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Abstract: A series of typhoons and tropical storms have produced extreme precipitation events in

Vietnam during the first part of the 2020 monsoon season: events of this magnitude pose significant

challenges to remote sensing Quantitative Precipitation Estimation (QPE) techniques. The weather-

monitoring needs of modern human activities require that these challenges be overcome. In order to

address this issue, in this work, seven precipitation products were validated with high spatial and

temporal detail against over 1200 rain gauges in Vietnam during six case studies tailored around

the most intense events of 2020. The data sources included the Vietnamese weather radar network,

IMERG Early run and Final run, the South Korean GEO-KOMPSAT-2A and Chinese FengYun-4A

geostationary satellites, DPR on board the GPM-Core Observatory, and European ERA5-Land reanal-

ysis. All products were resampled to a standardized 0.02◦ grid and compared at hourly scale with

ground stations measurements. The results indicated that the radars product was the most capable of

reproducing the information collected by the rain gauges during the selected extreme events, with

a correlation coefficient of 0.70 and a coefficient of variation of 1.38. However, it exhibited some

underestimation, approximately 30%, in both occurrence and intensity. Conversely, geostationary

products tended to overestimate moderate rain rates (FY-4A) and areas with low precipitation (GK-2A).

More complex products such as ERA5-Land and IMERG failed to capture the highest intensities typical

of extreme events, while GPM-DPR showed promising results in detecting the highest rain rates, but

its capability to observe isolated events was limited by its intermittent coverage.

Keywords: Vietnam; precipitation; satellite; rain gauge; AWS; weather radar; QPE validation; IMERG;

GEO-KOMPSAT-2A; FengYun-4A

1. Introduction

In the months between August and November 2020, Central Vietnam was inundated
with many consecutive tropical depressions and typhoons, leading to extensive flooding
and landslides. This catastrophic event claimed the lives of over 240 people, left more than
500 injured, and caused approximately USD 1.5 billion in direct damages, only for the
month of October 2020 [1,2]. The region saw a combination of numerous weather systems:
the Inter Tropical Convergence Zone combining with cold air produced in October the
tropical storms Linfa, Nangka and Saudel and the typhoon Molave, which was one of the
most devastating typhoons making landfall in Vietnam in decades. They were anticipated
by tropical storms Sinlaku and Noul at the beginning of August 2020 and in the middle of
September 2020, respectively, and were followed by the typhoon Goni and tropical storms
Atsani and Vamco in the first half of November 2020. All weather systems originated in the
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Pacific Ocean and reached Vietnam from the sea traveling west [2]. The effects of typhoon
landfalls were compounded by the strong convection generated by the orographic lift of
the eastern (windward) side of the Trungson mountain range in Central Vietnam [1].

Quantitative Precipitation Estimation (QPE) products with a high level of spatial and
temporal detail (high resolution), the shortest lead time available (low latency), and wide
coverage (regional to global) are relevant to a wide class of users, e.g., to modern agriculture
or, looking at meteorological extremes, to early warning services. Nowadays, numerous
QPE products are publicly available and accessible on a global scale, at different spatial
and temporal resolutions. Most of them rely on remote sensing information from satellites
in Low Earth Orbit (LEO) or Geostationary Orbit (GEO).

However, during extreme events like these ones, QPE through remote sensing tech-
niques is a particularly hard task, due to known shortcomings [3]. It is therefore of great
interest to see how different precipitation products differently describe rainfall during
intense events. A comprehensive analysis of the detection and estimation capabilities of the
products, which is commonly referred to as their error structure, is crucial knowledge to
the end users in order to extract the most information from each of them or choose between
them. Consequently, extensive ground validation programs are usually part of satellite
mission activities [3,4], and they continue to be the primary focus of international working
groups [5].

In recent years, numerous intercomparison and validation initiatives have been con-
ducted in tropical regions [6,7] and in Southeast Asia [8–10] to evaluate the suitability of
satellite precipitation products for various quantitative applications, particularly in agri-
culture and hydrology. These efforts have focused on the utilization of globally available
satellite precipitation products in hydrological modeling for transboundary and inade-
quately monitored river catchments, such as the Mekong River Basin. The findings indicate
satisfactory performance in describing river discharge at monthly scales when using these
global satellite precipitation products. However, the evaluation revealed lower values
of the Nash–Sutcliffe Efficiency (NSE) when assessing daily-scale river discharge [11,12].
Bias correction techniques can be employed to enhance the accuracy of global satellite
precipitation products by incorporating local gauge-based data [13]. This approach proved
to be beneficial in simulating streamflow in mountainous catchments [14,15], delivering
promising results at both daily and monthly scales. In fact, it surpassed the conventional
gauge-only approach [16,17]. Satellite products have also been utilized in crop simulation
models, demonstrating favorable performance at monthly scales. However, their accuracy
diminished considerably when applied to decadal and daily values [10]. Various valida-
tion studies conducted in Southeast Asia have examined the compatibility between daily
satellite products and rain gauge data [18,19]. These studies highlight the potential benefits
of implementing bias correction techniques to enhance the quantitative alignment of rain
rate values.

Looking at Vietnam, multiple evaluations have been conducted in recent years to
assess various precipitation products across different regions of the country. These studies
utilized established reference datasets or the Vietnam Gridded Precipitation (VnGP) dataset,
focusing on the performance of specific products, such as the IMERGv6 Final run [20],
GSMaP [21] and TRMM3B42 [18]. These evaluations primarily concentrated on specific
regions of Vietnam during the rainy season, including the northern region, Central Coast,
and Central Highlands. They reported high correlations, ranging from 0.75 to 0.93, for daily
and monthly average precipitation when compared to reference datasets or the VnGP.
For instance, a study [22] evaluated the TRMM3B42 products (v7 and RT) over the Red-
Thai Binh river basin, while another [23] compared multiple products (GPM TRMM,
CHIRPS, GSMaP, and CMORPH) with ground station data in the Ca river basin for the
period 2015–2017. Both studies found a high correlation in monthly average precipitation,
with a correlation coefficient (CC) of 0.93, even at this larger scale. More recently, two
studies [24,25] independently evaluated eight and six long-term satellite-based precipitation
products over six and eleven river basins in Vietnam at both monthly and daily scales for
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hydrological applications. Their findings indicate that the IMERG-Final run performed
best among the examined candidates, particularly in representing the derived flood peaks.
Overall, these evaluations provide valuable insights into the performance of precipitation
products in different regions of Vietnam, demonstrating strong correlations, particularly
for monthly average precipitation values.

It is worth noting that the existing literature focuses on validation and comparison
exercises that are conducted at coarse resolution (product native or watersheds), and in-
tegrating over longer periods (day to month). Moreover, they are generally not focused
solely on heavy rainfall events. In this work, we instead aim to specifically address extreme
conditions, related to the 2020 typhoon season. At the same time, we want to assess precip-
itation products at a finer spatial and temporal resolution than the previous works in the
literature, pushing the product design limits, trying to meet user demand.

The aim of this study is therefore to assess the accuracy of local and global precipitation
products available over Vietnam during extreme weather periods at high resolution and
analyze their error characteristics through mutual comparison and validation with ground
reference data.

Specifically, we examined seven different data sources against a ground-based refer-
ence derived from rain gauges. We utilized products from the Dual Frequency Precipitation
Radar on board the GPM-Core Observatory satellite [26], the estimates from infrared
sensors on board the Chinese FengYun-4A and South Korean GEO-KOMPSAT-2A geo-
stationary satellites [27], as well as the multi-satellite products from IMERG [28] and a
ground-based product such as the weather radar QPE. Moreover, we considered the ERA5-
Land reanalysis [29,30], which is the “Land” version of the fifth generation of the ECMWF
Reanalysis, as an additional product based on a different approach.

The data sources utilized in this study are detailed in Section 2, while the comparison
methods are explained in Section 3, including the description of the precautions taken to
ensure a consistent intercomparison. Subsequently, the actual results of the intercomparison
are presented in Section 4, followed by a comprehensive discussion in Section 5. Finally,
Section 6 concludes the study by summarizing the key findings.

2. Data

This study incorporates seven precipitation products and a quantitative precipitation
reference over Vietnam (see Table 1), which can be categorized into five different types of
data sources:

• Ground-based instruments: this includes rain gauges obtained from automatic weather
stations and weather radars.

• Precipitation estimations from geostationary satellites (GEO): the study utilizes data
from the Advanced Geo-synchronous Radiation Imager (AGRI) on board the Chinese
FengYun-4A satellite and the Advanced Meteorological Imager (AMI) on board the
South Korean GEO-KOMPSAT-2A satellite.

• Precipitation estimation from a space-borne radar on a low Earth orbit (LEO) platform:
the Dual-frequency Precipitation Radar on board the NASA-JAXA GPM-CO satellite.

• Multi-satellite products with different levels of calibration and latency: specifically,
the Integrated Multi-satellitE Retrievals for GPM (IMERG) Early and Final runs.

• Model reanalysis: the “Total precipitation” variable of the ERA5-Land product by
ECMWF (European Centre for Medium-Range Weather Forecasts).

These diverse data sources enable a comprehensive analysis of precipitation patterns
and their estimation accuracy in Vietnam.
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Table 1. Summary of the main characteristics of the precipitation products. In the last row are

also presented the characteristics of the common interpolation grid over which the comparisons are

carried out in this work.

Dataset Period
Grid

Resolution
Temporal
Sampling

Coverage Data Source Latency

AWS
(rain gauges)

2008–present point
(avg. dist.: 8.6 km)

10 min/1 h country-wide tipping bucket
∼10 min/
30 min–1 h

Radars 2019–present 1 km 1 h country-wide C- and S-band 15–30 min

GPM-DPR 2014–present 5 km ∼1 overp./day
245 km swath

(global)
DPR (Ku + Ka) 1 day

FY-4A 2017–present 4 km (nadir) 1 h/3 h/6 h full disk VIS-IR NRT

GK-2A 2018–present 2 km (nadir) 10 min full disk IR + DPR NRT

IMERG
Early run

2000–present 0.1◦ × 0.1◦ 30 min global MW + DPR + IR 4 hours

IMERG
Final run

2000–present 0.1◦ × 0.1◦ 30 min global MW + DPR + IR
+ rain gauges

3.5 months

ERA5-Land 1950–present ∼9 km 1 h global ECMWF model 2 to 3 months

This work August 2020–
November 2020

0.02◦ × 0.02◦ 1 h from 7◦N–101◦E
to 24◦N–111◦E

8 different
sources

-

2.1. Ground Reference Data: Automatic Rain Gauge Stations

The rain gauge network in Vietnam is operated and managed by multiple stakeholders,
including the Vietnam Meteorological and Hydrological Administration (VNMHA). This
extensive network comprises approximately 1300 automatic weather stations (AWS) spread
across the country (see Figure 1). However, there are some density fluctuations and
occasional interruptions in the network, resulting in around 800–900 active and quality
controlled rain gauges at any given time. These rain gauges collect readings every 10 min.
For the purpose of this study, the recorded rain rates were accumulated to compute hourly
averages in millimeters per hour (mm/h), representing the total accumulated rainfall
for each hour. On average, the minimum distance to the nearest rain gauge station is
approximately 8.6 km.

2.2. Ground Weather Radar Precipitation Product

In 2020, Vietnam’s ground weather radar network consisted of five dual-polarization
radars located in cities including Viet Tri, Nha Trang, Quy Nhon, Pleiku, and Pha Din
Pass. Additionally, there were three single-polarization C-band radars in Dong Ha, Tam Ky,
and Nha Be, as well as two single-polarization S-band radars in Phu Lien and Vinh. The data
used in this study were collected from these 10 radar sites, which was partially inherited
from the results of the Vietnam National Research Project with the code ĐTĐL.CN-58/21.
Before incorporating the radar data into the Quantitative Precipitation Estimation (QPE)
calculation, a quality control process was conducted to filter out basic errors. The radar
precipitation product was derived from one-hour accumulated radar intensity, using the
original method developed by the Japan Meteorological Agency (JMA) [31], with adap-
tations for the Vietnamese region by the Japan Weather Association (JWA) [32] and the
National Centre for Hydro-Meteorological Network (NCN). These adaptations involved
decoding the input raw radar data and making parameter corrections. The radar product
provides hourly coverage for nearly all of mainland Vietnam, with a resolution of 1 km.
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The areas with the best overlap between instruments are in the north, while the density of
instruments is lower in the middle and southern parts of the country (Figure 1).

Figure 1. Map of Vietnam with AWS and radar locations.

2.3. Space-Borne Radar Product: GPM-DPR

The Dual-frequency Precipitation Radar (DPR) is an active sensor on board the GPM
Core Observatory satellite, operating in the Ku (13.6 GHz) and Ka (35.5 GHz) frequency
bands. The 2ADPR Level-2 product (version V07A) utilizes the reflectivity measurements
from both frequency bands to estimate the precipitation rate at the surface. The “precipRa-
teESurface” variable (5 km resolution at nadir) of the 2ADPR product is utilized in this
work since it is considered valuable for comparison with ground-based data [26,33].

2.4. Geostationary Satellite-Based Products: GEO-KOMPSAT-2A and FengYun-4A

Currently, three geostationary weather satellites observe Vietnam: the Chinese Fengyun-
4A located at longitude 104.7◦E, the South Korean GEO-KOMPSAT-2A positioned at longi-
tude 128.2◦E, and the Japanese Himawari-8 situated at longitude 140◦E.

The geostationary satellites mentioned in this study host similar sensors, with compa-
rable channels and ground resolutions. However, it is important to note that the Chinese
and South Korean agencies employ different algorithms for precipitation retrieval. As for
Himawari-8, no official precipitation product has been released yet, and as a result, it is not
included in this study. However, it is worth mentioning that there is promising ongoing
research using random forests [34] that has shown good results in Japan and is currently
being replicated in the context of Vietnam.

2.4.1. GEO-KOMPSAT-2A

The GEO-KOMPSAT-2A (Geostationary Korea Multi-Purpose Satellite 2A, or GK-2A)
is a geostationary satellite operated by the Korea Meteorological Administration (KMA),
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National Meteorological Satellite Center (NMSC). It has been in operation at a longitude of
128.2◦E since December 2018. On board the GK-2A, the Advanced Meteorological Imager
(AMI) consists of 16 spectral channels, covering a range from visible to thermal infrared
(with wavelengths between 0.47 and 13.3 µm). The spatial resolution of the infrared
channels is 2 km at nadir, and the temporal resolution for the full disk area is 10 min.
The rain rate estimation algorithm used by GK-2A utilizes brightness temperatures from
five different bands (6.24 µm, 7.34 µm, 8.59 µm, 11.21 µm, 12.36 µm). It discriminates cloud
types by applying predefined thresholds to cloud top height and thickness, then estimates
precipitation intensity by a statistical matching of the probability density functions derived
from recent GPM-DPR data. This approach thus leverages the information from the GPM-
DPR to improve the accuracy of precipitation estimation from the GK-2A satellite [27].
The data utilized here come from the AMI Level-2 rainfall rate product (“AMI L2 RR”),
obtained with the “GK2A_RR” algorithm, version 1.6.0.4. Technical documentation is
available only in Korean [35].

2.4.2. FengYun-4A

Fengyun-4A (FY-4A) is the first satellite of China’s second-generation geostationary
meteorological satellites [36]. It is operated by the National Satellite Meteorological Center
(NSMC) under China Meteorological Administration (CMA). It is positioned at a longitude
of 104.7◦E. The precipitation estimate is derived from the Advanced Geosynchronous
Radiation Imager (AGRI), which measures upward atmospheric radiance from 14 channels,
covering a spectral range of 0.55 µm to 13.8 µm with 4 km nadir resolution [37]. The specific
algorithms and procedures used by FY-4A are not publicly available, but the literature
suggests that the current version lacks a calibration step, and future versions may incorpo-
rate radar measurements [27]. The precipitation product is called “FY4A AGRI L2 QPE”,
or “Quantitative Rainfall Rate Estimation of AGRI”, and is generated by version 1.0 of
the software.

2.5. Multi-Satellite Products and Model Reanalysis: IMERG and ERA5-Land

2.5.1. IMERG

The IMERG algorithm (version 3IMERGH_6.3) of the GPM Mission provides precipi-
tation estimations at the Earth’s surface by merging data from multiple satellites in both
low and geostationary orbits, using the infrared (IR) and microwave (MW) parts of the
spectrum. The available IMERG products (version V06B) include the Early run, Late run,
and Final run. A comprehensive description of the IMERG algorithm can be found in [28];
the respective technical document is [38]. As we move from the Early run to the Final run,
the calibration steps and quality controls become more structured, along with an increase
in latency. The Early run, released after 4 h, relies solely on satellite data. The Late run,
published 10 h after the Early run (with a latency of approximately 14 h), incorporates
data from the satellite overpasses that were not available in the initial 4 h. The Final run,
released after 3.5 months, includes calibration using the gauges of the Global Precipitation
Climatology Centre (GPCC) monthly Monitoring Analysis. For this study, only the Early
and Final runs were considered. The Early run represents an almost near real-time (NRT)
merged product, while the Final run provides the most reliable satellite-based global pre-
cipitation estimate available in the area. The rainfall field used in this study is extracted
from the “precipitationCal” variable, on a 0.1◦ × 0.1◦ grid every hour.

2.5.2. ERA5-Land

ERA5 is the state-of-the-art reanalysis product developed by the European Centre for
Medium Range Weather Forecasts (ECMWFs) [39]. ERA5-Land, a component of ERA5,
focuses specifically on land-related variables and provides a finer spatial resolution, with a
grid spacing of approximately 9 km [30]. In this study, we consider the “Total Precipitation”
variable from ERA5-Land, which has a temporal resolution of 1 h and a spatial resolution
of 0.1◦. The Total Precipitation product in ERA5-Land is derived from the sum of two



Remote Sens. 2024, 16, 805 7 of 23

sources: the large-scale precipitation term, computed by the model at scales greater than
the grid box, and the convective precipitation term, computed by the convective scheme
within the ECMWF Integrated Forecasting System at spatial scales smaller than the grid
box. To match the finer resolution of ERA5-Land, the precipitation field is interpolated
from the original ERA5 resolution (approximately 31 km) to the ERA5-Land resolution
using a linear interpolation method based on a triangular mesh [29].

2.6. Study Period: Heavy Rainfall Events between August and November 2020

The analysis focused on specific periods when the tropical storms and typhoons made
landfall over mainland Vietnam, to capture the occurrence of heavy precipitation, spanning
a cumulative total of 29 days. The case studies were distributed across the months from
August to November 2020, as shown in Table 2. A preliminary selection was based on
official government data for yearly typhoons provided by the Disaster Management Policy
and Technology Center (DMPTC), then the selection was refined using rain gauge data.

Table 2. Summary table of the six case studies considered for this work, selected around the main

precipitation events of the 2020 typhoon season over Vietnam, with summary statistics of the reference

precipitation seen by the rain gauge stations.

Case ID Start (Date) End (Date)
Duration
(Hours
[Days])

Wet Ratio
(%)

Average
Rain Rate

(mm/h)

Std.
Deviation

(mm/h)

Maximum
Rain Rate

(mm/h)

1 31 July 3 August 73 [3] 36.2 3.27 4.95 61.6
2 16 September 20 September 97 [4] 29.9 2.89 5.86 106.6
3 5 October 11 October 145 [6] 26.2 5.10 8.31 209.4
4 14 October 21 October 169 [7] 31.2 3.83 6.83 96.8
5 27 October 1 November 121 [5] 26.6 2.70 5.93 111.8
6 13 November 17 November 97 [4] 23.6 1.48 3.63 289.7

Whole dataset
August

2020
November

2020
702 [29] 28.8 3.49 6.57 289.7

Using a threshold of 0.2 mm/h (see Section 4.2 and Section S1 of the Supplementary
Material for more insight about the threshold selection) to differentiate between wet and dry
samples, the AWS recorded a total of 174,675 wet samples of the total reference data points,
which are 610,120, counting both the temporal and spatial dimensions (see Section 3.2),
for a wet ratio of 28.8% (Table 2).

The average rainfall value measured was 3.49 mm/h, with a standard deviation of
6.57 mm/h. The maximum recorded value reached 289.7 mm/h. Case-specific values are
shown in Table 2. Hourly average rainfall rates surpassed 200 mm/h only during case
study numbers 3 and 6. The majority of the rainfall values remained below 100 mm/h.
The average values across the country never exceeded 6 mm/h. Notably, case number 6
shows the highest maximum but the lowest average rain rate.

Figure 2 displays the spatial distribution of the AWS data during the selected 29 days,
time-aggregated with four statistics and utilizing a linear, Euclidean-distance based nearest
neighbor algorithm to create space-continuous maps for qualitative display purposes.
The precipitation exhibits a distinct regional pattern, mainly governed by the spatial
distribution of the 2020 typhoon trajectories (see Sections S2 and S3 of the Supplementary
Material). The central part of Vietnam experienced the highest number of wet hours
(Figure 2a), while the northeastern and northwestern mountains were comparatively drier
regions, consistent with the local climatology [40]. In the narrow strip between 16◦N
and 18◦N are concentrated the highest mean, maximum and standard deviation values
(Figure 2b–d).



Remote Sens. 2024, 16, 805 8 of 23

Figure 2. Map of various statistics for the AWS reference dataset. (a) Number of wet hours for each

grid box. (b) Average rain rate (mm/h) among wet hours. (c) Maximum rain rate (mm/h) among wet

hours. (d) Standard deviation of the rain rate (mm/h) among wet hours.

2.7. Data Availability and Coverage

All the precipitation products utilized in this study have different spatial and temporal
resolutions. Spatially, the resolutions range from 1 km for the radar data to 10 km for
the IMERG and ERA5-Land products. Temporally, they range from 10 min to 1 h. Each
product then also had its own temporary issues and outage periods. Table 3 provides
aggregated information on the temporal coverage of each product with respect to the total
hours considered (702). All products except GPM-DPR have levels of coverage always equal
or higher than 90%. GPM-DPR coverage is so much lower (12%, corresponding to 84 h) and
nonhomogeneous because the GPM Core satellite passes over the region only about once
per day (see Table 1 and Section 2.3 for further details). All products show great stability
except AWS, which present some fluctuations across the case studies.

Table 3. Summary table of the temporal coverage of all the considered products, in percentage with

respect to the number of total time intervals, evaluated at the rain gauge locations.

Case ID

Product Coverage (% of Time)

AWS Radars GK-2A FY-4A
GPM-
DPR

IMERG-
Early

IMERG-
Final

ERA5-
Land

1 90 100 100 100 4 100 100 99
2 97 100 100 98 8 100 100 99
3 95 100 100 100 9 100 100 98
4 98 100 100 100 15 100 100 99
5 94 100 100 100 25 100 100 99
6 97 100 100 100 9 100 100 99

Whole
dataset

95 100 100 100 12 100 100 99

3. Methods

3.1. A Shared Spatial Grid for a Multi-Platform Analysis

In order to perform the comparison between the various precipitation products sourced
from different providers, it was necessary to homogenize the spatial and temporal reso-
lutions. Temporally, the comparison was conducted at the minimum common time step
of 1 h, in order to limit temporal interpolations. To perform the spatial matching, we
converted all products to a grid finer than most of the analyzed products, in order to meet
user requirements for high resolution and to check the sensitivity to extreme precipitation.

All data sources were re-projected onto a homogeneous spatial grid (see Figure 3),
knowing that possible errors intrinsic to this process will contribute to the overall error.
The grid had a 0.02◦ step in both latitude and longitude, which corresponds to approxi-
mately 2 km at the latitude of Vietnam, and a geographical extent from 7◦N to 24◦N and
101◦E to 111◦E.
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Rain gauge measurements of the AWS reference were assigned to the grid boxes that
corresponded to their actual locations. In cases where a grid box contained more than one
station (45 occurrences), the measurements were averaged. Grid boxes without any station
measurement were excluded from the quantitative analysis.

Eventually, a nearest neighbor algorithm was employed to fill the ungauged regions,
only to create space-continuous rainfall maps for visualization purposes and qualitative
analyses (Figures 2, 4 and 5), with no impact on the quantitative validation.

Figure 3 presents a sample snapshot of the hourly precipitation as seen by the rain
gauge reference and the seven products, remapped on the common grid. In the graphi-
cal representation, the white color indicates zero rainfall intensity, while gray areas de-
note no data.

Figure 3. Products remapping output: intercomparison map of the 8 precipitation products for the

same time interval (namely, 21.00 UTC of 1 August 2020). Grey grid boxes are the areas without

any data. (a) AWS; (b) radars composite; (c) GEO-KOMPSAT-2A; (d) Fengyun-4A; (e) GPM-DPR;

(f) IMERG-Early run; (g) IMERG-Final run; (h) ERA5-Land total precipitation.

3.2. Towards a Uniform Dataset: Products Intersection

The main dataset for the analysis was created by considering the intersection of the
availability of all products but GPM-DPR. This obviously produced a 27% smaller sample
than the union of all available data but ensured the simultaneous presence of all sources
at all times. This intersection was applied at the hourly scale, separately for each time
interval. Thus, the spatial extent of the resulting dataset slightly varied over time, reflecting
the fluctuations in the least populated product of each hour. The process was repeated
including the GPM-DPR product, resulting in a second separate dataset of approximately
1% of the size of the main one. However, when looking at the characteristics of the
precipitation measured by the AWS reference, the GPM-DPR subset is very similar to the
overall dataset, with a wet fraction of 28.4% and an average rain rate of 3.89 mm/h.
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Figure 4. Maps of the average rain rates of all products over the common grid: (a) AWS; (b) radars;

(c) GK-2A; (d) FY-4A; (e) GPM-DPR; (f) IMERG-Early run; (g) IMERG-Final run; (h) ERA5-Land.

Figure 5. Maps of the bias of all products relative to the AWS reference product: (a) AWS (reference

data); (b) radars; (c) GK-2A; (d) FY-4A; (e) GPM-DPR; (f) IMERG-Early run; (g) IMERG-Final run;

(h) ERA5-Land.

The AWS dataset populated a maximum of 1394 grid boxes when projected onto the
common grid (see Section 3.1). Their number was not constant due to fluctuations in the
number of working stations, but most of the grid boxes contained valid measurements for
more than 80% of the time. Only a small subset of stations (contained in 148 grid cells,
around 10% of the total) provided valid readings for less than 50% of the time. With the aim
of improving the quality of the dataset, these scarcely populated cells were removed from
the AWS dataset. A general intersection of all grid boxes and time intervals ensured that
the comparison between the products happened only over the grid boxes which contained
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all spatial products and at least one rain gauge. A maximum of 1229 grid boxes per time
interval were considered.

The resulting main dataset accounts for 610,120 data points (counting both temporal
and spatial dimensions), while 4710 points make up the subset which includes GPM-DPR.

3.3. Error Metrics

Several statistical indicators were used to perform comprehensive analysis. A set of
five categorical indices was used to evaluate the detection capabilities of the products.
In addition, six continuous scores were employed to assess the quality of the reconstructed
rain fields at the rain gauge locations.

3.3.1. Categorical Indices

Categorical indices are commonly utilized to assess the ability of a model or method
to detect precipitation events. The classification of rain/no-rain was conducted by applying
a threshold to the measured and estimated rainfall data. A 2 × 2 contingency matrix was
then populated by comparing the occurrence of threshold-exceeding events between the
reference (truth) and the products (estimates). Hits (H) and correct rejections (C) are located
on the main diagonal, while misses (M) and false alarms (F) are positioned outside of it.

This study utilized several indices to evaluate the performance of the products. These
indices include the probability of detection (POD), false alarm ratio (FAR), multiplicative
BIAS (mBIAS), critical success index (CSI), and equitable threat score (ETS). Each index is
derived from different elements of the contingency matrix. Table 4 provides a reference of
these indices, including their definitions, ranges, and optimal values [41].

Table 4. Indices for the categorical metric [41]. They are expressed by combinations of the four

elements of the contingency matrix: hits (H), misses (M), false alarms (F) and correct rejections (C).

The expected random hits (HR) are defined as HR = [(H + M)× (H + F)]/[H + M + F + C].

Name Equation Range of Values Optimal

Probability of detection POD = H/(H + M) [0 , 1] (1)
False alarm ratio FAR = F/(H + F) [0 , 1] (0)

Multiplicative bias mBIAS = (H + F)/(H + M) [0–∞] (1)
Critical Success Index CSI = H/(H + M + F) [0 , 1] (1)

Equitable threat score ETS = (H − HR)/(H + M + F − HR) [− 1
3

, 1] (1)

3.3.2. Continuous Indices

Continuous indices assess the quantitative accuracy of rainfall products by comparing
each point estimate with its corresponding reference measurement. In this study, we
employed well-established indices (defined in Table 5) to evaluate the performance of the
products: the Pearson’s correlation coefficient (CC), the normalized root mean square error
or coefficient of variation (CV), the normalized mean error or bias (ME), and the normalized
mean absolute error (MAE). In addition to these common metrics, we also calculated two
more indices: the modified Kling–Gupta efficiency (mKGE) and P50. These metrics provide
further insights into the performance of the rainfall products.

The Kling–Gupta Efficiency [42], in its modified version by [43], is derived in a 3D
space where the orthogonal dimensions represent the correlation coefficient (CC), the ratio
between the global mean values of the product and reference fields (µe/µo, which is
equivalent to 1 + ME), and the ratio between the normalized standard deviations of each

field (
σe/µe

σo/µo
). The mKGE is calculated as one minus the Euclidean distance from the obtained

coordinates to the ideal point (1, 1, 1). The mKGE score not only measures the goodness-of-
fit between estimates and observations but also provides a deeper understanding of the
Nash–Sutcliffe Efficiency (NSE) by examining its components [42].

The P50 indicator represents the probability that an estimate will fall within plus or
minus 50% of the actual measurement. It provides a practical evaluation of the overall
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accuracy of a product by allowing for a reasonable level of deviation (50% in this case).
This indicator acknowledges that high-resolution precipitation products may exhibit some
variability, and conventional metrics may be less forgiving in assessing their performance.
By considering a broader range of acceptable values, the P50 indicator offers a more realistic
assessment of the fitness of a product.

Table 5. Indices for the continuous metric. The letters e and o refer to the estimate and to the observed

reference, respectively, σo,e is the covariance of observation and estimate, σo is a standard deviation,

µo is an average, β = µe/µo is the ratio of the averages, γ =
σe/µe

σo/µo
is the ratio of the normalized

standard deviations, and n(x) is the number of occurrences of x.

Name Equation Range of Values Optimal

Correlation coefficient CC = σo,e/σoσe [−1 , 1] (1)

Coefficient of variation CV =

√

Σ(ei−oi)
2

N
/µo [0 , ∞] (0)

Normalized mean error, or bias ME = ∑i(ei − oi)/Nµo [−∞ , ∞] (0)
Normalized mean absolute error MAE = ∑i ∥ei − oi∥/Nµo [0 , ∞] (0)

Modified Kling–Gupta efficiency mKGE = 1 −
√

(CC − 1)2 + (β − 1)2 + (γ − 1)2 [−∞ , 1] (1)

Probability to have ei inside ±50% of oi P50 = n
[

ei | (0.5 × oi) ≤ ei ≤ (1.5 × oi)
]

/N [0 , 1] (1)

4. Results

The analysis begins by examining how the precipitation products are able to repro-
duce the average rainfall spatial pattern measured by the AWS reference and depicted
in Figure 2b. This will appear in Section 4.1. The first quantitative analysis, presented in
Section 4.2, involved the detection skills at hourly resolution across a fixed rain rate thresh-
old of 0.2 mm/h. Then, the quantitative representativeness of the precipitation estimates
was studied. A general outlook was provided in terms of probability density functions of
the rainfall intensity (Section 4.3). The samples indicated as rain by the AWS reference were
then compared against each corresponding one from the various products to evaluate the
estimation accuracy (Section 4.4). Finally, the sensitivity to rainfall intensity was evaluated,
varying the rain/no-rain threshold (Section 4.5).

4.1. Spatial Distribution of Average Values

Figure 4 displays the maps where all hourly measurements are averaged (702 h total)
for each grid box, after removing dry occurrences, while Figure 5 shows the respective
biases to the AWS reference. The AWS reference is first presented in Figure 2b and is
reiterated in Figures 4a and 5a for ease of comparison and interpretation with the other
panels. The color gradient ranging from lighter to darker shades of red indicates increasing
levels of overestimation, while the blue gradient indicates underestimation.

A key to interpret these results is to keep in mind that the northwestern part of Vietnam
is mainly mountainous, while in the south, lowlands are prevalent (see Section S2 of the
Supplementary Material). The central part of the country was the preferred landing zone
for typhoons in 2020 (see Section S3 of the Supplementary Material).

All the products correctly identified the highest rainfall intensities in the central
region of Vietnam, but there are notable variations among them. For instance, ERA5-
Land indicates its maximum rainfall values located further north compared to the other
six products. The geostationary products instead display maximum values that extend
more towards the southern part of Vietnam, reaching as far south as 13◦N; whereas other
products such as radars show maximum values at a slightly higher latitude, around 15◦N.
The discrepancies in the numerical values of the geostationary estimates are particularly
pronounced and concentrated in the central region of Vietnam. However, in the northern
and southern parts of the country, the geostationary estimates align more closely with the
other products. It is worth noting that the calibration process of IMERG, from the Early run
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to the Final run, appears to have a greater impact on the northern region of the country
(above 18◦N) compared to other areas.

4.2. Rainfall Area Detection

The rain/no-rain threshold was set at 0.2 mm/h based on a detailed analysis of the
PDF of the rainfall products for low rain rates (shown in Section S1 of the Supplementary
Material). This threshold of 0.2 mm/h is also the lowest common denominator of the
instrumental resolution of the rain gauges.

Categorical scores are computed using a contingency matrix that tabulates the number
of hits, misses, correct rejections, and false alarms (refer to Table 4) in relation to the
occurrence of rain in the AWS data. An overview of the detection capabilities of the
different products during the studied period is provided in Table 6.

Table 6. Statistical indicators for the categorical analysis. Products with the best and worst per-

formance results for each score are indicated with bold and italic fonts, respectively (except for

GPM-DPR, which does not share the same sample size). The ideal target scores are indicated in

Table 4.

Product CSI ETS POD FAR mBIAS

Radars 0.53 0.41 0.61 0.21 0.77
GK-2A 0.38 0.18 0.69 0.55 1.53
FY-4A 0.34 0.21 0.43 0.39 0.71
IMERG-Early run 0.40 0.25 0.55 0.41 0.92
IMERG-Final run 0.43 0.28 0.62 0.42 1.07
ERA5-Land 0.44 0.24 0.83 0.52 1.71

GPM-DPR * 0.55 0.45 0.61 0.15 0.72

* Sample size of GPM-DPR is ∼99% smaller than the other products’, which instead all share the same one.

The GPM-DPR showed the highest performance in terms of Critical Success Index
(0.55) and Equitable Threat Score (0.45), although it should be stressed that its sample
size is only approximately 1% of the others. The radar products closely followed with
a CSI of 0.53 and ETS of 0.41, demonstrating the strongest overall detection capabilities
across the main dataset (i.e., not considering GPM-DPR). The remaining products lagged
behind, particularly in terms of ETS. Both the ground-based radar and GPM-DPR products
exhibited the same Probability of Detection (POD) at 0.61, similar mBIAS values (0.77 and
0.72, respectively), and low False Alarm Rates (FARs) at 0.21 and 0.15, respectively. The
geostationary products, GK-2A and FY-4A, exhibit similar overall detection performance
with CSI values below 0.4 and ETS values around or below 0.2. However, they differ in
terms of mBIAS. GK-2A demonstrates a good Probability of Detection (POD) at 0.69 but
overestimates rainfall occurrence by 53%. Conversely, FY-4A exhibits a lower False Alarm
Rate (FAR) but only captures 43% of the measured precipitation occurrence. The IMERG
products demonstrate modest detection performance, with CSI values slightly above 0.4
and ETS values below 0.3. The effects of calibration in the Final run are most noticeable in
the POD and mBIAS, which nonetheless were good already. The FAR instead, which was
above 0.4, did not show improvement through the calibration process, and was even slightly
worse than the Early run. ERA5-Land exhibits the highest POD (0.83), at the expense of a
high FAR at 0.52, which results in the worst mBIAS among all the products. This indicates
an overestimation of precipitation occurrence by ERA5-Land.

4.3. Overall Distribution of the Estimated Rain Rates

To evaluate the representativeness of the quantitative estimates of the products during
the study period, only the subset with “wet” reference samples was considered. Firstly,
it was verified whether the seven products were able to reproduce the distribution of the
intensity of the reference rainfall. The probability density functions (PDFs) at the AWS
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positions were calculated for all 702 h and 1229 grid points using a 2 mm/h binning,
ranging from 1 to 200 mm/h (Figure 6).

Figure 6. Distributions of measured/estimated precipitation along the full spectrum of intensity,

or probability density functions (PDFs). Areas under the curves are normalized to 1. GPM-DPR

distribution is marked by single points connected by a dashed line, in the effort to relate its different

sample size and also overcome its intrinsic noisiness.

The AWS data (black line) span continuously from 1 to 100 mm/h, exhibiting a smooth
curve. The minor fluctuations observed at the highest rainfall rates are likely to be attributed
to noise given the relatively small sample size. The radar data (green line) show a close
agreement with the AWS measurements, displaying a similar trend and level of noise.
However, noticeable underestimation emerges above 10 mm/h, and increases for higher
rainfall rates. The PDF of the GPM-DPR is depicted by purple points connected by a dashed
line instead of a solid line to remark its notably smaller sample size compared to the other
products. The PDF of GPM-DPR shows similarities with the gauges’ PDF up until around
35 mm/h, after which it starts to overestimate. Notably, the statistical representativeness of
the tail at high rain rates is low, with fewer than five data points at a probability density
below 10−3.

Estimations from geostationary satellites show more discrepancy with the reference
distribution. The GK-2A (yellow line) slightly overestimates the first rain rate class, followed
by underestimation of low and medium rain rates, resulting in the lowest PDF values
between 3 and 7 mm/h. Around 12 mm/h, the GK-2A aligns with the reference distribution
(AWS) but then beyond 25 mm/h, it starts to overestimate, with discrepancies of up to
an order of magnitude for the highest intensities. FY-4A (orange line) exhibits a different
behavior for low intensities. It underestimates just the first intensity class and overestimates
the remaining spectrum, with noticeable peaks that cannot be solely attributed to statistical
noise. The estimations cease with a cut-off; no values were registered beyond 50 mm/h.
The IMERG-Early run (light blue line) does not provide estimates for peak rainfall rates
as indicated by the decline in the PDF above 30 mm/h and the absence of values above
65 mm/h. IMERG-Final run (dark blue line) instead shows a PDF that fairly aligns with the
AWS reference up to 100 mm/h, with underestimation. The PDF of ERA5-Land initially
shows good agreement with the reference for rain rates below 10 mm/h. However, ERA5-
Land displays a notable decrease in probability above 15–20 mm/h. This indicates a
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significant underestimation of medium and high rain intensities, likely due to the lower
ground resolution of the product and its spatially distributed nature.

4.4. High-Resolution Rain Rate Estimates

The seven products were then compared with the reference measurements at the
highest level of spatial and temporal detail within our framework. The comparison was
conducted across all the considered hours (702) and grid boxes (1229), again excluding the
no-rain samples according to the AWS reference. The results are presented in Table 7.

Table 7. Statistical indicators for the continuous validation. Best and worst performance results for

each score are indicated with bold and italic fonts, respectively (except for GPM-DPR, which does not

share the same sample size). Ideal target scores are indicated in Table 5.

Product CC CV ME MAE P50 mKGE σe /µe

σo/µo

Radars 0.70 1.38 −0.34 0.56 0.75 0.53 1.13
GK-2A 0.29 3.16 0.07 1.32 0.39 0.09 1.55
FY-4A 0.3 2.62 0.33 1.42 0.66 0.23 0.98
IMERG-Early run 0.38 1.82 −0.50 0.86 0.5 0.21 1.00
IMERG-Final run 0.42 1.83 −0.31 0.86 0.5 0.34 1.04
ERA5-Land 0.29 1.86 −0.43 0.85 0.28 0.12 0.69

GPM-DPR * 0.44 2.67 −0.21 0.78 0.75 −0.17 2.00

* Sample size is constant for all products except GPM-DPR, for which it is 99% smaller.

The comparison can be visualized through the logarithmic density scatterplots pre-
sented in Figure 7. It has to be noted that, below 1 mm/h, the logarithmic binning becomes
finer than the instrumental sensitivity of AWS (mainly 0.2 mm/h, a few 0.1 mm/h). This
leads to the separated peaks observed in the histogram of Figure 7a and consequently to
the vertical bands seen at the left margin of panels b to h.

Figure 7. Comparison of each product (y-axis) against the AWS reference (x-axis) during all considered

hours (702) over all the selected grid boxes (1229), excluding dry AWS samples. (a) Histogram of

reference data from AWS. (b–h) Density scatterplots of all products (y-axis) against the corresponding

AWS measurements (x-axis): radars (b); GK-2A (c); FY-4A (d); GPM-DPR (e); IMERG-Early run (f);

IMERG-Final run (g); ERA5-Land (h). All axes are logarithmic.

By examining the mean absolute error (MAE), we can identify three distinct groups
of products: radar-based ones (radars and GPM-DPR) with MAE below 0.8, integrated
products (IMERG-Early run, IMERG-Final run, and ERA5-Land) with MAE around 0.85,
and geostationary products (GK-2A and FY-4A) with MAE above 1.3.

Radars demonstrate the strongest correlation (CC = 0.7) and the lowest dispersion
(CV = 1.38) and absolute errors (MAE = 0.56). Even though their data points are spread
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across the entire scatterplot area (Figure 7b), the region along the diagonal of the plot is
clearly more populated. A slight underestimation pattern is present, anticipated by the
PDF analysis and confirmed by the mean error (ME = −0.34). There are some data points
skewed towards the axes, representing certain misses and false alarms, but these branches
are only one or two pixels wide. The performance of the GPM-DPR falls behind that of
radars (CC = 0.44, CV = 2.67, and MAE = 0.78), but it still outperforms the geostationary
estimates, though its small sample size is evident from the plot (Figure 7e), and thus its
scores are to be taken cautiously.

Both geostationary products (Figure 7c,d) show very low correlation (CC = 0.3),
the highest variation, and highest absolute errors. Data points are mostly located outside
the region along the diagonal of the scatterplots. However, the dual behavior of GK-2A,
which underestimates at medium rainfall rates but overestimates at high rainfall rates,
somewhat balances out, resulting in the lowest overall mean error of the batch (ME = 0.07).
In the case of FY-4A, certain values appear more frequently than others, creating band-like
patterns in the scatterplot, which are consistent with the peaks noted in the PDF previously.
Furthermore, the FY-4A precipitation estimates are mostly limited to the range of 1 to
50 mm/h, with apparent cut-offs and only a few outliers.

Early and Final runs of IMERG have slightly better correlation (CC = 0.38 and 0.42
respectively) than ERA5-Land (CC = 0.29). All three of them are affected by significant
underestimation (ME between −0.3 and −0.5) and moderate dispersion (CV > 1.8). This is
clearly visible in the scatterplots, in terms of deviation from the reference data (Figure 7f–h),
although it is smaller than the one of geostationary products. The Final run data points are
more balanced across the diagonal and more concentrated along it, particularly for rain
rates below 10 mm/h. ERA5-Land has no estimates exceeding 30 mm/h.

Other Metrics: mKGE and P50

Radars demonstrated favorable performance also in terms of the Modified Kling–
Gupta Efficiency (mKGE = 0.53) and of the probability of providing an estimate within 50%
of the reference (P50 = 0.75). In contrast, ERA5-Land yielded low scores for both metrics.
Interestingly, FY-4A outperformed GK-2A in these metrics, despite being quite similar in
other aspects. In the case of DPR, while it exhibited the highest P50 score, comparable to
radars, it scored the lowest mKGE. The transition from the Early run to the Final run of the
IMERG products showed a clear improvement in mKGE, but the P50 remained unchanged.

Figure 8 illustrates the 3D decomposition of mKGE for the seven products. It is evident
that the radar product (green dot) had a notable issue with general underestimation in the
mean values (falling below the blue plane). However, its variance aligned closely with that
of the reference (black line), and it exhibited the highest correlation. The IMERG products
displayed variances that were also aligned with the reference, but both lacked correlation.
Transitioning from the Early run to the Final run only resulted in slight improvements
in the overall average. The GPM-DPR product showed instead a fair correlation and
averages ratio, but its estimations exhibited twice the variation observed in the reference
rainfall field. This factor significantly impacted the overall mKGE score for GPM-DPR.
Both geostationary products demonstrated poor correlation with the reference. Similar
to the categorical scores, they displayed contrasting skills: GK-2A exceeded the standard
deviation but closely aligned with the mean, while FY-4A overestimated the mean value
but demonstrated a standard deviation consistent with the reference. ERA5-Land was the
only product that exhibited smoother results (lower variance) compared to the rain gauges.
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Figure 8. mKGE decomposition visualized in an Euclidean 3D space. Optimal point (1, 1, 1) is

shown with a black dot. The axis (CC, 1, 1) is marked with a black line. The plane µe/µo = 1 is

colored in partially transparent blue. Projections of the data points over this plane are the lighter

semi-transparent dots, and the projection lines are dashed.

4.5. Sensitivity Analysis

The trends of eight statistical scores, calculated for various categorical rain/no-rain
thresholds are depicted in Figure 9, showing how the performance of the different products
varies across different rainfall intensities.

With regard to rain detection (ETS), all instruments except the geostationary ones
performed best at rain rates around 1 or 2 mm/h, and their quantitative absolute errors
(MAE) remained relatively constant across all rainfall intensities. The False Alarm Rate
(FAR) tended to worsen with increasing thresholds, while the probability of detection
(POD) reached a peak between 0.2 and 2 mm/h for most products, except for ERA5-Land
and GK-2A. Radars consistently underestimated precipitation at all rain rates but again
exhibited the strongest correlation with AWS. They showed similar POD, FAR, and ETS
to the GPM-DPR. The geostationary products displayed distinct error patterns in terms of
quantitative indicators (Figure 9e–h), characterized by higher errors and overestimation at
rain rates below 10 mm/h. However, both the mean error (ME) and MAE decreased with
increasing thresholds, surpassing the skills of IMERG-Final run, ERA5-Land, and GPM-
DPR above 10 mm/h. Geostationary estimates demonstrated significant variability in their
detection skills structure (Figure 9a–d): GK-2A exhibited a clear tendency to overestimate
occurrences of low rain rates (a tendency shared with ERA5-Land), with high POD and
decreasing mBIAS as the threshold increased up to 3 mm/h. FY-4A started with a mBIAS
below one that steadily increased, and its POD trend was more similar to that of radars and
GPM-DPR, reaching a peak around 1 mm/h. The ETS, MAE, and CV of ERA5-Land were
all very similar to those of both IMERG products.
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Figure 9. Trends of a subset of categorical and continuous indicators varying rain/no-rain thresholds

from 0.1 to 30 mm/h: (a) POD; (b) FAR; (c) mBIAS; (d) ETS; (e) ME; (f) MAE; (g) CC; (h) CV.

5. Discussion

This study focuses on the validation of precipitation products at high spatial and
temporal resolution during a series of intense phenomena of heavy and localized precip-
itation that occurred over Vietnam during the 2020 Typhoon season. On 1 August 2020,
at 21:00 UTC, a well-developed precipitation structure was captured simultaneously by
all the analyzed products (as depicted in Figure 3). This event coincided with the tropical
storm Sinlaku, reaching its maximum intensity over the sea near the coast of Vietnam,
subsequently making landfall.

The space-borne GPM-DPR product (Figure 3e) captured the core of the precipitation
structure with significantly more detail and higher rain intensities compared to what was
measured by radars (Figure 3b) and AWS (Figure 3a). Radars estimates may have been
impacted by attenuation caused by heavy precipitation as likely indicated by the circular
artifacts observed. The presence of a single instrument in close proximity to the most
intense precipitation core, as appears from the map in Figure 1, is consistent with this
scenario. Additionally, the localized and short-lived maxima may not have been captured by
the rain gauges. Ground calibration could be used to enhance the GPM-DPR representation
of rainfall (similar to what is observed with IMERG-Final run in Figure 3g). However,
the unique advantage of GPM-DPR lies in its ability to provide detailed information about
the fine structure of precipitation without the artifacts that arise from a ground-based
perspective. This capability sets it apart from all other products analyzed in the study.

The ERA5-Land was included to assess the performance of model-based precipitation
products. However, it is important to note that the values provided by ERA5-Land, which
represent rain amounts uniformly distributed over the ground, do not necessarily align well
with the values obtained from ground point measurements. The smoothness observed in
the rainfall field on the map can be attributed to the coarse-grid (Figure 3h): recent studies
have reaffirmed the challenges faced by model-based precipitation products in subtropical
and tropical monsoon climate regions [44]. When analyzing rain maps aggregated over
the entire period, it becomes evident that ERA5-Land fails to accurately reproduce high
rainfall intensities.

The performance of geostationary satellites was found to be the poorest among the
analyzed data sources. The underestimation of moderate rainfall intensities by GK-2A can
be attributed to general intrinsic limitations of the IR remote sensing technique. On the other
hand, the overestimation of the highest rainfall intensities may be a result of the calibration
carried out with GPM-DPR products as it has also been reported in recent studies [27].
However, the error patterns observed in GK-2A cannot be completely generalized to other
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geostationary estimates. For instance, FY-4A exhibited contrasting behavior, overestimating
moderate-to-high rainfall rates ranging from 10 to 40 mm/h, while underestimating the
highest rainfall values. Recent studies have documented similarly low overall performance
results (low CC, POD, and mKGE) of the FY-4A precipitation estimate, not only over
Vietnam but also over Japan and China [27,45,46]. In Figure 3, specifically panels c and d, it
becomes apparent that the two satellites attribute the highest intensity rainfall to different
regions within the cloud system: FY-4A predominantly assigns these intensities to the center
or upper right of the storm core, whereas GK-2A focuses on the outer ring. Upon closer
examination of the FY-4A map, discontinuities in rain intensity values are clearly visible
along geographical parallels and meridians. In contrast, for GK-2A, it is evident that almost
the entire map is covered by very small but non-zero rainfall estimates as confirmed by
subsequent categorical scores. This led to GK-2A (and ERA5-Land) exhibiting a high POD
and high FAR, particularly at lower rain/no-rain threshold values (as shown in Figure 9).
However, when examining the maps of mean estimates (Figures 4 and 5, specifically panels
c and d), certain similarities between the two geostationary products become apparent.
Both products tend to overestimate mean precipitation in the same regions due to the cloud
opacity in the IR.

IMERG Early run, GK-2A and GPM-DPR exhibit discrepancies that could be addressed
through the incorporation of local measurements. The IMERG-Final run was the exception
in that it utilizes local measurements already; however, it suffers from a significant latency
of 3.5 months, making it evidently unsuitable for near real-time applications. Furthermore,
even with calibration, the correlation at high temporal resolutions (i.e., hourly) remains a
challenge if local high-resolution instruments like radars are not included in the calibration
process as also reported by [47].

Among the analyzed data sources, radars demonstrated the highest level of correlation
at the hourly scale. While they exhibit some underestimation, this issue can be mitigated
through calibration techniques that effectively compensate for quantitative bias.

6. Conclusions

The aim of this work was to investigate how the rainfall associated with the extreme
meteorological events of Autumn 2020 in Vietnam was seen by the precipitation estimation
products currently available over the region. To achieve this, we built a framework that
enabled qualitative and quantitative analyses of errors and uncertainties with high spatial
and temporal detail. This procedure can be also applied to other regions, provided that
reliable reference data are available.

For quantitative reference, in Vietnam we utilized a network comprising approximately
1200 tipping-bucket rain gauges. Next, various rainfall products were obtained from
multiple sources, including the Vietnamese ground weather radar network, the IMERG-
Early run and Final run datasets, the South Korean GEO-KOMPSAT-2A satellite, the Chinese
FengYun-4A geostationary satellite, the Dual frequency Precipitation Radar on the GPM-
CO satellite, and the ERA5-Land reanalysis. All of these products were rescaled onto a
0.02◦ × 0.02◦ grid and then compared against the AWS measurements over the matching
grid cells (1229). This analysis covered six instances of heavy rain events that occurred in
2020, spanning over 29 days (702 h), and encompassing more than 6 × 105 data points.

The results indicate that the radars product is more capable of reproducing the refer-
ence data during intense phenomena than all other products, with a CC value of 0.70 and a
normalized RMSD (or CV) of 1.38. However, it displayed some underestimation in both
rain detection (mBIAS = 0.77) and retrieval (ME = −0.34), consistently with the expectations
about the radar attenuation issues due to heavy rainfall. GPM-DPR demonstrated an even
higher ETS value of 0.45 compared to 0.41 of the radar data, but its sample size is strongly
limited by the few GPM-CO satellite overpasses in the region during the selected events.
The geostationary products overestimated both the intensity and occurrence of precipi-
tation, resulting in high errors and the lowest ETS values. In contrast, the multi-satellite
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products of IMERG performed better, although they failed to reproduce the highest rainfall
intensities registered during the extreme events.

The study we conducted was limited to a single typhoon season, which was chosen for
its particular intensity. During this period, nine tropical cyclones of varying characteristics
and peak intensities were observed with an hourly resolution as they passed over Vietnam.
Despite the specificity of our study, the findings suggest that global products fall short in
accurately depicting high-resolution precipitation patterns, particularly during severe or
extreme precipitation events tied to the evolution of tropical cyclones. The available prod-
ucts sometimes show complementary performance results, suggesting that a synergistic use
of satellite and ground networks estimates can improve the accuracy, spatial and temporal
resolution and latency of precipitation products.
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AWS Automatic Weather Station

mBIAS Multiplicative bias (categorical)

CC Correlation Coefficient

CHIRPS Climate Hazards Group InfraRed Precipitation with Station data

CMORPH Climate Prediction Center Morphing Technique

CSI Critical Success Index

DPR Dual-frequency Precipitation Radar (active sensor)
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ECMWF European Centre for Medium-range Weather Forecasts

ERA5-Land ECMWF ReAnalysis ver. 5

ETS Equitable Threat Score

FAR False Alarm Ratio

FY-4A Fengyun 4A

GEO Geostationary Earth orbit

GK-2A GEO-KOMPSAT-2A

GPCC Global Precipitation Climatology Centre

GPM Global Precipitation Mission

GPM-CO Global Precipitation Mission Core Observatory

GSMaP Global Satellite Mapping of Precipitation

IMERG Integrated Multi-satellitE Retrievals, version 06

IR Infra-Red passive sensor

JAXA Japan Aerospace Exploration Agency

JMA Japan Meteorological Agency

JWA Japan Weather Association

KMA Korean Meteorological Administration

LEO Low Earth Orbit

MAE Mean Absolute Error

ME Mean Error or relative bias

mKGE Modified Kling–Gupta Efficiency

MW MicroWave passive sensor

NASA National Aeronautics and Space Administration

NCN National Centre for Hydro-Meteorological Network

NRT Near Real-Time

P50 Probability to find the estimate inside 50% of the observation

POD Probability Of Detection

QPE Quantitative Precipitation Estimation

RG Rain Gauge

RMSD Root Mean Square Deviation

TRMM Tropical Rainfall Measuring Mission

VNMHA The Vietnam Meteorological and Hydrological Administration
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