auto static model defense [30] X X X
Penetration resistance system qualitative manual dynamic model defense [10] X X X

Reachability count network quantitative auto static model situation [33] X X X
Reaction time metric network quantitative auto dynamic measure defense [10] X X X
Relative effectiveness network qualitative manual dynamic model defense [30] X X X

Restoration time system quantitative manual static model defense [33] X
Return on investment system quantitative manual static model situation [10] X X X

Rogue change days system quantitative auto dynamic measure situation [33] X X X
Root privilege count user quantitative auto dynamic measure situation [33] X X X

SDPL and MoPL network quantitative auto static model defense [30] X X X
Side-channel vuln factor device quantitative manual dynamic model vulnerability [50] X

VEA-bility network quantitative auto dynamic model defense [44] X X X
Vulnerable host percentage network quantitative manual dynamic model vulnerability [33] X X X
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5. Discussion and Limitations

While our endeavor aimed to obtain a comprehensive set of security metrics for ICPSs,
which is an objective both ambitious and complicated, certain limitations and observations
merit consideration. Our systematic methodology heavily relied on the available literature
for metric collection. The completeness of our set is contingent upon the extent and depth of
existing publications in the field. Moreover, the metrics identified may not comprehensively
capture emerging threats or changes in the ICPS landscape over time. This is due to the
ICPS domain that is inherently dynamic, evolving with technological advancements and
consisting of complex interconnection of systems, each one with their own vulnerabilities
and diverse technological constraints.

The process of classifying security metrics involves interpreting and applying criteria
to categorize them into distinct types. Despite having established specific criteria and
performed an analysis of the definition for each one of them, this operation can still
be influenced by subjective judgments. Different individuals may interpret the criteria
differently, leading to potential variations in how metrics are categorized: it is important to
acknowledge that the subjectivity in classification does not undermine the validity of the
overall methodology. Instead, it underscores the need for transparency in the classification
process and a recognition of the interpretative aspects involved. Future refinement of
classification criteria and potentially leveraging more consensus-building approaches
among experts in the field could contribute to minimizing subjectivity and enhancing the
reproducibility of the classification process.

Moreover, the coverage of the resulting metrics remains confined to specific technical
aspects. The deployment and operation of ICPSs, and of CPSs in general, nonetheless,
extend beyond narrow technical considerations, encompassing a broader range of concerns.
This includes social dimensions, safeguarding fundamental human rights like privacy and
ethical considerations, ensuring physical safety, and investigating interactions with the
broader landscape of threats while integrating intelligence about them. An interesting
conclusion is that in our set only 3% fall in the user category: this evidence highlights how
little importance is given to the identification of user-related issues in security evaluations,
although the user is usually seen as the weakest link in cybersecurity [51].

6. Conclusions and Future Work

In the pursuit of establishing a comprehensive suite of security metrics tailored for
ICPSs and ensuring a nuanced understanding of its unique challenges, this study gives a
twofold contribution to the field.

On the one hand, we define a systematic multi-stage methodology proceeding from
the broadest collection of metrics through a validated classification, selection, and filtering
process, to ensure the reliability, reproducibility, and practical applicability of the selected
metrics. On the other hand, by testing such a methodology, we obtain a substantial
compilation of ICPS-specific security metrics, reflecting a broad spectrum of considerations.

Such contributions serve as a foundational resource for further research, aiding practi-
tioners, researchers, and decision-makers in enhancing the security posture of ICPSs.

We adopted CSSM as a robust validation framework, yet its application may not cover
all possible dimensions of security. Future research could explore additional validation
mechanisms to enhance the thoroughness of the validation process. The threat landscape is
ever-evolving; hence, ongoing efforts are necessary to adapt and expand the set of metrics
to address emerging security challenges. Future works could also use the proposed set of
metrics to perform a long-term testing phase inside companies to empirically evaluate the
utility of the metrics that we have found.
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ICPS Industrial cyber–physical system
IT Information technology
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P Progressive
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